

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efh144-e-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
31.24	FCC<7:1>												
22.10	R/W-x	R/W-x	R/W-x	R-0	R-1	R-1	R/W-x	R/W-x					
23:16	FCC<0> FO FN MAC2008 ABS2008 NAN2008 CAUSI												
	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
15:8		CALISE	-2.0										
		CAUSE	<3.0>		V	Z	0	U					
	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
7:0	ENABLES<0>			FLAGS<4:0>			PM-	DM -1.0					
	I	V	Z	0	U	I		\$1.0/					

REGISTER 3-10: FCSR: FLOATING POINT CONTROL AND STATUS REGISTER; CP1 REGISTER 31

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 FCC<7:1>: Floating Point Condition Code bits

These bits record the results of floating point compares and are tested for floating point conditional branches and conditional moves.

bit 24 **FS:** Flush to Zero control bit

1 = Denormal input operands are flushed to zero. Tiny results are flushed to either zero or the applied format's smallest normalized number (MinNorm) depending on the rounding mode settings.
 0 = Denormal input operands result in an Unimplemented Operation exception.

bit 23 FCC<0>: Floating Point Condition Code bits

These bits record the results of floating point compares and are tested for floating point conditional branches and conditional moves.

- bit 22 **FO:** Flush Override Control bit
 - 1 = The intermediate result is kept in an internal format, which can be perceived as having the usual mantissa precision but with unlimited exponent precision and without forcing to a specific value or taking an exception.
 - 0 = Handling of Tiny Result values depends on setting of the FS bit.

bit 21 FN: Flush to Nearest Control bit

- 1 = Final result is rounded to either zero or 2E_min (MinNorm), whichever is closest when in Round to Nearest (RN) rounding mode. For other rounding modes, a final result is given as if FS was set to 1.
 0 = Handling of Tiny Result values depends on setting of the FS bit.
- bit 20 MAC2008: Fused Multiply Add mode control bit
 - 0 = Unfused multiply-add. Intermediary multiplication results are rounded to the destination format.
- bit 19 ABS2008: Absolute value format control bit
 - 1 = ABS.fmt and NEG.fmt instructions compliant with IEEE Standard 754-2008. The ABS and NEG functions accept QNAN inputs without trapping.
- bit 18 NAN2008: NaN Encoding control bit
 - 1 = Quiet and signaling NaN encodings recommended by the IEEE Standard 754-2008. A quiet NaN is encoded with the first bit of the fraction being 1 and a signaling NaN is encoded with the first bit of the fraction being 0.

bit 17-12 CAUSE<5:0>: FPU Exception Cause bits

These bits indicated the exception conditions that arise during execution of an FPU arithmetic instruction.

bit 17 E: Unimplemented Operation bit

REGISTER 3-10: FCSR: FLOATING POINT CONTROL AND STATUS REGISTER; CP1 REGISTER 31

- bit 16 V: Invalid Operation bit
- bit 15 Z: Divide-by-Zero bit
- bit 14 **O:** Overflow bit
- bit 13 U: Underflow bit
- bit 12 I: Inexact bit
- bit 11-7 ENABLES<4:0>: FPU Exception Enable bits

These bits control whether or not a trap is taken when an IEEE exception condition occurs for any of the five conditions. The trap occurs when both an enable bit and its corresponding cause bit are set either during an FPU arithmetic operation or by moving a value to the FCSR or one of its alternative representations.

- bit 11 V: Invalid Operation bit
- bit 10 Z: Divide-by-Zero bit
- bit 9 Overflow bit
- bit 8 U: Underflow bit
- bit 7 I: Inexact bit
- bit 6-2 **FLAGS<4:0>:** FPU Flags bits These bits show any exception conditions that have occurred for completed instructions since the flag was last reset by software.
- bit 6 V: Invalid Operation bit
- bit 5 **Z:** Divide-by-Zero bit
- bit 4 **O:** Overflow bit
- bit 3 U: Underflow bit
- bit 2 I: Inexact bit
- bit 1-0 **RM<1:0>:** Rounding Mode control bits
 - 11 = Round towards Minus Infinity (– ∞)
 - 10 = Round towards Plus Infinity (+ ∞)
 - 01 = Round toward Zero (0)
 - 00 = Round to Nearest

REGISTER 4-3: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1 ('x' = 0-13) (CONTINUED)

- bit 7-4 REGION<3:0>: Requested Region Number bits
 - 1111 0000 = Target's region that reported a permission group violation
- bit 3 Unimplemented: Read as '0'
- bit 2-0 CMD<2:0>: Transaction Command of the Requester bits
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Write (a non-posted write)
 - 100 = Reserved
 - 011 = Read (a locked read caused by a Read-Modify-Write transaction)
 - 010 = Read
 - 001 = Write
 - 000 = Idle

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—		—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
7:0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
	SWAPLO	DCK<1:0>		_				

REGISTER 5-2: NVMCON2: FLASH PROGRAMMING CONTROL REGISTER 2

Legend:	HC = Hardware Set	HC = Hardware Cleared						
R = Readable bit	W = Writable bit	able bit U = Unimplemented bit, read as 'C						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-8 Unimplemented: Read as '0'

- bit 7-6 SWAPLOCK<1:0>: Flash Memory Swap Lock Control bits
 - 11 = PFSWAP and BFSWAP are not writable and SWAPLOCK is not writable
 - 10 = PFSWAP and BFSWAP are not writable and SWAPLOCK is writable
 - 01 = PFSWAP and BFSWAP are not writable and SWAPLOCK is writable
 - 00 = PFSWAP and BFSWAP are writable and SWAPLOCK is writable

bit 5-0 Unimplemented: Read as '0'

					-	-										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0								
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
31:24	NVMDATA<31:24>															
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
23:16		NVMDATA<23:16>														
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
15:8	NVMDATA<15:8>															
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0								
7:0		NVMDATA<7:0>														

REGISTER 5-5: NVMDATAX: FLASH DATA REGISTER (x = 0-3)

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Data bits

Word Program: Writes NVMDATA0 to the target Flash address defined in NVMADDR Quad Word Program: Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATA0 to the target Flash address defined in NVMADDR. NVMDATA0 contains the Least Significant Instruction Word.

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

REGISTER 5-6: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
31.24	NVMSRCADDR<31:24>														
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
	NVMSRCADDR<23:16>														
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
15:8	NVMSRCADDR<15:8>														
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7:0				NVMSRC	ADDR<7:0>										

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

7.0 CPU EXCEPTIONS AND INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108) and Section 50. "CPU MIPS32[®] for Devices with microAptiv[™] and M-Class Cores" (DS60001192) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MZ EF devices generate interrupt requests in response to interrupt events from peripheral modules. The Interrupt Controller module exists outside of the CPU and prioritizes the interrupt events before presenting them to the CPU.

The CPU handles interrupt events as part of the exception handling mechanism, which is described in **Section 7.1 "CPU Exceptions"**.

The Interrupt Controller module includes the following features:

- Up to 213 interrupt sources and vectors with dedicated programmable offsets, eliminating the need for redirection
- · Single and multi-vector mode operations
- · Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Seven shadow register sets that can be used for any priority level, eliminating software context switch and reducing interrupt latency
- Software can generate any interrupt

Figure 7-1 shows the block diagram for the Interrupt Controller and CPU exceptions.

FIGURE 7-1: CPU EXCEPTIONS AND INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

7.3 **Interrupt Control Registers**

TABLE 7-3: INTERRUPT REGISTER MAP

ress		e								В	its								Ś
Virtual Add (BF81_#	Registe Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000		31:16				NMIK	(EY<7:0>				_	—	_	_	_	—	_	_	0000
0000	INTCON	15:0	_	_	-	MVEC	_		TPC<2:0>		—	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
0010	DDICC	31:16		PRI7S	S<3:0>			PRI6SS	S<3:0>		PRI5SS<3:0>					PRI4S	S<3:0>		0000
0010	FRISS	15:0		PRI3S	S<3:0>			PRI2SS	S<3:0>	-		PRI1S	S<3:0>		—	—	—	SS0	0000
0020	INTSTAT	31:16	—	—	_	—	_	—	—	—	—	—	—	—	—	_	—	—	0000
0020		15:0	_	—	—	—	—		SRIPL<2:0>					SIR	Q<7:0>				0000
0030	IPTMR	31:16								IPTMR	<31.0>								0000
		15:0		•	r	•						•	1	1	1	1	•	1	0000
0040	IES0	31:16	OC6IF	IC6IF	IC6EIF	T6IF	OC5IF	IC5IF	IC5EIF	T5IF	INT4IF	OC4IF	IC4IF	IC4EIF	T4IF	INT3IF	OC3IF	IC3IF	0000
00.0		15:0	IC3EIF	T3IF	INT2IF	OC2IF	IC2IF	IC2EIF	T2IF	INT1IF	OC1IF	IC1IF	IC1EIF	T1IF	INTOIF	CS1IF	CS0IF	CTIF	0000
0050	IFS1	31:16	ADCD4IF	ADCD3IF	ADCD2IF	ADCD1IF	ADCD0IF	ADCFLTIF	ADCDF6IF	ADCDF5IF	ADCDF4IF	ADCDF3IF	ADCDF2IF	ADCDF1IF	ADCDC6IF	ADCDC5IF	ADCDC4IF	ADCDC3IF	0000
	-	15:0	ADCDC2IF	ADCDC1IF	ADCFIFOIF	ADCIF	OC9IF	IC9IF	IC9EIF	T9IF	OC8IF	IC8IF	IC8EIF	T8IF	OC7IF	IC7IF	IC7EIF	T7IF	0000
0060	IFS2 ⁽⁵⁾	31:16	ADCD36IF	ADCD35IF	ADCD34IF	ADCD33IF	ADCD32IF	ADCD31IF	ADCD30IF	ADCD29IF	ADCD28IF	ADCD27IF	ADCD26IF	ADCD25IF	ADCD24IF	ADCD23IF	ADCD22IF	ADCD21IF	0000
	-	15:0	ADCD20IF	ADCD19IF	ADCD18IF	ADCD17IF	ADCD16IF	ADCD15IF	ADCD14IF	ADCD13IF	ADCD12IF	ADCD11IF	ADCD10IF	ADCD9IF	ADCD8IF	ADCD7IF	ADCD6IF	ADCD5IF	0000
0070	IFS3 ⁽⁶⁾	31:16	CNKIF ⁽⁸⁾	CNJIF	CNHIF	CNGIF	CNFIF	CNEIF	CNDIF	CNCIF	CNBIF	CNAIF	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	0000
		15:0	SPI1TXIF	SPI1RXIF	SPI1EIF	—	CRPTIF ⁽⁷⁾	SBIF	CFDCIF	CPCIF	ADCD44IF	ADCD43IF	ADCD42IF	ADCD41IF	ADCD40IF	ADCD39IF	ADCD38IF	ADCD37IF	0000
0080	IFS4	31:16	U3TXIF	U3RXIF	U3EIF	SPI3TXIF	SPI3RXIF	SPI3EIF	ETHIF	CAN2IF ⁽³⁾	CAN1IF ⁽³⁾	12C2MIF ⁽²⁾	12C2SIF(2)	12C2BIF ⁽²⁾	U2TXIF	U2RXIF	U2EIF	SPI2TXIF	0000
		15:0	SPI2RXIF	SPI2EIF	DMA7IF	DMA6IF	DMA5IF	DMA4IF	DMA3IF	DMA2IF	DMA1IF	DMA0IF	USBDMAIF	USBIF	CMP2IF	CMP1IF	PMPEIF (2)	PMPIF (2)	0000
0090	IFS5	31:16	_	U6TXIF	U6RXIF	U6EIF	SPI6TX ⁽²⁾	SPI6RXIF ⁽²⁾	SPI6IF(2)	I2C5MIF	I2C5SIF	I2C5BIF	U5TXIF	U5RXIF	U5EIF	SPI5TXIF(2)	SPI5RXIF ⁽²⁾	SPI5EIF(2)	0000
		15:0	I2C4MIF	I2C4SIF	I2C4BIF	U4TXIF	U4RXIF	U4EIF	SQI1IF	PREIF	FCEIF	RTCCIF	SPI4TXIF	SPI4RXIF	SPI4EIF	I2C3MIF	I2C3SIF	I2C3BIF	0000
00A0	IFS6	31:16	-	-	-	_		-	-	-	-	-	ADC7WIF	-	_	ADC4WIF	ADC3WIF	ADC2WIF	0000
		15:0	ADC1WIF	ADCOWIF	ADC7EIF	-		ADC4EIF	ADC3EIF	ADC2EIF	ADC1EIF	ADCOEIF	-		-		ADCARDYIE	ADCEOSIF	0000
0000	IEC0	31:16	OC6IE	IC6IE	IC6EIE	16IE	OC5IE	IC5IE	IC5EIE	15IE	IN14IE	OC4IE	IC4IE	IC4EIE	I 4IE	INT3IE	OC3IE	IC3IE	0000
	-	15:0	IC3EIE	T3IE	INT2IE	OC2IE	IC2IE	IC2EIE	T2IE	INT1IE	OC1IE	IC1IE	IC1EIE	TILE	INTOIE	CS1IE	CSOIE	CTIE	0000
00D0	IEC1	31:16	ADCD4IE	ADCD3IE	ADCD2IE	ADCD1IE	ADCDUE		ADCDF6IE	ADCDF5IE	ADCDF4IE	ADCDF3IE	ADCDF2IE	ADCDF1IE	ADCDC6IE	ADCDC5IE	ADCDC4IE	ADCDC3IE	0000
	-	15:0	ADCDC2IE	ADCDC1IE	ADCHIFOIE	ADCIE	OC9IE	IC9IE	IC9EIE	19IE	OC8IE	IC8IE	IC8EIE	18IE	OC/IE	IC/IE	IC/EIE	I /IE	0000
00E0	IEC2 ⁽⁵⁾	31:16	ADCD36IE	ADCD35IE	ADCD34IE	ADCD33IE	ADCD32IE	ADCD31IE	ADCD30IE	ADCD29IE	ADCD28IE	ADCD27IE	ADCD26IE	ADCD25IE	ADCD24IE	ADCD23IE	ADCD22IE	ADCD21IE	0000
		15:0	ADCD20IE	ADCD19IE					ADCD14IE	ADCD13IE	ADCD12IE	ADCD111E	ADCD10IE	ADCD9IE	ADCD8IE	ADCD/IE	ADCD6IE	ADCD5IE	0000
Lege	mu. x=t	μικιίον	vii value on F	\eset, — = UI	minipiemente	u, reau as 10	. Reservalue	s are shown l	nnexauecima	11.									

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: Registers" for more information.

This bit or register is not available on 64-pin devices. 2:

3: This bit or register is not available on devices without a CAN module. This bit or register is not available on 100-pin devices.

4:

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. This bit or register is not available on devices without a Crypto module. 6: 7:

8: This bit or register is not available on 124-pin devices.

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

ess			Bits																
Virtual Addr (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1170		31:16	—		_	—	—	_		_	_	_	_		_		_		0000
	DOITIOOL	15:0				i			i	CHSSIZ	<15:0>	i	i		i			i	0000
1180	DCH1DSIZ	31:16	—	_	—		—	_	—	—	—	—		—		—	—	—	0000
		15:0 CHDSIZ<15:0>											0000						
1190	DCH1SPTR	31:16											—	0000					
		15:0 CHSP1R<15:0>												0000					
11A0	DCH1DPTR	$R = \frac{3116}{150}$										—	0000						
		31.16	_	_	_	_		_				_	_		_	_	_	_	0000
11B0	DCH1CSIZ	15:0								CHCSIZ	<15:0>								0000
		31:16	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	0000
11C0	DCH1CPTR	15:0 CHCPTR<15:0>											0000						
11 00		31:16	_	—	—	_	_	_		_	_	_	_	—	_	—	_	—	0000
IID0	DCHIDAI	15:0								CHPDAT	<15:0>								0000
11E0		31:16				CHPIG	N<7:0>				_	—	_	_	_	_	_	—	0000
1120	DONZOON	15:0	CHBUSY	_	CHPIGNEN		CHPATLEN	_	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	CHPRI<1:0>	
11F0	DCH2ECON	31:16	—		—	—	_	_						CHAIR	Q<7:0>				00FF
		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	—	FF00
1200	DCH2INT	31:16	_			_	_	_	_	-	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0	—	_	—	—	—	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
1210	DCH2SSA	31:16								CHSSA	<31:0>								0000
		31.16																	0000
1220	DCH2DSA	15.0								CHDSA.	<31:0>								0000
		31:16	_	_	_	_		_			_	_	_	_	_	_	_	_	0000
1230	DCH2SSIZ	15:0								CHSSIZ	<15:0>								0000
10.10	DOLIODOIZ	31:16	—		_	—	—	_	_		—	—	—	—	—	—	—	—	0000
1240	DCH2DSIZ	15:0								CHDSIZ	<15:0>								0000
1050	поцрертр	31:16	—	_	—	—	—	—		_	_	—	—	_	—	_	_	—	0000
1250	DOUTZORIK	15:0								CHSPTR	<15:0>								0000
1260		31:16	_	_	_	_	_	_	—	_	_	_	_	_	_	—	_	_	0000
1200		15:0								CHDPTR	<15:0>								0000
1270	DCH2CSIZ	31:16	—	_	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
		15:0								CHCSIZ	<15:0>								0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7) (CONTINUED)

- bit 23 **INCOMPTX:** Incomplete TX Status bit (Device mode)
 - 1 = For high-bandwidth Isochronous endpoint, a large packet has been split into 2 or 3 packets for transmission but insufficient IN tokens have been received to send all the parts
 - 0 = Normal operation

In anything other than isochronous transfers, this bit will always return 0.

NAKTMOUT: NAK Time-out status bit (Host mode)

- 1 = TX endpoint is halted following the receipt of NAK responses for longer than the NAKLIM setting
- 0 = Written by software to clear this bit
- bit 22 **CLRDT:** Clear Data Toggle Control bit
 - 1 = Resets the endpoint data toggle to 0
 - 0 = Do not clear the data toggle
- bit 21 **SENTSTALL:** STALL handshake transmission status bit (Device mode)
 - 1 = STALL handshake is transmitted. The FIFO is flushed and the TXPKTRDY bit is cleared.
 - 0 = Written by software to clear this bit

RXSTALL: STALL receipt bit (Host mode)

- 1 = STALL handshake is received. Any DMA request in progress is stopped, the FIFO is completely flushed and the TXPKTRDY bit is cleared.
- 0 = Written by software to clear this bit
- bit 20 SENDSTALL: STALL handshake transmission control bit (Device mode)
 - 1 = Issue a STALL handshake to an IN token
 - 0 = Terminate stall condition

This bit has no effect when the endpoint is being used for Isochronous transfers.

SETUPPKT: Definition bit (Host mode)

- 1 = When set at the same time as the TXPKTRDY bit is set, send a SETUP token instead of an OUT token for the transaction. This also clears the Data Toggle.
- 0 = Normal OUT token for the transaction
- bit 19 **FLUSH:** FIFO Flush control bit
 - 1 = Flush the latest packet from the endpoint TX FIFO. The FIFO pointer is reset, TXPKTRDY is cleared and an interrupt is generated.
 - 0 = Do not flush the FIFO
- bit 18 UNDERRUN: Underrun status bit (Device mode)
 - 1 = An IN token has been received when TXPKTRDY is not set.
 - 0 = Written by software to clear this bit.

ERROR: Handshake failure status bit (Host mode)

- 1 = Three attempts have been made to send a packet and no handshake packet has been received
- 0 = Written by software to clear this bit.
- bit 17 FIFONE: FIFO Not Empty status bit
 - 1 = There is at least 1 packet in the TX FIFO
 - 0 = TX FIFO is empty
- bit 16 TXPKTRDY: TX Packet Ready Control bit

The software sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. This bit is also automatically cleared prior to loading a second packet into a double-buffered FIFO.

TABLE 12-10: PORTD REGISTER MAP FOR 64-PIN DEVICES ONLY

ess		Ċ,								В	its								
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0310	TRISD	31:16	_	_	—		—	—	—	_	_		—	-	—	—	—		0000
0310	INIOD	15:0	—	—	—		TRISD11	TRISD10	TRISD9	—	—		TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	0E3F
0320	PORTD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0020	TORTE	15:0	—	—	—	—	RD11	RD10	RD9	—	—	_	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
0330	LATD	31:16	_	_	_	_	—	—	_	_	_	_	_	_	_	—	_	_	0000
	2.12	15:0	_	—	—	_	LATD11	LATD10	LATD9	—	—	_	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
0340	ODCD	31:16	—	_					—	_	—		—	—				—	0000
		15:0	_	—	—	_	ODCD11	ODCD10	ODCD9	_	_	_	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
0350	CNPUD	31:16	_	_	_	_	—	—	—	_	_	_	—	—	—	—	—	—	0000
		15:0	_	_	_	_	CNPUD11	CNPUD10	CNPUD9	_	_	_	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
0360	CNPDD	31:16	_	_	_		-	-	-	_	_		-	-	-	-	-	-	0000
		15:0	_	_			CNPDD11	CNPDD10	CNPDD9				CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
0270		31:16	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	0000
0370	CINCOIND	15:0	ON	_	—		DETECT	—	—	—	—	-	—	-	—	—	—	-	0000
0380		31:16	-	-	_		_	_	_	-	-		_		_	_	-		0000
0380	CINEIND	15:0	-	_	_		CNEND11	CNEND10	CNEND9				CNEND5	CNEND4	CNEND3	CNEND2	CNEND1	CNEND0	0000
		31:16	—	—	—	_	—	—	—	—	—	-	—	-	—	—	—	—	0000
0390	CNSTATD	15:0	—	—	—	—	CN STATD11	CN STATD10	CN STATD9	—	—	—	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000
00 4 0		31:16	_	_	_		_	_	_	_	_	_	_	-	_	_	_	-	0000
03A0	CININED	15:0	_	_	—	_	CNNED11	CNNED10	CNNED9	_	_	_	CNNED5	CNNED4	CNNED3	CNNED2	CNNED1	CNNED0	0000
0200		31:16	_	_		_	_	_	_	_	_	_	—	_	_	_	_	—	0000
03B0	CINFD	15:0	_	_	_		CNFD11	CNFD10	CNFD9	_	_		CNFD5	CNFD4	CNFD3	CNFD2	CNFD1	CNFD0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	_		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_	_
15.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SPISGNEXT	—	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7:0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
	AUDEN ⁽¹⁾		—	—	AUDMONO ^(1,2)	—	AUDMOD)<1:0> ^(1,2)

REGISTER 19-2: SPIxCON2: SPI CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
bit 15	SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
	1 = Data from RX FIFO is sign extended
	0 = Data from RX FIFO is not sign extended
bit 14-13	Unimplemented: Read as '0'
bit 12	FRMERREN: Enable Interrupt Events via FRMERR bit
	1 = Frame Error overflow generates error events
	0 = Frame Error does not generate error events
bit 11	SPIROVEN: Enable Interrupt Events via SPIROV bit
	1 = Receive overflow generates error events
	0 = Receive overflow does not generate error events
bit 10	SPITUREN: Enable Interrupt Events via SPITUR bit
	1 = Transmit Underrun Generates Error Events
1.11.0	0 = Transmit Underrun Does Not Generates Error Events
bit 9	IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
	1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data 0 = A ROV is a critical error which stop SPI operation
bit 8	IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions)
	1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
	0 = A TUR is a critical error which stop SPI operation
bit 7	AUDEN: Enable Audio CODEC Support bit ⁽¹⁾
	1 = Audio protocol is enabled
	0 = Audio protocol is disabled
bit 6-5	Unimplemented: Read as '0'
bit 3	AUDMONO: Transmit Audio Data Format bit ^(1,2)
	1 = Audio data is mono (Each data word is transmitted on both left and right channels)
	0 = Audio data is stereo
bit 2	Unimplemented: Read as '0'
bit 1-0	AUDMOD<1:0>: Audio Protocol Mode bit ^(1,2)
	11 = PCM/DSP mode
	10 = Right Justified mode
	$U \perp = \text{Left Justilied mode}$

- **Note 1:** This bit can only be written when the ON bit = 0.
 - **2:** This bit is only valid for AUDEN = 1.

NOTES:

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24		ID<15:8>								
22:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23.10	ID<7:0>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	VERSION<7:0>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
		REVISION<7:0>								

REGISTER 27-1: RNGVER: RANDOM NUMBER GENERATOR VERSION REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 ID<15:0>: Block Identification bits

bit 15-8 VERSION<7:0>: Block Version bits

bit 7-0 REVISION<7:0>: Block Revision bits

Т

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	—	—	—	TRGSRC3<4:0>						
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	—	—	—	TRGSRC2<4:0>						
15.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	—	—	—	TRGSRC1<4:0>						
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	_	_	TRGSRC0<4:0>						

REGISTER 28-17: ADCTRG1: ADC TRIGGER SOURCE 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28-24 TRGSRC3<4:0>: Trigger Source for Conversion of Analog Input AN3 Select bits
 - 11111 = Reserved . . 01101 = Reserved 01100 = Comparator 2 (COUT) 01011 = Comparator 1 (COUT) 01010 = OCMP5 01001 = OCMP3 01000 = OCMP1 00111 = TMR5 match 00100 = TMR3 match 00100 = TMR1 match 00100 = INT0 External interrupt 00011 = STRIG 00010 = Global level software trigger (GLSWTRG) 00001 = Global software edge Trigger (GSWTRG) 00000 = No Trigger

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSSx registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TRGSRC2<4:0>:** Trigger Source for Conversion of Analog Input AN2 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC1<4:0>:** Trigger Source for Conversion of Analog Input AN1 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC0<4:0>:** Trigger Source for Conversion of Analog Input AN0 Select bits See bits 28-24 for bit value definitions.

REGISTER	<u>28-2</u> 7: Al	DCxTIME: D	EDICATED	ADCx TIMI	NG REGIS	TER 'x' ('x'	= 0 THROU	GH 4)
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
51.24	—	—	—	/	ADCEIS<2:0:	>	SELRE	S<1:0>
23:16	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	11.0		/		>	DAMO	DAMO
15:8	0-0	0-0	0-0	0-0	0-0	0-0	R/W-U	R/W-U
	 R/W-0	 R/W-0	 R/W-0	 R/W-0	 R/W-0	 R/W-0	R/W-0	R/W-0
7:0	10000	10/00	10000	SAMO	C<7:0>	1000 0	1000 0	1000 0
					-			
Legend:								
R = Readat	ole bit	W = Writable	e bit	U = Unimple	emented bit, i	ead as '0'		
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is un	known	
bit 31-29 bit 28-26	 31-29 Unimplemented: Read as '0' ADCEIS<2:0>: ADCx Early Interrupt Select bits 111 = The data ready interrupt is generated 8 ADC clocks prior to the end of conversion 110 = The data ready interrupt is generated 7 ADC clocks prior to the end of conversion <							
bit 25-24	 (ADCxTIME<25:24>), is 12-bit or 10-bit. For a selected resolution of 8-bit, options from '000' to '101' are valid. For a selected resolution of 6-bit, options from '000' to '011' are valid. SELRES<1:0>: ADCx Resolution Select bits 11 = 12 bits 10 = 10 bits 01 = 8 bits 00 = 6 bits 							
	Note:	Changing the register. The r For example, ADCDATAx<1	resolution of esult will still a resolution 1:6> holding	the ADC does occupy 12 bits of 6 bits withe result.	s not shift the s, with the co III result in A	result in the orresponding local ADCDATAx<5	corresponding ower unused 5:0> being se	g ADCDATAx bits set to '0'. et to '0', and
bit 23	Unimpleme	ented: Read a	s '0'					
bit 22-16	ADCDIV<6:	0>: ADCx Clo	ock Divisor bit	S				
	These bits divide the ADC control clock with period TQ to generate the clock for ADCx (TADx). 1111111 = 254 * TQ = TADx 0000011 = 6 * TQ = TADx 0000010 = 4 * TQ = TADx 0000010 = 2 * TQ = TADx 0000001 = 2 * TQ = TADx							
bit 15-10	Unimpleme	ented: Read a	s '0'					
bit 9-0	SAMC<9:05 Where TADx bits. 111111111	>: ADCx Samp = period of th 1 = 1025 TAD	ole Time bits e ADC conve x	rsion clock fo	r the dedicate	ed ADC contr	olled by the A	DCDIV<6:0>
	000000001 = 3 TADx							

0000000000 = 2 TADx

33.3.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MZ EF devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- Configuration bit select lock

33.3.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

33.3.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

FIGURE 37-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 37-32: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time (Note 3)	Тscк/2	—		ns	—	
SP71	TscH	SCKx Input High Time (Note 3)	Тscк/2	—		ns	—	
SP72	TscF	SCKx Input Fall Time	_	—	_	ns	See parameter DO32	
SP73	TscR	SCKx Input Rise Time				ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	—	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	—	ns	See parameter DO31	
SP35	TSCH2DOV,	SDOx Data Output Valid after			7	ns	VDD > 2.7V	
	TscL2doV	SCKx Edge	—	—	10	ns	VDD < 2.7V	
SP40	TDIV2sCH, TDIV2sCL	Setup Time of SDIx Data Input to SCKx Edge	5	—	_	ns	_	
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	5	—	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	88	—	—	ns	—	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	2.5	_	12	ns	_	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	10	_		ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns.

4: Assumes 30 pF load on all SPIx pins.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

AC CHARACTERISTICS ⁽²⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
Clock P	arameter	S						
AD50	TAD	ADC Clock Period	20	_	6250	ns	_	
Throug	hput Rate	!						
AD51	Fтр	Sample Rate for ADC0-ADC4 (Class 1 Inputs)	 		3.125 3.57 4.16 5	Msps Msps Msps Msps	$\begin{array}{l} \mbox{12-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{10-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{8-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{6-bit resolution Source Impedance} \leq 200\Omega \\ \end{array}$	
		Sample Rate for ADC7 (Class 2 and Class 3 Inputs)			2.94 3.33 3.84 4.55	Msps Msps Msps Msps	$\begin{array}{l} \mbox{12-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{10-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{8-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{6-bit resolution Source Impedance} \leq 200\Omega \end{array}$	
Timing	Paramete	rs						
AD60	TSAMP	Sample Time for ADC0-ADC4 (Class 1 Inputs)	3 4 5 13	_	—	Tad	Source Impedance $\leq 200\Omega$, Max ADC clock Source Impedance $\leq 500\Omega$, Max ADC clock Source Impedance $\leq 1 \ K\Omega$, Max ADC clock Source Impedance $\leq 5 \ K\Omega$, Max ADC clock	
		Sample Time for ADC7 (Class 2 and 3 Inputs)	4 5 6 14		_	Tad	Source Impedance $\leq 200\Omega$, Max ADC clock Source Impedance $\leq 500\Omega$, Max ADC clock Source Impedance $\leq 1 \text{ K}\Omega$, Max ADC clock Source Impedance $\leq 5 \text{ K}\Omega$, Max ADC clock	
		Sample Time for ADC7 (Class 2 and 3 Inputs)	See Table 37-40	_		Tad	CVDEN (ADCCON1<11>) = 1	
AD62	Τςονν	Conversion Time (after sample time is complete)			13 11 9 7	Tad	12-bit resolution 10-bit resolution 8-bit resolution 6-bit resolution	
AD65	TWAKE	Wake-up time	_	500	_	TAD		
		Power Mode	_	20	—	μs	Lesser of 500 TAD or 20 µS.	

TABLE 37-39: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B