

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	250MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efh100t-250i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
			•		PO	RTA	·
RA0	_	17	A11	22	I/O	ST	PORTA is a bidirectional I/O port
RA1	—	38	B21	56	I/O	ST	
RA2	—	59	A41	85	I/O	ST	
RA3	—	60	B34	86	I/O	ST	
RA4	—	61	A42	87	I/O	ST	
RA5	—	2	B1	2	I/O	ST	
RA6	—	89	A61	129	I/O	ST	
RA7	—	90	B51	130	I/O	ST	
RA9	—	28	B15	39	I/O	ST	
RA10	_	29	A20	40	I/O	ST]
RA14	_	66	B37	95	I/O	ST	
RA15	_	67	A45	96	I/O	ST	
					PO	RTB	
RB0	16	25	A18	36	I/O	ST	PORTB is a bidirectional I/O port
RB1	15	24	A17	35	I/O	ST	
RB2	14	23	A16	34	I/O	ST	
RB3	13	22	A14	31	I/O	ST	
RB4	12	21	A13	26	I/O	ST	
RB5	11	20	B11	25	I/O	ST	
RB6	17	26	B14	37	I/O	ST	
RB7	18	27	A19	38	I/O	ST	
RB8	21	32	B18	47	I/O	ST	
RB9	22	33	A23	48	I/O	ST	
RB10	23	34	B19	49	I/O	ST	_
RB11	24	35	A24	50	I/O	ST	_
RB12	27	41	A27	59	I/O	ST	_
RB13	28	42	B23	60	I/O	ST	-
RB14	29	43	A28	61	I/O	ST	-
RB15	30	44	B24	62	I/O	ST	
D O1		-				RTC	
RC1	—	6	B3	6	I/O	ST	PORTC is a bidirectional I/O port
RC2		7	A6	11	I/O	ST	4
RC3		8	B5	12	I/O	ST	4
RC4	-	9	A7	13	I/O	ST	4
RC12	31	49	B28	71	I/O	ST	4
RC13	47	72	B41	105	I/O	ST	4
RC14	48	73	A49	106	I/O	ST	4
RC15 Legend:	32	50 MOS-comp	A33	72	I/O	ST	Analog input P = Power

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select I = Input

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress)		Ð					-			Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0050	100.44	31:16	_	—	—		FCEIP<2:0>		FCEIS	<1:0>	_	_	—		RTCCIP<2:0)>	RTCCI	S<1:0>	0000
03D0	IPC41	15:0	_	_	_		SPI4TXIP<2:0)>	SPI4TXI	S<1:0>	-	_	-	;	SPI4RXIP<2:	0>	SPI4RX	IS<1:0>	0000
0250	IPC42	31:16		_	_		U4RXIP<2:0:	>	U4RXIS	S<1:0>	_	_	_		U4EIP<2:0:	>	U4EIS	S<1:0>	0000
03E0	IPC42	15:0	_	_	—		SQI1IP<2:0>		SQI1IS	5<1:0>	_	_	_		PREIP<2:0	>	PREIS	S<1:0>	0000
0250	IPC43	31:16	_	_	—		I2C4MIP<2:0	>	I2C4MI	S<1:0>	_	_	_		I2C4SIP<2:0)>	I2C4SI	S<1:0>	0000
0350	IPC43	15:0		_	_		I2C4BIP<2:0:	>	I2C4BIS	S<1:0>	_	_	-		U4TXIP<2:0	>	U4TXI	S<1:0>	0000
0.400	10044	31:16	_	_	—		U5EIP<2:0>		U5EIS	<1:0>	_	_	_	S	PI5TXIP<2:0	_{>} (2)	SPI5TXIS	S<1:0> (2)	0000
0400	IPC44	15:0	-	_	—	5	SPI5RXIP<2:0:	_{>} (2)	SPI5RXIS	S<1:0> (2)	—	_	-	5	SPI5EIP<2:0:	>(2)	SPI5EIS	S<1:0> (2)	0000
0410	IPC45	31:16	_	_	_		I2C5SIP<2:0:	>	12C5S1	S<1:0>		_	—		I2C5BIP<2:0)>	I2C5BI	S<1:0>	0000
0410	IPC45	15:0		_	_		U5TXIP<2:0:	>	U5TXIS	6<1:0>	_	_	_		U5RXIP<2:0)>	U5RXI	S<1:0>	0000
0420	IPC46	31:16	_	_	_	S	SPI6TXIP<2:0> ⁽²⁾ SPI6TXIS<1:0> ⁽²⁾ SPI6RXIP<2:0> ⁽²⁾		SPI6RXIS<1:0> ⁽²⁾		0000								
0420		15:0	_	_	_		SPI6EIP<2:0>	(2)	SPI6EIS	<1:0> ⁽²⁾		_	—	I2C5MIP<2:0>		I2C5MI	S<1:0>	0000	
0420	IPC47	31:16	_	—	—	—	_		-			_	_	U6TXIP<2:0>		U6TXI	S<1:0>	0000	
0430	IFC47	15:0	_	-	—		U6RXIP<2:0:	>	U6RXIS	S<1:0>		_	—	U6EIP<2:0>		U6EIS	6<1:0>	0000	
0440	IPC48	31:16	_	_	_	_	_		_			_	—	A	DCURDYIP<	2:0>	ADCURD	YIS<1:0>	0000
0440	IF U40	15:0	_	—	—	A	DCARDYIP<2	:0>	ADCARD	YIS<1:0>		_	_	A	DCEOSIP<2	2:0>	ADCEOS	SIS<1:0>	0000
0450	IPC49	31:16	_	-	—		ADC1EIP<2:0	>	ADC1EI	S<1:0>					ADC0EIP<2:	0>	ADC0E	IS<1:0>	0000
0430	1FC49	15:0	_	—	—	_	_	_	_	_				A	DCGRPIP<2	2:0>	ADCGR	PIS<1:0>	0000
0460	IPC50	31:16	_	_	_	_	_		_						ADC4EIP<2:	0>	ADC4E	IS<1:0>	0000
0400	1FC30	15:0	_	_	_		ADC3EIP<2:0	>	ADC3EI	S<1:0>					ADC2EIP<2:	0>	ADC2E	IS<1:0>	0000
0470	IPC51	31:16	_	_	_		ADC1WIP<2:0)>	ADC1W	IS<1:0>					ADC0WIP<2:	:0>	ADC0W	'IS<1:0>	0000
0470	IPC51	15:0		_	_		ADC7EIP<2:0	>	ADC7EI	S<1:0>				_	_	_	-	_	0000
0490	IPC52	31:16	_	_	_	_	_	-	_						ADC4WIP<2:	:0>	ADC4W	'IS<1:0>	0000
0460	IPC52	15:0		—	_		ADC3WIP<2:0)>	ADC3W	IS<1:0>					ADC2WIP<2:	:0>	ADC2W	'IS<1:0>	0000
0400	IPC53	31:16	-	_	_	—	-	—	-	_				—	—	—	-	—	0000
0490	IPC53	15:0	_	_	—		ADC7WIP<2:0)>	ADC7W	IS<1:0>				_	_	—	_	_	0000
0540	055000	31:16	_	—	—	_	_	—	_	—	_	—	-	_	—	—	VOFF<	:17:16>	0000
0540	OFF000	15:0				VOFF<15:1>							—	0000					
0544	055004	31:16 VOFF<17:16>					0000												
0544	OFF001	15:0				•				VOFF<15:1>									0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	RDWR	_	_	_	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_			—		—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	—	_	—	—
7.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
7:0						[DMACH<2:0>	>

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 RDWR: Read/Write Status bit

1 = Last DMA bus access when an error was detected was a read 0 = Last DMA bus access when an error was detected was a write

bit 30-3 Unimplemented: Read as '0'

bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel when an error was detected.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04-04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24	DMAADDR<31:24>											
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
23:16				DMAADDR	<23:16>							
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8	DMAADDR<15:8>											
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0 DMAADDR<7:0>												

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access when an error was detected.

		(ENDFOIN	1 1-7)					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	AUTOSET	ISO	MODE		EPODATTO	DMAREQMD	—	—
	AUTOSET		NODE	DIMAREQUI	FREDATIG	DIVIAREQIVID	DATAWEN	DATATGGL
	R/W-0, HS	R/W-0, HC	R/W-0, HS	R/W-0	R/W-0	R/W-0, HS	R/W-0	R/W-0, HC
23:16	INCOMPTX	CLRDT	SENTSTALL	SENDSTALL	FLUSH		FIFONE	TXPKTRDY
	NAKTMOUT	GERDI	RXSTALL	SETUPPKT	FLUSH	ERROR	FIFONE	IAFRIKUI
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8			T.	XMAXP<10:8	>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				TXMAX	<p<7:0></p<7:0>			

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 AUTOSET: Auto Set Control bit

- 1 = TXPKTRDY will be automatically set when data of the maximum packet size (value in TXMAXP) is loaded into the TX FIFO. If a packet of less than the maximum packet size is loaded, then TXPKTRDY will have to be set manually.
- 0 = TXPKTRDY must be set manually for all packet sizes
- **ISO:** Isochronous TX Endpoint Enable bit (Device mode)
- 1 = Enables the endpoint for Isochronous transfers
- 0 = Disables the endpoint for Isochronous transfers and enables it for Bulk or Interrupt transfers.
- This bit only has an effect in Device mode. In Host mode, it always returns zero.
- bit 29 MODE: Endpoint Direction Control bit
 - 1 = Endpoint is TX

bit 30

0 = Endpoint is RX

This bit only has any effect where the same endpoint FIFO is used for both TX and RX transactions.

- bit 28 DMAREQEN: Endpoint DMA Request Enable bit
 - 1 = DMA requests are enabled for this endpoint
 - 0 = DMA requests are disabled for this endpoint

bit 27 **FRCDATTG:** Force Endpoint Data Toggle Control bit

- 1 = Forces the endpoint data toggle to switch and the data packet to be cleared from the FIFO, regardless of whether an ACK was received.
- 0 = No forced behavior
- bit 26 DMAREQMD: Endpoint DMA Request Mode Control bit
 - 1 = DMA Request Mode 1
 - 0 = DMA Request Mode 0

This bit must not be cleared either before or in the same cycle as the above DMAREQEN bit is cleared.

- bit 25 DATAWEN: Data Toggle Write Enable bit (Host mode)
 - 1 = Enable the current state of the TX Endpoint data toggle (DATATGGL) to be written
 - 0 = Disables writing the DATATGGL bit
- bit 24 **DATATGGL:** Data Toggle Control bit (Host mode)

When read, this bit indicates the current state of the TX Endpoint data toggle. If DATAWEN = 1, this bit may be written with the required setting of the data toggle. If DATAWEN = 0, any value written to this bit is ignored.

ess (æ								В	its								s
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2044		31:16	_	-	_	_	—	—	—	_	-	_		BDSTA	ΓE<3:0>		DMA START	DMAACTV	0000
	STAT	15:0							•	BDCON	N<15:0>								0000
2048	SQI1BD	31:16	_	—	—	—	—	_	_	—	—	_	—	—	—	—	—	_	0000
2048	POLLCON	15:0							•	POLLCC)N<15:0>								0000
204C	OGIIDD	31:16		—	_		TXSTA	FE<3:0>		—	—	_	—		TX	BUFCNT<4	:0>		0000
2040	TXDSTAT	15:0	_	—	—	—	—	_	—	—				TXCURBUFLEN<7:0>				0000	
2050		31:16	_		_		RXSTA	ΓE<3:0>		_	_	_	—		RX	BUFCNT<4	:0>		0000
2050	RXDSTAT	15:0	_		_	_	_	_	_	_				RXCURBUFLEN<7:0>			0000		
2054	SQI1THR	31:16	-	—	—	_	—	_	—		_			—	-		—	—	0000
2004	SQITTIK	15:0		—	—	—	—	_	-		—					THRES<4:0:	>		0000
	SQI1INT	31:16	_	—	—	—	—	—	—	_	—	—	_	—	—	_	—		0000
2058	SIGEN	15:0	—	-	-	-	DMAEISE	PKT DONEISE	BD DONEISE	CON THRISE	CON EMPTYISE	CON FULLISE	RX THRISE	RX FULLISE	RX EMPTYISE	TX THRISE	TX FULLISE	TX EMPTYISE	0000
205C		31:16	_	—	_	_	_	_	-	-	—			_	—	-	_	—	0000
2030	TAPCON	15:0		—			CLKIND	LY<5:0>				DATAOUT	DLY<3:0>			CLKOUT	DLY<3:0>		0000
2060	SQI1	31:16		—	—	—	—	—	—	-	—		-	STATPOS	TYPEST	AT<1:0>	STATBY	TES<1:0>	0000
2000	SQI1 MEMSTAT	15:0	5:0 STATDATA<15:0> 0000																
2064	SQI1 XCON3	31:16	SCHECK							0000									
	XCON5	15:0				INIT1CM	1D2<7:0>							INIT1CM	ID1<7:0>				0000
2068	SQI1 XCON4	31:16	- - INIT2 SCHECK INIT2COUNT<1:0> INIT2TYPE<1:0> INIT2CMD3<7:0> 000							0000									
	700114	15:0	15:0 INIT2CMD2<7:0> INIT2CMD1<7:0> 0000																

TABLE 20-1: SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP (CONTINUED)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	_	—	_	_	_	_	_	_					
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	—	—	—	_	—	—	—					
	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS					
15:8	_	—	_	-	DMA EIF	PKT COMPIF	BD DONEIF	CON THRIF					
	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS					
7:0	CON EMPTYIF	CON FULLIF	RXTHRIF ⁽¹⁾	RXFULLIF	RX EMPTYIF	TXTHRIF	TXFULLIF	TX EMPTYIF					

REGISTER 20-9: SQI1INTSTAT: SQI INTERRUPT STATUS REGISTER

Legend:	HS = Hardware Set		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

b

hit 21 12	Unimplemented: Read as '0'
	•
bit 11	DMAEIF: DMA Bus Error Interrupt Flag bit
	1 = DMA bus error has occurred
	0 = DMA bus error has not occurred
bit 10	PKTCOMPIF: DMA Buffer Descriptor Processor Packet Completion Interrupt Flag bit
	1 = DMA BD packet is complete
	0 = DMA BD packet is in progress
bit 9	BDDONEIF: DMA Buffer Descriptor Done Interrupt Flag bit
	1 = DMA BD process is done
	0 = DMA BD process is in progress
bit 8	CONTHRIF: Control Buffer Threshold Interrupt Flag bit
	1 = The control buffer has more than THRES words of space available
	0 = The control buffer has less than THRES words of space available
bit 7	CONEMPTYIF: Control Buffer Empty Interrupt Flag bit
	1 = Control buffer is empty
	0 = Control buffer is not empty
bit 6	CONFULLIF: Control Buffer Full Interrupt Flag bit
	1 = Control buffer is full
	0 = Control buffer is not full
bit 5	RXTHRIF: Receive Buffer Threshold Interrupt Flag bit ⁽¹⁾
	1 = Receive buffer has more than RXINTTHR words of space available
	0 = Receive buffer has less than RXINTTHR words of space available
bit 4	RXFULLIF: Receive Buffer Full Interrupt Flag bit
	1 = Receive buffer is full
	0 = Receive buffer is not full

- b
- bit 3 **RXEMPTYIF:** Receive Buffer Empty Interrupt Flag bit
 - 1 = Receive buffer is empty
 - 0 = Receive buffer is not empty
- Note 1: In Boot/XIP mode, the POR value of the receive buffer threshold is zero. Therefore, this bit will be set to a '1', immediately after a POR until a read request on the System Bus is received.

Note: The bits in the register are cleared by writing a '1' to the corresponding bit position.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	_	—	—	_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	_	—	_	_	_	
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	—	CLKINDLY<5:0>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0		DATAOUT	DLY<3:0>		CLKOUTDLY<3:0>				

REGISTER 20-23: SQI1TAPCON: SQI TAP CONTROL REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13-8 CLKINDLY<5:0>: SQI Clock Input Delay bits
These bits are used to add fractional delays to SQI Clock Input while sampling the incoming data.
111111 = 64 taps added on clock input
111110 = 63 taps added on clock input
•

.

000001 = 2 taps added on clock input 000000 = 1 tap added on clock input

bit 7-4 DATAOUTDLY<3:0>: SQI Data Output Delay bits

These bits are used to add fractional delays to SQI Data Output while writing the data to the Flash. 1111 = 16 taps added on clock output

- 1110 = 15 taps added on clock output
- •

•

0001 = 2 taps added on clock output 0000 = 1 tap added on clock output

bit 3-0 CLKOUTDLY<3:0>: SQI Clock Output Delay bits

These bits are used to add fractional delays to SQI Clock Output while writing the data to the Flash.

1111 = 16 taps added on clock output

- 1110 = 15 taps added on clock output
- •

•

- 0001 = 2 taps added on clock output
- 0000 = 1 tap added on clock output

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_		_			—		—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	—		—		_
45.0	R-0, HS, HC	R-0, HS, HC	R/C-0, HS, HC	U-0	U-0	R/C-0, HS	R-0, HS, HC	R-0, HS, HC
15:8	ACKSTAT	TRSTAT	ACKTIM	—		BCL	GCSTAT	ADD10
7.0	R/C-0, HS, SC	R/C-0, HS, SC	R-0, HS, HC	R/C-0, HS, HC	R/C-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

REGISTER 21-2: I2CxSTAT: I²C STATUS REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared	SC = Software Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

bit 21 16 Linin nnla tod. De 24 <u>'</u>∩'

bit 31-16	Unimplemented: Read as 10 [°]
bit 15	ACKSTAT: Acknowledge Status bit (when operating as I ² C master, applicable to master transmit operation)
	1 = NACK received from slave
	0 = ACK received from slave
	Hardware set or clear at end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I^2C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK)
	0 = Master transmit is not in progress
	Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
bit 13	ACKTIM: Acknowledge Time Status bit (Valid in I ² C Slave mode only)
	$1 = I^2C$ bus is in an Acknowledge sequence, set on the eight falling edge of SCL clock 0 = Not an Acknowledge sequence, cleared on 9th rising edge of SCL clock
bit 12-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation
	0 = No collision
	Hardware set at detection of bus collision.
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received
	0 = General call address was not received
	Hardware set when address matches general call address. Hardware clear at Stop detection.
bit 8	ADD10: 10-bit Address Status bit
	1 = 10-bit address was matched
	0 = 10-bit address was not matched
	Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
bit 7	IWCOL: Write Collision Detect bit
	1 = An attempt to write the I2CxTRN register failed because the I^2 C module is busy
	 0 = No collision Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
L:1.0	
bit 6	I2COV: Receive Overflow Flag bit
	 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow
	Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

REGISTER 22-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

PDSEL<1:0>: Parity and Data Selection bits

11 = 9-bit data, no parity
10 = 8-bit data, odd parity
01 = 8-bit data, even parity
00 = 8-bit data, no parity
STSEL: Stop Selection bit

1 = 2 Stop bits 0 = 1 Stop bit

bit 2-1

bit 0

bit 5 ABAUD: Auto-Baud Enable bit
1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55); cleared by hardware upon completion
0 = Baud rate measurement is disabled or completed
bit 4 RXINV: Receive Polarity Inversion bit
1 = UxRX Idle state is '0'
0 = UxRX Idle state is '1'
bit 3 BRGH: High Baud Rate Enable bit
1 = High-Speed mode – 4x baud clock enabled
0 = Standard Speed mode – 16x baud clock enabled

Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices.

For additional information, see Section 12.4 "Peripheral Pin Select (PPS)".

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
31:24	—	—	_	_	—	_	_	ADM_EN	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	ADDR<7:0>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1	
15:8	UTXISEL<1:0>		UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0	
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	

REGISTER 22-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled

bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

- bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits
 - 11 = Reserved, do not use
 - 10 = Interrupt is generated and asserted while the transmit buffer is empty
 - 01 = Interrupt is generated and asserted when all characters have been transmitted
 - 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space
- bit 13 UTXINV: Transmit Polarity Inversion bit
 - If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):
 - 1 = UxTX Idle state is '0'
 - 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'
- bit 12 URXEN: Receiver Enable bit
 - 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset
- bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register is Empty bit (read-only)
 - 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer

Figure 26-10 shows the Security Association control word structure.

The Crypto Engine fetches different structures for different flows and ensures that hardware fetches minimum words from SA required for processing. The structure is ready for hardware optimal data fetches.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24			VERIFY		NO_RX	OR_EN	ICVONLY	IRFLAG
23-16	LNC	LOADIV	FB	FLAGS	_	_		ALGO<6>
15-8			ALGO	<5:0>			ENC	KEY SIZE<1>
7-0	KEY SIZE<0>	ML	ILTITASK<2:	0>		CRYPTOA	LGO<3:0>	
bit 31-30	Reserved:	Do not use						
bit 29	1 = NIST pr	ST Procedure ocedures are use NIST proc	to be used	Setting				
bit 28	Reserved:	Do not use						
bit 27	NO_RX: Receive DMA Control Setting 1 = Only calculate ICV for authentication calculations 0 = Normal processing							
bit 26	OR_EN: OR Register Bits Enable Setting 1 = OR the register bits with the internal value of the CSR register 0 = Normal processing							
bit 25	ICVONLY: Incomplete Check Value Only Flag This affects the SHA-1 algorithm only. It has no effect on the AES algorithm. 1 = Only three words of the HMAC result are available 0 = All results from the HMAC result are available							
bit 24	IRFLAG: Immediate Result of Hash Setting This bit is set when the immediate result for hashing is requested. 1 = Save the immediate result for hashing 0 = Do not save the immediate result							
bit 23	1 = Load a i	New Keys Se new set of key oad new keys	ys for encryp	tion and auth	nentication			
bit 22		oad IV Setting e IV from this next IV		ociation				
bit 21	 FB: First Block Setting This bit indicates that this is the first block of data to feed the IV value. 1 = Indicates this is the first block of data 0 = Indicates this is not the first block of data 							
bit 20	 FLAGS: Incoming/Outgoing Flow Setting 1 = Security Association is associated with an outgoing flow 0 = Security Association is associated with an incoming flow 							
	Reserved: Do not use							

FIGURE 26-10: FORMAT OF SA_CTRL

REGIS	TER 28-4: ADCTRGMODE: ADC TRIGGERING MODE FOR DEDICATED ADC REGISTER
bit 9	STRGEN1: ADC1 Presynchronized Triggers bit 1 = ADC1 uses presynchronized triggers 0 = ADC1 does not use presynchronized triggers
bit 8	STRGEN0: ADC0 Presynchronized Triggers bit 1 = ADC0 uses presynchronized triggers 0 = ADC0 does not use presynchronized triggers
bit 7-5	Unimplemented: Read as 'o'
bit 4	SSAMPEN4: ADC4 Synchronous Sampling bit 1 = ADC4 uses synchronous sampling for the first sample after being idle or disabled 0 = ADC4 does not use synchronous sampling
bit 3	SSAMPEN3: ADC3 Synchronous Sampling bit 1 = ADC3 uses synchronous sampling for the first sample after being idle or disabled 0 = ADC3 does not use synchronous sampling
bit 2	SSAMPEN2: ADC2Synchronous Sampling bit 1 = ADC2 uses synchronous sampling for the first sample after being idle or disabled 0 = ADC2 does not use synchronous sampling
bit 1	SSAMPEN1: ADC1 Synchronous Sampling bit 1 = ADC1 uses synchronous sampling for the first sample after being idle or disabled 0 = ADC1 does not use synchronous sampling
bit 0	SSAMPEN0: ADC0 Synchronous Sampling bit 1 = ADC0 uses synchronous sampling for the first sample after being idle or disabled

0 = ADC0 does not use synchronous sampling

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0							
31:24		—	—	—	—	—	—	—
22:46	U-0							
23:16	—	—	_	—	_	—	—	—
45.0	U-0	U-0	U-0	R-0, HS, HC				
15:8	—	—	_	EIRDY44 ⁽²⁾	EIRDY43 ⁽²⁾	EIRDY42 ⁽²⁾	EIRDY41 ⁽²⁾	EIRDY40 ⁽²⁾
7.0	R-0, HS, HC							
7:0	EIRDY39 ⁽²⁾	EIRDY38 ⁽²⁾	EIRDY37 ⁽²⁾	EIRDY36 ⁽²⁾	EIRDY35 ⁽²⁾	EIRDY34 ⁽¹⁾	EIRDY33 ⁽¹⁾	EIRDY32 ⁽¹⁾

REGISTER 28-31: ADCEISTAT2: ADC EARLY INTERRUPT STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$

bit 31-13 Unimplemented: Read as '0'

bit 31-0 **EIRDY44:EIRDY32:** Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN2 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCEIS<2:0> bits in the ADCCON2 register.
- 0 = Interrupts are disabled

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64-pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		_	_	_	_	—
23:16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	—	—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8				TERRCI	NT<7:0>			
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0				RERRC	NT<7:0>			

REGISTER 29-5: CITREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit V	N = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

- bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \ge 256)
- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT ≥ 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)
- bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)
- bit 17 **RXWARN:** Receiver in Error State Warning (128 > RERRCNT ≥ 96)
- bit 16 EWARN: Transmitter or Receiver is in Error State Warning
- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 29-6: CIFSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24
23:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 FIFOIP<31:0>: FIFOx Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31:24	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
23:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

REGISTER 29-7: CIRXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RXOVF<31:0>: FIFOx Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed

0 = FIFO has not overflowed

REGISTER 29-8: CITMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				CANTS<	:15:8>			
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				CANTS	<7:0>			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				CANTSPR	E<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0 CANTSPRE<								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (CiCON<20>) is set.

bit 15-0 **CANTSPRE<15:0>:** CAN Time Stamp Timer Prescaler bits

1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks

٠

0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: CiTMR will be frozen when CANCAP = 0.

2: The CiTMR prescaler count will be reset on any write to CiTMR (CANTSPRE will be unaffected).

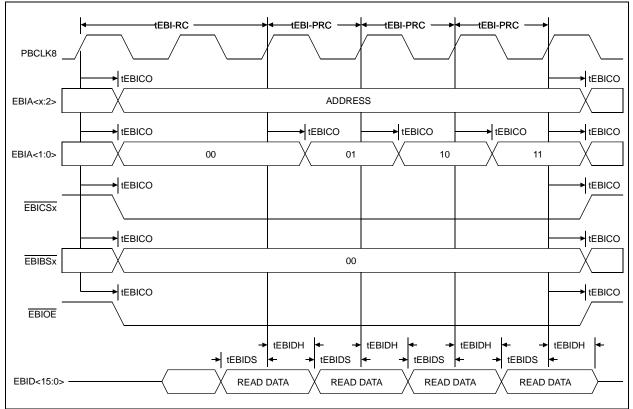
REGISTER 29-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED) bit 15 FLTEN9: Filter 9 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL9<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL8<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'. Note:

AC CHARACTERISTICS		Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	^{n.} Symbol Characteristics		Minimum	Typical	Maximum	Units	Conditions
OS51	Fsys	System Frequency	DC		200	MHz	USB module disabled
			60	_	200	MHz	USB module enabled
OS55a	Fpb	Peripheral Bus Frequency	DC		100	MHz	For PBCLKx, 'x' \neq 4, 7
OS55b			DC	_	200	MHz	For PBCLK4, PBCLK7
OS56	Fref	Reference Clock Frequency	—		50	MHz	For REFCLKI1, 3, 4 and REFCLKO1, 3, 4 pins

TABLE 37-18: SYSTEM TIMING REQUIREMENTS

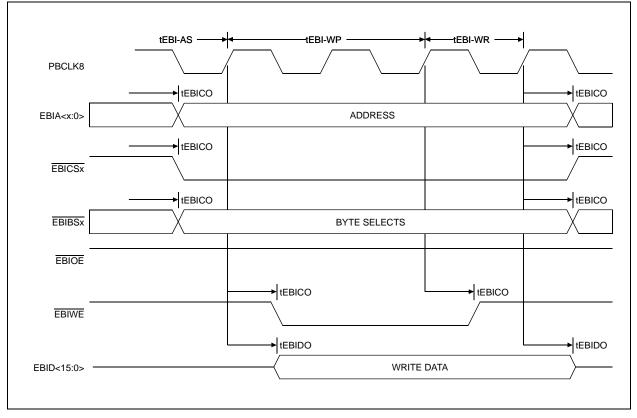
TABLE 37-19: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS		Standard (unless of Operating	herwise	ture -40°C	\leq Ta \leq +	85°C for	Industrial or Extended	
Param. No.	Symbol	Characteristics ⁽¹⁾		Min.	Typical	Max.	Units	Conditions
OS50	Fin	PLL Input Frequency Range		5		64	MHz	ECPLL, HSPLL, FRCPLL modes
OS52	TLOCK	PLL Start-up Time (L	ock Time)		_	100	μs	—
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cumulative)		-0.25	_	+0.25	%	Measured over 100 ms period
OS54	FVco	PLL Vco Frequency Range		350		700	MHz	—
OS54a	Fpll	PLL Output Frequen	cy Range	10	_	200	MHz	—


Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{PBCLK2}{\sqrt{CommunicationClock}}}}$$


For example, if PBCLK2 = 100 MHz and SPI bit rate = 50 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{100}{50}}} = \frac{D_{CLK}}{1.41}$$

FIGURE 37-28: EBI PAGE READ TIMING

FIGURE 37-29: EBI WRITE TIMING

$\begin{array}{c} \bullet \\ \bullet \\ A2 \\ \bullet \\ A1 \\ \bullet \\ \bullet \\ (L1) \\ \bullet \end{array}$

144-Lead Plastic Thin Quad Flatpack (PH)-16x16x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensio	Dimension Limits				
Number of Pins	Ν		144		
Lead Pitch	е		0.40 BSC		
Overall Height	А	-	-	1.20	
Molded PackageThickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05 - 0.15			
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Overall Width	D		18.00 BSC		
Overall Length	E		18.00 BSC		
Molded Body Width	D1		16.00 BSC		
Molded Body Length	E1	16.00 BSC			
Lead Thickness	С	0.09 - 0.20			
Lead Width	b	0.13	-	0.23	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-155B Sheet 2 of 2

B.2 Analog-to-Digital Converter (ADC)

The PIC32MZ EC family features a Pipelined ADC module, while the PIC32MZ EF family of devices has an entirely new 12-bit High-Speed SAR ADC module. Nearly all registers in this new ADC module differ from the registers in PIC32MZ EC devices. Due to this difference, code will not port from PIC32MZ EC devices to PIC32MZ EF devices. Table B-2 lists some of the differences in registers to note to adapt code as quickly as possible.

TABLE B-2:ADC DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature
Clock Selection and O	perating Frequency (TAD)
On PIC32MZ EC devices, there are three possible sources of the ADC clock: FRC, REFCLKO3, and SYSCLK.	On PIC32MZ EF devices, there are four sources for the ADC clock. In addition to the ones for PIC32MZ EC, PBCLK4 is added as a source. Also, the clock source selection is in a different register.
ADCSEL<1:0> (AD1CON1<9:8>)	ADCSEL<1:0> (ADCCON3<31:30>)
11 = FRC	11 = FRC
10 = REFCLKO3	10 = REFCLKO3
01 = SYSCLK	01 = SYSCLK
00 = Reserved	00 = PBCLK4
Scan Trigg	ger Sources
On PIC32MZ EC devices, there are 10 available trigger sources for starting ADC sampling and conversion.	On PIC32MZ EF devices, two new sources have been added. One is a shared trigger source (STRIG). The other is a Global Level Software Trigger (GLSWTRG). With the GLSWTRG, the conversions continue until the bit is cleared in software.
STRGSRC<4:0> (AD1CON1<26:22>)	TRGSRC<4:0> (ADCTRGx <y:z>)</y:z>
11111 = Reserved	11111 = Reserved
•	•
•	•
• 01101 = Reserved	• 01101 = Reserved
01100 = Comparator 2 COUT	01100 = Comparator 2 COUT
01011 = Comparator 1 COUT	01011 = Comparator 1 COUT
01011 = 0CMP5	01011 = OCMP5
01001 = 0CMP3	01001 = OCMP3
01000 = OCMP1	01000 = OCMP1
00111 = TMR5 match	00111 = TMR5 match
00110 = TMR3 match	00110 = TMR3 match
00101 = TMR1 match	00101 = TMR1 match
00100 = INTO	00100 = INTO
00011 = Reserved	00011 = STRIG
00010 = Reserved	00010 = Global Level Software Trigger (GLSWTRG)
00001 = Global Software Trigger (GSWTRG)	00001 = Global Software Trigger (GSWTRG)
00000 = No trigger	00000 = No trigger
Debu	g Mode
On PIC32MZ EC devices, the ADC module continues operating when stopping on a breakpoint during debugging.	On PIC32MZ EF devices, the ADC module will stop during debugging when stopping on a breakpoint.
Electrical Specifications	and Timing Requirements
Refer to the "Electrical Characteristics" chapter in the	On PIC32MZ EF devices, the ADC module sampling and
PIC32MZ EC data sheet for ADC module specifications and timing requirements.	conversion time and other specifications have changed. Refer to 37.0 "Electrical Characteristics" for more information.
ADC Ca	libration
PIC32MZ EC devices require calibration values be copied into the AD1CALx registers before turning on the ADC. These values come from the DEVADCx registers.	