

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	97
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efh124-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
					J	ΓAG	
ТСК	27	38	B21	56	I	ST	JTAG Test Clock Input Pin
TDI	28	39	A26	57	I	ST	JTAG Test Data Input Pin
TDO	24	40	B22	58	0	—	JTAG Test Data Output Pin
TMS	23	17	A11	22	I	ST	JTAG Test Mode Select Pin
	•	•	•		Tr	ace	•
TRCLK	57	89	A61	129	0	_	Trace Clock
TRD0	58	97	B55	141	0	—	Trace Data bits 0-3
TRD1	61	96	A65	140	0	—	
TRD2	62	95	B54	139	0	—	
TRD3	63	90	B51	130	0	—	
				Pro	grammiı	ng/Debugg	ing
PGED1	16	25	A18	36	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1
PGEC1	15	24	A17	35	Ι	ST	Clock input pin for Programming/Debugging Communication Channel 1
PGED2	18	27	A19	38	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2
PGEC2	17	26	B14	37	Ι	ST	Clock input pin for Programming/Debugging Communication Channel 2
MCLR	9	15	A10	20	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
Legend:	CMOS = CI ST = Schm TTL = Trans	itt Trigger ir	put with C	MOS level		O = Outp	Analog input P = Power ut I = Input eripheral Pin Select

TABLE 1-22: JTAG, TRACE, AND PROGRAMMING/DEBUGGING PINOUT I/O DESCRIPTIONS

The System Bus arbitration scheme implements a nonprogrammable, Least Recently Serviced (LRS) priority, which provides Quality Of Service (QOS) for most initiators. However, some initiators can use Fixed High Priority (HIGH) arbitration to guarantee their access to data.

The arbitration scheme for the available initiators is shown in Table 4-5.

ID	QOS
1	LRS ⁽¹⁾
2	HIGH ^(1,2)
3	LRS ⁽¹⁾
4	HIGH ^(1,2)
5	LRS ⁽¹⁾
6	HIGH ^(1,2)
7	LRS
8	LRS
9	LRS
10	LRS
11	LRS
12	LRS
13	HIGH ⁽²⁾
14	LRS
	1 2 3 4 5 6 7 8 9 10 11 11 12 13

TABLE 4-5:INITIATOR ID AND QOS

- Note 1: When accessing SRAM, the DMAPRI bit (CFGCON<25>) and the CPUPRI bit (CFGCON<24>) provide arbitration control for the DMA and CPU (when servicing an interrupt (i.e., EXL = 1)), respectively, by selecting the use of LRS or HIGH When using HIGH, the DMA and CPU get arbitration preference over all initiators using LRS.
 - 2: Using HIGH arbitration can have serious negative effects on other initiators. Therefore, it is recommended to not enable this type of arbitration for an initiator that uses significant system bandwidth. HIGH arbitration is intended to be used for low bandwidth applications that require low latency, such as LCC graphics applications.

4.3 Permission Access and System Bus Registers

The System Bus on PIC32MZ EF family of microcontrollers provides access control capabilities for the transaction initiators on the System Bus.

The System Bus divides the entire memory space into fourteen target regions and permits access to each target by initiators via permission groups. Four Permission Groups (0 through 3) can be assigned to each initiator. Each permission group is independent of the others and can have exclusive or shared access to a region.

Using the CFGPG register (see Register 34-10 in **Section 34.0 "Special Features"**), Boot firmware can assign a permission group to each initiator, which can make requests on the System Bus.

The available targets and their regions, as well as the associated control registers to assign protection, are described and listed in Table 4-6.

Register 4-2 through Register 4-10 are used for setting and controlling access permission groups and regions.

To change these registers, they must be unlocked in hardware. The register lock is controlled by the PGLOCK Configuration bit (CFGCON<11>). Setting PGLOCK prevents writes to the control registers; clearing PGLOCK allows writes.

To set or clear the PGLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** in the *"PIC32 Family Reference Manual"* for details.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

REGISTER 4-10: SBTxWRy: SYSTEM BUS TARGET 'x' REGION 'y' WRITE PERMISSIONS REGISTER ('x' = 0-13; 'y' = 0-8)

		•	,					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—			_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_			_		_		_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	_	_		_
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1
7:0			_	_	GROUP3	GROUP2	GROUP1	GROUP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-4 Unimplemented: Read as '0'

more information.

		•·····•
bit 3		Group3: Group 3 Write Permissions bits
		1 = Privilege Group 3 has write permission
		0 = Privilege Group 3 does not have write permission
bit 2		Group2: Group 2 Write Permissions bits
		1 = Privilege Group 2 has write permission
		0 = Privilege Group 2 does not have write permission
bit 1		Group1: Group 1 Write Permissions bits
		1 = Privilege Group 1 has write permission
		0 = Privilege Group 1 does not have write permission
bit 0		Group0: Group 0 Write Permissions bits
		1 = Privilege Group 0 has write permission
		0 = Privilege Group 0 does not have write permission
Note	ə 1:	Refer to Table 4-6 for the list of available targets and their descriptions.
	2:	For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for

DS60001320D-page 98

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress)		e								Bi	its								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0450	10044	31:16	_	_	—	A	ADCDC2IP<2:	0>	ADCDC2	2IS<1:0>	—	—	—	A	ADCDC1IP<2	::0>	ADCDC	1IS<1:0>	0000
01F0	IPC11	15:0	_	_	-	A	DCFIFOIP<2	:0>	ADCFIFC	DIS<1:0>	_	_	_		ADCIP<2:0	>	ADCIS	S<1:0>	000
0000	10040	31:16		_	-	A	ADCDC6IP<2:	0>	ADCDC6	6IS<1:0>	—	_	—	A	ADCDC5IP<2	2:0>	ADCDC	5IS<1:0>	000
0200	IPC12	15:0	_	_	_	A	ADCDC4IP<2:	0>	ADCDC4	IS<1:0>	—	—	—	A	ADCDC3IP<2	2:0>	ADCDC	3IS<1:0>	000
0040	10040	31:16	_	_	-	A	ADCDF4IP<2:	0>	ADCDF4	IS<1:0>	_	_	_	Å	ADCDF3IP<2	:0>	ADCDF	3IS<1:0>	000
0210	IPC13	15:0		_	-	A	ADCDF2IP<2:	0>	ADCDF2	IS<1:0>	—	_	—	Å	ADCDF1IP<2	:0>	ADCDF1	IIS<1:0>	000
0000		31:16		_	_		ADCD0IP<2:0)>	ADCD0	S<1:0>	—	—	—	A	DCDFLTIP<	2:0>	ADCDFL	TIS<1:0>	000
0220	IPC14	15:0		_	_	A	ADCDF6IP<2:	0>	ADCDF6	IS<1:0>	—	—	—	ļ	ADCDF5IP<2	:0>	ADCDF	5IS<1:0>	000
0000	IPC15	31:16	_	_	_		ADCD4IP<2:0)>	ADCD4	S<1:0>	_	_	_		ADCD3IP<2:	0>	ADCD3	IS<1:0>	000
0230	IPC 15	15:0	_	_	_		ADCD2IP<2:0)>	ADCD2	S<1:0>	_	_	_		ADCD1IP<2:	0>	ADCD1	IS<1:0>	000
0240	IPC16	31:16		_	_		ADCD8IP<2:0>		ADCD8	S<1:0>	—	—	—	ADCD7IP<2:0>		ADCD7	IS<1:0>	000	
0240	IPC ID	15:0	_	_	_	ADCD6IP<2:0>		ADCD6	S<1:0>	_	_	_	ADCD5IP<2:0>		ADCD5	IS<1:0>	000		
0250	IPC17	31:16	—	_	-	ADCD12IP<2:0>		ADCD12	IS<1:0>	—	—	—	1	ADCD11IP<2	:0>	ADCD11	IS<1:0>	000	
0250		15:0	_	_	—	A	ADCD10IP<2:0>		ADCD10	IS<1:0>	—	—	—		ADCD9IP<2:	0>	ADCD9	IS<1:0>	000
0260	IPC18	31:16	_	_	—	A	ADCD16IP<2:	0>	ADCD16	IS<1:0>	_	—	—	ŀ	ADCD15IP<2	:0>	ADCD15	5IS<1:0>	000
0260	IPC IO	15:0	—	_	-	A	ADCD14IP<2:	0>	ADCD14	IS<1:0>	—	—	—	ŀ	ADCD13IP<2	:0>	ADCD13	3IS<1:0>	000
0070		31:16	_	_	—	A	DCD20IP<2:0	>(2)	ADCD201	S<1:0> ⁽²⁾	—	—	—	A	DCD19IP<2:	_{)>} (2)	ADCD19I	S<1:0> ⁽²⁾	000
0270	IPC19	15:0	_	—	-	A	ADCD18IP<2:	0>	ADCD18	IS<1:0>	—	—	—	ŀ	ADCD17IP<2	:0>	ADCD17	7IS<1:0>	000
0200	IPC20	31:16	_	—	-	A	DCD24IP<2:0	> ⁽²⁾	ADCD24	S<1:0> ⁽²⁾	—	—	—	A	DCD23IP<2:)> ⁽²⁾	ADCD23I	S<1:0> ⁽²⁾	000
0260	IPC20	15:0	_	_	—	A	DCD22IP<2:0	>(2)	ADCD22I	S<1:0> ⁽²⁾	—	—	—	A	DCD21IP<2:	_{)>} (2)	ADCD211	S<1:0> ⁽²⁾	000
0200	IPC21	31:16	_	_	—	A	DCD28IP<2:0	> ⁽²⁾	ADCD28	S<1:0> ⁽²⁾	_	—	—	A	DCD27IP<2:)> ⁽²⁾	ADCD27I	S<1:0> ⁽²⁾	000
0290	IFUZI	15:0	_	_	—	A	DCD26IP<2:0	> ⁽²⁾	ADCD26	S<1:0> ⁽²⁾	_	—	—		DCD25IP<2:		ADCD25I		000
0240	IPC22	31:16	_	_	—	A	DCD32IP<2:0	> ⁽²⁾	ADCD32	S<1:0> ⁽²⁾	—	—	—	A	DCD31IP<2:)> ⁽²⁾	ADCD311	S<1:0> ⁽²⁾	000
02A0	19622	15:0	_	_	—	A	DCD30IP<2:0	> ⁽²⁾	ADCD30		_	—	—	A	DCD29IP<2:)> ⁽²⁾	ADCD29I		000
0280	IPC23	31:16		_	—	AD	CD36IP<2:0>	(2,4)	ADCD36IS	S<1:0>(2,4)	—	—	—	AD	DCD35IP<2:0	>(2,4)	ADCD3518	S<1:0> ^(2,4)	000
0200	15023	15:0		_	—	A	DCD34IP<2:0	>(2)	ADCD341	S<1:0> ⁽²⁾	—	—	—	ADCD33IP<2:0> ⁽²⁾		ADCD33I	S<1:0>(2)	000	
0200	IPC24	31:16		—	—	AD	CD40IP<2:0>	(2,4)	ADCD40IS	S<1:0> ^(2,4)	—	—	—	ADCD39IP<2:0> ^(2,4)		ADCD39IS	S<1:0> ^(2,4)	000	
0200	1F024	15:0	_	—	-	AD	CD38IP<2:0>	(2,4)	ADCD38IS	S<1:0> ^(2,4)	—	_	_	ADCD37IP<2:0> ^(2,4)		ADCD3718	S<1:0> ^(2,4)	000	
0200	IDCOF	31:16		—	—	A	ADCD44IP<2:	0>	ADCD44	IS<1:0>	—	_	—	ADCD43IP<2:0>		ADCD43	3IS<1:0>	000	
0200	IPC25	15:0		_	_	AD	CD42IP<2:0>	(2,4)	ADCD42IS	S<1:0> ^(2,4)	_	_	_	AD	DCD41IP<2:0	> ^(2,4)	ADCD41IS	S<1:0> ^(2,4)	000

Legend:

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

TABLE 7-3: **INTERRUPT REGISTER MAP (CONTINUED)**

ress f)	b -	Ð								Bi	ts								,
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Decete
	055450	31:16	_	-	_	—	-	_	_	—	_	—	_	—	—	—	VOFF<	:17:16>	00
J7A4	OFF153	15:0								VOFF<15:1>				•			•	_	000
1749	OFF154	31:16	_	_	_	_	—	—	—	_	_	_	—	—	—	_	VOFF<	:17:16>	00
JIAO	UFF154	15:0								VOFF<15:1>								—	000
	OFF155	31:16	—	_	_	_	_	-			_	—	-	—	_	—	VOFF<	:17:16>	000
JIAC	0FF155	15:0								VOFF<15:1>								_	000
	OFF156	31:16	-		_	—				—	_	_		—	—	—	VOFF<	:17:16>	000
5760	OFF 150	15:0								VOFF<15:1>								—	000
1784	OFF157	31:16	_	-	—	—	_	—	—	—	_	—	-	—	—	—	VOFF<	:17:16>	000
57 04	011137	15:0								VOFF<15:1>							-	_	000
1788	OFF158	31:16	-		—	—				—	—	_		-	_	—	VOFF<	:17:16>	000
0100	011130	15:0								VOFF<15:1>								—	000
	OFF159	31:16	_	_	—	—	_	_	_	_	_	—	_	—	—	_	VOFF<	:17:16>	000
льс	011139	15:0								VOFF<15:1>		-		-	-			—	000
1700	OFF160	31:16	_	_	—	—	_	_	_	_	_	—	-	—	_	—	VOFF<	:17:16>	000
5700		15:0								VOFF<15:1>								_	000
1704	OFF161	31:16	—	_	—	—				—	_	—			—	_	VOFF<	:17:16>	000
5704		15:0								VOFF<15:1>		-		-	-			—	000
1708	OFF162	31:16	—	_	—	—	_	—	—	—	_	—	—	—	—	_	VOFF<	:17:16>	000
5700	011102	15:0								VOFF<15:1>								—	000
700	OFF163	31:16	—	—	—	—	—	—	—	—	—	_	_	—	—	—	VOFF<	:17:16>	000
	011100	15:0								VOFF<15:1>								—	000
0700	OFF164	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	:17:16>	000
5100	011104	15:0								VOFF<15:1>		-		-	-			—	000
1704	OFF165	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	_	VOFF<	:17:16>	000
5704	51105	15:0								VOFF<15:1>								—	000
פחדר	OFF166	31:16	_	_	_	-	_	_	_	—	_	_	—	_	_	—	VOFF<	:17:16>	000
VOFF<15:1>														_	000				
	OFF167	31:16	_	_	-	-		_	_	_	—	—	_	—	—	—	VOFF<	:17:16>	000
		15:0								VOFF<15:1>								_	000

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	—	_	_	—	—	—	_	
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	—	—	_	—	SYSDIV<3:0> ⁽¹⁾				
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	
15:8	—	—	_	_	—	SLWDIV<2:0>			
7.0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R-0, HS, HC	
7:0		_			_	UPEN	DNEN	BUSY	

REGISTER 8-7: SLEWCON: OSCILLATOR SLEW CONTROL REGISTER

Legend:	HC = Hardware Cleared	HS = Hardware Set				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-20 Unimplemented: Read as '0'

```
bit 19-16 SYSDIV<3:0>: System Clock Divide Control bits<sup>(1)</sup>
```

- bit 15-11 Unimplemented: Read as '0'
- bit 10-8 **SLWDIV<2:0>:** Slew Divisor Steps Control bits

These bits control the maximum division steps used when slewing during a frequency change.

- 111 = Steps are divide by 128, 64, 32, 16, 8, 4, 2, and then no divisor
- 110 = Steps are divide by 64, 32, 16, 8, 4, 2, and then no divisor
- 101 = Steps are divide by 32, 16, 8, 4, 2, and then no divisor
- 100 = Steps are divide by 16, 8, 4, 2, and then no divisor
- 011 = Steps are divide by 8, 4, 2, and then no divisor
- 010 = Steps are divide by 4, 2, and then no divisor
- 001 = Steps are divide by 2, and then no divisor
- 000 = No divisor is used during slewing

Note: The steps apply in reverse order (i.e., 2, 4, 8, etc.) during a downward frequency change.

- bit 7-3 **Unimplemented:** Read as '0'
- bit 2 UPEN: Upward Slew Enable bit
 - 1 = Slewing enabled for switching to a higher frequency
 - 0 = Slewing disabled for switching to a higher frequency
- bit 1 **DNEN:** Downward Slew Enable bit
 - 1 = Slewing enabled for switching to a lower frequency
 - 0 = Slewing disabled for switching to a lower frequency
- bit 0 BUSY: Clock Switching Slewing Active Status bit
 - 1 = Clock frequency is being actively slewed to the new frequency
 - 0 = Clock switch has reached its final value

Note 1: The SYSDIV<3:0> bit settings are ignored if both UPEN and DNEN = 0, and SYSCLK will be divided by 1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				DMAADD	R<31:24>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	DMAADDR<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				DMAADE	DR<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
7:0		•	•	DMAAD	DR<7:0>			•			

REGISTER 11-22: USBDMAXA: USB DMA CHANNEL 'x' MEMORY ADDRESS REGISTER ('x' = 1-8)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Memory Address bits

This register identifies the current memory address of the corresponding DMA channel. The initial memory address written to this register during initialization must have a value such that its modulo 4 value is equal to '0'. The lower two bits of this register are read only and cannot be set by software. As the DMA transfer progresses, the memory address will increment as bytes are transferred.

REGISTE	ER 11-23: U	USBDMAxN	: USB DMA	CHANNEL	'x' COUNT	REGISTER	('X' = 1-8)	
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
Danaa	24/22/4E/7	20/22/44/6	20/24/42/5	20/20/42/4	27/40/44/2	26/40/40/2	25/47/0/4	2 A / A C /0

Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24				DMACOUN	NT<31:24>					
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10 DMACOUNT<23:16>										
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0				DMACOU	NT<15:8>					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0	DMACOUNT<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMACOUNT<31:0>: DMA Transfer Count bits

This register identifies the current DMA count of the transfer. Software will set the initial count of the transfer which identifies the entire transfer length. As the count progresses this count is decremented as bytes are transferred.

TABLE 12-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

ss			Bits																
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	0000
1538	RPA14R ⁽¹⁾	15:0	_	_	_	_	_	_	_		_	_		_		RPA14	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	—	0000
153C	RPA15R ⁽¹⁾	15:0	_	—	—	_	_	_	_	—	_	_	_	_		RPA15	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	—	0000
1540	RPB0R	15:0	_	—	—	_	_	_	_	—	_	_	_	_		RPB0	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
1544	RPB1R	15:0	_	_	_	_	_	_	_		_	_		_		RPB1	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	—	0000
1548	RPB2R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB2	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
154C	RPB3R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB3	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
1554	RPB5R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB5	R<3:0>		0000
		31:16	_		_	_	_	_	_		_	_		_		_	_	_	0000
1558	RPB6R	15:0	_	_	_	_	_	_	_	_	_	_		_		RPB6	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
155C	RPB7R	15:0	_	_	_	_	_		_	_	_	_	_	_		RPB7	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1560	RPB8R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB8	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1564	RPB9R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB9	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1568	RPB10R	15:0	_	_	_	_	_		_	_	_	_	_	_		RPB10	R<3:0>		0000
		31:16	_	_	_	_	_	_	_		_	_		_		_	_	_	0000
1578	RPB14R	15:0	_	_	_	_	_	_	_		_	_		_		RPB14	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
157C	RPB15R	15:0	_	_	_	_	_	_	_		_	_		_		RPB15	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	0000
1584	RPC1R ⁽¹⁾	15:0	_		_	_	_	_	_		_	_		_		RPC1	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1588	RPC2R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPC2	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
158C	RPC3R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPC3	R<3:0>		0000
	(0)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1590	RPC4R ⁽¹⁾	15:0	_		_	_	_		_	_	_		_	_		RPC4	R<3:0>		0000
Legen	l		alua an Da	eset: — = u						h ava da aira					l				0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on 64-pin and 100-pin devices.

NOTES:

18.1 Output Compare Control Registers

TABLE 18-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP

ess										Bi	ts								
Virtual Address (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OC1CON	31:16 15:0	– ON		— SIDL	_						_	— OC32	— OCFLT	— OCTSEL		— OCM<2:0>	—	0000
4010	OC1R	31:16 15:0	ÖN		OIDE					OC1R-			0002	001 EI	OUTOLL		00111(2.0)		xxxx
4020	OC1RS	31:16 15:0								OC1RS	<31:0>								xxxx xxxx
4200	OC2CON	31:16 15:0	— ON		— SIDL	—		-					— OC32	— OCFLT	— OCTSEL		— OCM<2:0>	—	0000
4210	OC2R	31:16 15:0	-							OC2R-	<31:0>								xxxx xxxx
4220	OC2RS	31:16 15:0								OC2RS	<31:0>								xxxx xxxx
4400	OC3CON	31:16 15:0	ON	_	— SIDL	_		_	_	_	_		— OC32	— OCFLT	— OCTSEL	_	— OCM<2:0>	_	0000
4410	OC3R	31:16 15:0		OC3R<31:0>							xxxx xxxx								
4420	OC3RS	31:16 15:0								OC3RS	<31:0>								xxxx xxxx
4600	OC4CON	31:16 15:0	– ON		— SIDL	_	_	_	-	_	-	_	— OC32	— OCFLT	— OCTSEL	—	— OCM<2:0>	_	0000
4610	OC4R	31:16 15:0								OC4R	<31:0>								xxxx xxxx
4620	OC4RS	31:16 15:0								OC4RS	<31:0>								xxxx xxxx
4800	OC5CON	31:16 15:0	– ON		— SIDL								— OC32	— OCFLT	— OCTSEL	—	— OCM<2:0>	_	0000
4810	OC5R	31:16 15:0								OC5R	<31:0>								xxxx xxxx
4820	OC5RS	31:16 15:0								OC5RS	<31:0>								xxxx xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—		—	-			—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	—	_		_	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	—	_	-	_	—
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			OC32	OCFLT ⁽¹⁾	OCTSEL ⁽²⁾		OCM<2:0>	

REGISTER 18-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Peripheral On bit
 - 1 = Output Compare peripheral is enabled
 - 0 = Output Compare peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12-6 Unimplemented: Read as '0'
- bit 5 **OC32:** 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source
 - 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit⁽¹⁾
 - 1 = PWM Fault condition has occurred (cleared in HW only)
 - 0 = No PWM Fault condition has occurred
- bit 3 OCTSEL: Output Compare Timer Select bit⁽²⁾
 - 1 = Timery is the clock source for this Output Compare module
 - 0 = Timerx is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin is enabled
 - 110 = PWM mode on OCx; Fault pin is disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current
- **Note 1:** This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.
 - **2:** Refer to Table 18-1 for Timerx and Timery selections.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	TXDATA<31:24>									
22.10	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0									
23:16	TXDATA<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8				TXDATA	<15:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	TXDATA<7:0>									

REGISTER 20-10: SQI1TXDATA: SQI TRANSMIT DATA BUFFER REGISTER

L	_egend:			
F	R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-	n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 TXDATA<31:0>: Transmit Command Data bits

Data is loaded into this register before being transmitted. Prior to the data transfer, the data in TXDATA is loaded into the shift register (SFDR).

Multiple writes to TXDATA can occur while a transfer is in progress. There can be a maximum of eight commands that can be queued.

REGISTER 20-11: SQI1RXDATA: SQI RECEIVE DATA BUFFER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
31:24	RXDATA<31:24>								
22.10	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
23:16	RXDATA<23:16>								
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8				RXDATA	<15:8>				
7.0	R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0								
7:0	RXDATA<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RXDATA<31:0>: Receive Data Buffer bits

At the end of a data transfer, the data in the shift register is loaded into the RXDATA register. This register works like a FIFO. The depth of the receive buffer is eight words.

Bit 1/23/15/7 U-0 U-0 U-0	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3 U-0	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
_	_	U-0	U-0	U-0	U-0	U-0	11-0
— U-0	-	_				°	0-0
U-0	11.0			—	—	—	—
	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	_	—	—	—
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—		—	—	DMAEISE	PKT DONEISE	BD DONEISE	CON THRISE
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CON MPTYISE	CON FULLISE	RX THRISE	RX FULLISE	RX EMPTYISE	TX THRISE	TX FULLISE	TX EMPTYISE
Ν	R/W-0 CON	R/W-0R/W-0CONCON	— — — R/W-0 R/W-0 R/W-0 CON CON RX	- - - R/W-0 R/W-0 R/W-0 R/W-0 CON CON RX RX	DMAEISER/W-0R/W-0R/W-0R/W-0CONCONRXRXRX	DMAEISEPKT DONEISER/W-0R/W-0R/W-0R/W-0R/W-0R/W-0CONCONRXRXRXRX	DMAEISEPKT DONEISEBD DONEISER/W-0R/W-0R/W-0R/W-0R/W-0R/W-0CONCONRXRXRXTXTX

REGISTER 20-22: SQI1INTSIGEN: SQI INTERRUPT SIGNAL ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11	DMAEISE: DMA Bus Error Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 10	PKTDONEISE: Receive Error Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 9	BDDONEISE: Transmit Error Interrupt Signal Enable bit
	 Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 8	CONTHRISE: Control Buffer Threshold Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 7	CONEMPTYISE: Control Buffer Empty Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
1.11.0	0 = Interrupt signal is disabled
bit 6	CONFULLISE: Control Buffer Full Interrupt Signal Enable bit
	 1 = Interrupt signal is enabled 0 = Interrupt signal is disabled
hit E	
bit 5	RXTHRISE: Receive Buffer Threshold Interrupt Signal Enable bit 1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 4	RXFULLISE: Receive Buffer Full Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 3	RXEMPTYISE: Receive Buffer Empty Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 2	TXTHRISE: Transmit Buffer Threshold Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 1	TXFULLISE: Transmit Buffer Full Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 0	TXEMPTYISE: Transmit Buffer Empty Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled

REGISTER 28-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 3 STRGLVL: Scan Trigger High Level/Positive Edge Sensitivity bit

- 1 = Scan trigger is high level sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), the scan trigger will continue for all selected analog inputs, until the STRIG option is removed.
- 0 = Scan trigger is positive edge sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), only a single scan trigger will be generated, which will complete the scan of all selected analog inputs.
- bit 2-0 Unimplemented: Read as '0'

REGISTE	R 30-33: EI	MAC1MADR:	ETHERNET	CONTROLL	.ER MAC N		EMENT AD	DRESS
	REGISTER							
D'i								

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_			_	_		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	—	_	_	—	_	—
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
15.6	—	_	—	PHYADDR<4:0>				
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				REGADDR<4:0>				

Legend:

- 3			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

- bit 12-8 **PHYADDR<4:0>:** MII Management PHY Address bits This field represents the 5-bit PHY Address field of Management cycles. Up to 31 PHYs can be addressed (0 is reserved).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **REGADDR<4:0>:** MII Management Register Address bits This field represents the 5-bit Register Address field of Management cycles. Up to 32 registers can be accessed.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

36.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

36.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

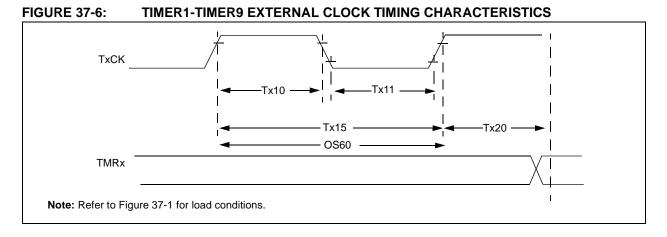
The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

36.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.


The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

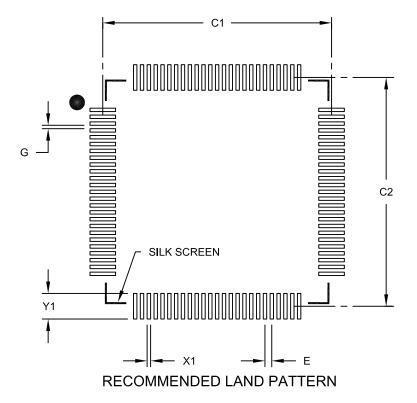
36.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

TABLE 37-25: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

					tandard Operating Conditions: 2.1V to 3.6V inless otherwise stated) perating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param. No.	Symbol	Charac	teristics ⁽²⁾		Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchrono with presca		[(12.5 ns or 1 TPBCLK3) /N] + 20 ns			ns	Must also meet parameter TA15 (Note 3)
			Asynchron with presca		10	—	_	ns	_
TA11	ΤτxL	TxCK Low Time	Synchronous, with prescaler		[(12.5 ns or 1 TPBCLK3) /N] + 20 ns	—	—	ns	Must also meet parameter TA15 (Note 3)
			Asynchron with presca		10	—	—	ns	—
TA15	ΤτχΡ	TXP TxCK Synchronous, Input Period with prescaler			[(Greater of 20 ns or 2 TPBCLK3)/N] + 30 ns	—	—	ns	VDD > 2.7V (Note 3)
					[(Greater of 20 ns or 2 TPBCLK3)/N] + 50 ns	—	_	ns	VDD < 2.7V (Note 3)
			Asynchron	ous,	20	—	—	ns	VDD > 2.7V
			with presca	aler	50	—	_	ns	VDD < 2.7V
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS bit (T1CON<1>))		ting	32	_	50	kHz	_
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		κ	_		1	Трвськз	_


Note 1: Timer1 is a Type A timer.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

•					
PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
ADC Ca	libration				
On PIC32MX devices, the ADC module can be used immediately, once it is enabled.	PIC32MZ devices require a calibration step prior to operation. This is done by copying the calibration data from DEVADCx to the corresponding ADCxCFG register.				
I/O Pin Analog F	unction Selection				
On PIC32MX devices, the analog function of an I/O pin was deter- mined by the PCFGx bit in the AD1PCFG register.	On PIC32MZ EF devices, the analog selection function has been moved into a separate register on each I/O port. Note that the sense of the bit is different.				
PCFGx (AD1PCFG <x>) 1 = Analog input pin in Digital mode 0 = Analog input pin in Analog mode</x>	ANSxy (ANSELx <y>) 1 = Analog input pin in Analog mode 0 = Analog input pin in Digital mode</y>				
Electrical Specifications and Timing Requirements					
	On PIC32MZ EF devices, the ADC module sampling and conversion time and other specifications have changed. Refer to 37.0 "Electrical Characteristics " for more information.				

TABLE A-3: ADC DIFFERENCES (CONTINUED)

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature					
Flash Programming						
	The op codes for programming the Flash memory have been changed to accommodate the new quad-word programming and dual-panel features. The row size has changed to 2 KB (512 IW) from 128 IW. The page size has changed to 16 KB (4K IW) from 4 KB (1K IW). Note that the NVMOP register is now protected, and requires the WREN bit be set to enable modification.					
NVMOP<3:0> (NVMCON<3:0>)	NVMOP<3:0> (NVMCON<3:0>)					
1111 = Reserved	1111 = Reserved					
0111 = Reserved	1000 = Reserved					
0110 = No operation	0111 = Program erase operation					
0101 = Program Flash (PFM) erase operation	0110 = Upper program Flash memory erase operation					
0100 = Page erase operation	0101 = Lower program Flash memory erase operation					
0011 = Row program operation	0100 = Page erase operation					
0010 = No operation	0011 = Row program operation					
0001 = Word program operation	0010 = Quad Word (128-bit) program operation					
0000 = No operation	0001 = Word program operation					
	0000 = No operation					
PIC32MX devices feature a single NVMDATA register for word programming.	On PIC32MZ EF devices, to support quad word programming, the NVMDATA register has been expanded to four words.					
NVMDATA	NVMDATA x , where 'x' = 0 through 3					
Flash Endurance	e and Retention					
PIC32MX devices support Flash endurance and retention of up to 20K E/W cycles and 20 years.	On PIC32MZ EF devices, ECC must be enabled to support the same endurance and retention as PIC32MX devices.					
Configura	Configuration Words					
On PIC32MX devices, Configuration Words can be programmed with Word or Row program operation.	On PIC32MZ EF devices, all Configuration Words must be programmed with Quad Word or Row Program operations.					
Configuration We	ords Reserved Bit					
On PIC32MX devices, the DEVCFG0<15> bit is Reserved and must be programmed to '0'.	On PIC32MZ EF devices, this bit is DEVSIGN0<31> .					

TABLE A-9: FLASH PROGRAMMING DIFFERENCES (CONTINUED)