

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efh144-i-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Buffer Description Type Type		Description
				Т	imer1 thr	ough Timer	9
T1CK	48	73	A49	106	I	ST	Timer1 External Clock Input
T2CK	PPS	PPS	PPS	PPS	I	ST	Timer2 External Clock Input
T3CK	PPS	PPS	PPS	PPS	I	ST	Timer3 External Clock Input
T4CK	PPS	PPS	PPS	PPS	I	ST	Timer4 External Clock Input
T5CK	PPS	PPS	PPS	PPS	I	ST	Timer5 External Clock Input
T6CK	PPS	PPS	PPS	PPS	I	ST	Timer6 External Clock Input
T7CK	PPS	PPS	PPS	PPS	I	ST	Timer7 External Clock Input
T8CK	PPS	PPS	PPS	PPS	I	ST	Timer8 External Clock Input
T9CK	PPS	PPS	PPS	PPS	I	ST	Timer9 External Clock Input
	•	•	•	Real-	Time Clo	ck and Cale	endar
RTCC	46	71	A48	104	0	—	Real-Time Clock Alarm/Seconds Output
Legend.	CMOS = C	MOS-comp	atible input	or output		Analog =	Analog input P = Power

TABLE 1-7: TIMER1 THROUGH TIMER9 AND RTCC PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

I = Input

TABLE 4-2: BO	OT FLASH 1 SEQUENCE	AND CONFIGURATION	WORDS SUMMARY
---------------	---------------------	-------------------	---------------

SS										B	its								
Virtual Addre (BFC4_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
FF40	ABF1DEVCFG3	31:0																·	xxxx
FF44	ABF1DEVCFG2	31:0																	xxxx
FF48	ABF1DEVCFG1	31:0																	xxxx
FF4C	ABF1DEVCFG0	31:0																	XXXX
FF50	ABF1DEVCP3	31:0																	XXXX
FF54	ABF1DEVCP2	31:0							Note	• See Tab	le 34-2 for	the hit desc	rintions						XXXX
FF58	ABF1DEVCP1	31:0							Note	. Occ 100	04-2101		npuona.						xxxx
FF5C	ABF1DEVCP0	31:0																	xxxx
FF60	ABF1DEVSIGN3	31:0																	xxxx
FF64	ABF1DEVSIGN2	31:0																	xxxx
FF68	ABF1DEVSIGN1	31:0																	xxxx
FF6C	ABF1DEVSIGN0	31:0																	xxxx
FFC0	BF1DEVCFG3	31:0																	xxxx
FFC4	BF1DEVCFG2	31:0																	xxxx
FFC8	BF1DEVCFG1	31:0																	xxxx
FFCC	BF1DEVCFG0	31:0																	xxxx
FFD0	BF1DEVCP3	31:0																	xxxx
FFD4	BF1DEVCP2	31:0							Note	• See Tab	le 34-1 for	the hit desc	rintions						xxxx
FFD8	BF1DEVCP1	31:0							Hote	. 000 100			inpuorio.						xxxx
FFDC	BF1DEVCP0	31:0																	xxxx
FFE0	BF1DEVSIGN3	31:0																	xxxx
FFE4	BF1DEVSIGN2	31:0																	xxxx
FFE8	BF1DEVSIGN1	31:0																	xxxx
FFEC	BF1DEVSIGN0	31:0																	xxxx
FFF0	BF1SEQ3	31:16								CSEQ	<15:0>								xxxx
	 	10:0								ISEQ	<15:0>								XXXX
FFF4	BF1SEQ2	31:16 15:0	_															$\vdash =$	XXXX
		31.16	_	_	_	_	_		_	_	_	_	_	_	_	_	_	<u> </u>	XXXX
FFF8	BF1SEQ1	15:0	_																XXXX
	ł ł	31.16	_				_	_					_		_		_		XXXX
FFFC	BF1SEQ0	15:0	_	_	_	_	_	_		_	_	_	_	_	_	_	_		XXXX

x = unknown value on Reset; — = Reserved, read as '1'. Reset values are shown in hexadecimal. Legend:

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

TABLE 4-6: SYSTEM BUS TARGETS AND ASSOCIATED PROTECTION REGISTERS

				SBTxREC	Gy Register				SBTxRD	y Register	SBTxWRy Register	
Target Number	Target Description ⁽⁵⁾	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1, GROUP0)	Name	Write Permission (GROUP3, GROUP2, GROUP1, GROUP0)
0	System Bus	SBT0REG0	R	0x1F8F0000	R	64 KB	—	0	SBT0RD0	R/W ⁽¹⁾	SBT0WR0	R/W ⁽¹⁾
0		SBT0REG1	R	0x1F8F8000	R	32 KB	_	3	SBT0RD1	R/W ⁽¹⁾	SBT0WR1	R/W ⁽¹⁾
	Flash Memory ⁽⁶⁾ :	SBT1REG0	R	0x1D000000	R ⁽⁴⁾	R ⁽⁴⁾		0	SBT1RD0	R/W ⁽¹⁾	SBT1WR0	0, 0, 0, 0
	Boot Flash	SBT1REG2	R	0x1F8E0000	R	4 KB	1	2	SBT1RD2	R/W ⁽¹⁾	SBT1WR2	R/W ⁽¹⁾
	Prefetch Module	SBT1REG3	R/W	R/W	R/W	R/W	1	2	SBT1RD3	R/W ⁽¹⁾	SBT1WR3	0, 0, 0, 0
1		SBT1REG4	R/W	R/W	R/W	R/W	1	2	SBT1RD4	R/W ⁽¹⁾	SBT1WR4	0, 0, 0, 0
I		SBT1REG5	R/W	R/W	R/W	R/W	1	2	SBT1RD5	R/W ⁽¹⁾	SBT1WR5	0, 0, 0, 0
		SBT1REG6	R/W	R/W	R/W	R/W	1	2	SBT1RD6	R/W ⁽¹⁾	SBT1WR6	0, 0, 0, 0
		SBT1REG7	R/W	R/W	R/W	R/W	0	1	SBT1RD7	R/W ⁽¹⁾	SBT1WR7	0, 0, 0, 0
		SBT1REG8	R/W	R/W	R/W	R/W	0	1	SBT1RD8	R/W ⁽¹⁾	SBT1WR8	0, 0, 0, 0
	RAM Bank 1 Memory	SBT2REG0	R	0x00000000	R ⁽⁴⁾	R ⁽⁴⁾		0	SBT2RD0	R/W ⁽¹⁾	SBT2WR0	R/W ⁽¹⁾
2		SBT2REG1	R/W	R/W	R/W	R/W		3	SBT2RD1	R/W ⁽¹⁾	SBT2WR1	R/W ⁽¹⁾
		SBT2REG2	R/W	R/W	R/W	R/W	0	1	SBT2RD2	R/W ⁽¹⁾	SBT2WR2	R/W ⁽¹⁾
	RAM Bank 2 Memory	SBT3REG0	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	—	0	SBT3RD0	R/W ⁽¹⁾	SBT3WR0	R/W ⁽¹⁾
3		SBT3REG1	R/W	R/W	R/W	R/W		3	SBT3RD1	R/W ⁽¹⁾	SBT3WR1	R/W ⁽¹⁾
		SBT3REG2	R/W	R/W	R/W	R/W	0	1	SBT3RD2	R/W ⁽¹⁾	SBT3WR2	R/W ⁽¹⁾
4	External Memory via EBI and EBI	SBT4REG0	R	0x20000000	R	64 MB		0	SBT4RD0	R/W ⁽¹⁾	SBT4WR0	R/W ⁽¹⁾
4	Module	SBT4REG2	R	0x1F8E1000	R	4 KB	0	1	SBT4RD2	R/W ⁽¹⁾	SBT4WR2	R/W ⁽¹⁾
	Peripheral Set 1:	SBT5REG0	R	0x1F800000	R	128 KB		0	SBT5RD0	R/W ⁽¹⁾	SBT5WR0	R/W ⁽¹⁾
	Flash Control	SBT5REG1	R/W	R/W	R/W	R/W	_	3	SBT5RD1	R/W ⁽¹⁾	SBT5WR1	R/W ⁽¹⁾
5	DMT/WDT RTCC CVR PPS Input PPS Output Interrupts DMA	SBT5REG2	R/W	R/W	R/W	R/W	0	1	SBT5RD2	R/W ⁽¹⁾	SBT5WR2	R/W ⁽¹⁾
Legend:	R = Read; $R/W = R$	ead/Write;	'x' in a registe	er name = 0-13;	'y' ir	a register na	ame = 0-8.					

Note 1: Reset values for these bits are '0', '1', '1', '1', respectively.

2: The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset.

3: The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = 2^(SIZE-1) x 1024 bytes. For read-only bits, this value is set by hardware on Reset.

4: Refer to the Device Memory Maps (Figure 4-1 through Figure 4-4) for specific device memory sizes and start addresses.

5: See Table 4-1for information on specific target memory size and start addresses.

6: The SBTxREG1 SFRs are reserved, and therefore, are not listed in this table for this target.

TABLE 4-17: SYSTEM BUS TARGET 9 REGISTER MAP

ess				Bits															
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
A 420		31:16	MULTI	—		—		CODE	<3:0>		_	-	—	—	—	—	—	—	0000
A420	SBIGELOGI	15:0				INI	TID<7:0>					REGIO	N<3:0>		—	С	MD<2:0>		0000
A 4 2 4		31:16		_	_	_	_	—	_				_	—	—	—	_	—	0000
A424	3B19ELOG2	15:0		_		_	_	—	—				—	—	_	_	GROU	P<1:0>	0000
A 4 2 9	SPTOFCON	31:16	_	-		_	_	-	_	ERRP			_	_	—	-	_	-	0000
A420	SBISECON	15:0	_	-		_	_	-	_				_	_	—	-	_	-	0000
A 420		31:16		—	-	—	—	—	—	-	_	_	—	—	—	_	—	—	0000
7430	OBTIECENO	15:0	—	—	_	—	—	—	—	_	_	_	—	—	—	_	—	CLEAR	0000
A/38		31:16	—	—	_	—	—	—	—	_	_	_	—	—	—	_	—	—	0000
7430	ODISECEN	15:0	—		_	—	—	_	—	—	—	_	—	—	—	_	—	CLEAR	0000
A440	SBT9REGO	31:16								BA	SE<21:6>								xxxx
71440	OBTOREGO	15:0			BA	ASE<5:0>			PRI	_			SIZE<4:0	>		_	—	_	xxxx
A450	SBT9RD0	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
//100	CETORES	15:0	_	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A458	SBT9WR0	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
//100	obronnic	15:0		—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A460	SBT9REG1	31:16								BA	SE<21:6>								xxxx
///00	OBTOREOT	15:0		1	BA	ASE<5:0>	-		PRI	_			SIZE<4:0	>	-	_	—	—	xxxx
A470	SBT9RD1	31:16	—	_	_	—	—	—	—	_	_	_	—	—	—	—	—	—	xxxx
	02.500	15:0	_	_	—	—	-	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A478	SBT9WR1	31:16	—	_	_	—	—	—	—	_	_	_		_	—	—	_	—	xxxx
/ 110	00100000	15:0	—	—	_	_	_	—	—	_	—	—	—	-	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress		σ								Bi	its								s
Virtual Add (BF81_#	Registel Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0504	055047	31:16	_	_	_	_	—	—	—	—	—	_	—	—	—	—	VOFF<	17:16>	0000
0584	OFF017	15:0								VOFF<15:1>								_	0000
0588		31:16	_		—		_	—	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0300		15:0						-	-	VOFF<15:1>			-	-	-	-		_	0000
058C	OFF019	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
	0.1010	15:0								VOFF<15:1>								_	0000
0590	OFF020	31:16		—	—	—		—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>								—	0000
0594	OFF021	31:16		—		—		—	—	—	—		—	_	_	—	VOFF<	17:16>	0000
		15:0			i		i	i	i	VOFF<15:1>	I	i	i	i	i	i			0000
0598	OFF022	31:16	_	—	—	_	_	—	—		—	—	—	—	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>							VOFF	_	0000
059C	OFF023	31:16	_	_	_	_	_	_	_		—	_	_	_	_	—	VUFF<	17:16>	0000
		15.0								VUFF<15.1>	•						VOEE		0000
05A0	OFF024	15.0								VOFE<15:1>							VOITS		0000
		31.16	_	_	_	_		_	_	_	_	_	_	_	_	_	VOFF<	17.16>	0000
05A4	OFF025	15:0								VOFF<15:1>								_	0000
		31:16	_	_	_	_		_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
05A8	OFF026	15:0								VOFF<15:1>								_	0000
	0	31:16	_	_	_	_	_	_	_	_	_	_	—	—	—	_	VOFF<	17:16>	0000
05AC	OFF027	15:0								VOFF<15:1>	•							—	0000
0500	055000	31:16	_	—	—	_	_	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0580	OFF028	15:0								VOFF<15:1>								_	0000
05P4	055020	31:16	_	-	—	_	_	—	—	—	—	_	—	—	—	—	VOFF<	17:16>	0000
0564	OFF029	15:0								VOFF<15:1>								_	0000
05B8	OFF030	31:16	_	1	—		—	—	_	_	_	—	_	_	_	_	VOFF<	17:16>	0000
0000	011000	15:0								VOFF<15:1>								_	0000
05BC	OFF031	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
5020		15:0								VOFF<15:1>								_	0000

DS60001320D-page 132

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0						
23:16	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
10.0	—	—	—	—	—	9	SRIPL<2:0> ⁽¹⁾	
7.0	R-0	R-0						
7.0				SIRC	Q<7:0>			

REGISTER 7-3: INTSTAT: INTERRUPT STATUS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

bit 10-8 SRIPL<2:0>: Requested Priority Level bits for Single Vector Mode bits⁽¹⁾ 111-000 = The priority level of the latest interrupt presented to the CPU

- bit 7-6 Unimplemented: Read as '0'
- bit 7-0 SIRQ<7:0>: Last Interrupt Request Serviced Status bits 11111111-00000000 = The last interrupt request number serviced by the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				IPTMF	R<31:24>			
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10				IPTMF	?<23:16>			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0				IPTM	R<15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				IPTM	IR<7:0>			

IPTMR: INTERRUPT PROXIMITY TIMER REGISTER REGISTER 7-4:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IPTMR<31:0>: Interrupt Proximity Timer Reload bits

Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24	FORCEHST	FIFOACC	FORCEFS	FORCEHS	PACKET	TESTK	TESTJ	NAK				
22.16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	—	—	—	—		ENDPOI	NT<3:0>					
45.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0				
10.0	—	—	—	—	—	R	FRMUM<10:8	3>				
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7.0	RFRMNUM<7:0>											

REGISTER 11-4: USBCSR3: USB CONTROL STATUS REGISTER 3

Legend:	HC = Hardware Cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FORCEHST: Test Mode Force Host Select bit 1 = Forces USB module into <i>Host mode</i> , regardless of whether it is connected to any peripheral 0 = Normal operation
bit 30	FIFOACC: Test Mode Endpoint 0 FIFO Transfer Force bit 1 = Transfers the packet in the Endpoint 0 TX FIFO to the Endpoint 0 RX FIFO 0 = No transfer
bit 29	FORCEFS: Test mode Force Full-Speed Mode Select bit This bit is only active if FORCEHST = 1. 1 = Forces USB module into Full-Speed mode. Undefined behavior if FORCEHS = 1. 0 = If FORCEHS = 0, places USB module into Low-Speed mode.
bit 28	 FORCEHS: Test mode Force Hi-Speed Mode Select bit This bit is only active if FORCEHST = 1. 1 = Forces USB module into Hi-Speed mode. Undefined behavior if FORCEFS = 1. 0 = If FORCEFS = 0, places USB module into Low-Speed mode.
bit 27	 PACKET: Test_Packet Test Mode Select bit This bit is only active if module is in Hi-Speed mode. 1 = The USB module repetitively transmits on the bus a 53-byte test packet. Test packet must be loaded into the Endpoint 0 FIFO before the test mode is entered. 0 = Normal operation
bit 26	TESTK: Test_K Test Mode Select bit 1 = Enters Test_K test mode. The USB module transmits a continuous K on the bus. 0 = Normal operation
	This bit is only active if the USB module is in Hi-Speed mode.
bit 25	TESTJ: Test_J Test Mode Select bit 1 = Enters Test_J test mode. The USB module transmits a continuous J on the bus. 0 = Normal operation
	This bit is only active if the USB module is in Hi-Speed mode.
bit 24	 NAK: Test_SE0_NAK Test Mode Select bit 1 = Enter Test_SE0_NAK test mode. The USB module remains in Hi-Speed mode but responds to any valid IN token with a NAK 0 = Normal operation
	This mode is only active if module is in Hi-Speed mode.
bit 23-20	Unimplemented: Read as '0'

I/O Ports Control Registers 12.5

ΤΔ RI F 12-4 ·	ΡΟΡΤΔ	REGIST
IADLL 12-4.	FUNIA	NLOIS

FER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess		0								Bits									
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16		_	-		—			_	_	_						_	0000
0000	ANSELA	15:0	_	—	-	—	—	ANSA10	ANSA9	_	_	—	ANSA5	_	_	_	ANSA1	ANSA0	0623
0010	TDICA	31:16	—	_	_	—	—	_	—	_	_	—	_	_	_	_	_	_	0000
0010	IRISA	15:0	TRISA15	TRISA14	_	_	—	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
0000	DODTA	31:16	—	—	-	—	—	_	—	_	_	—	_	_	_	_	_	_	0000
0020	PORTA	15:0	RA15	RA14	-	—	—	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
0000		31:16		_	-		—	_		_	_	_						_	0000
0030	LAIA	15:0	LATA15	LATA14		_	—	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
00.40	0.004	31:16	_	_		_	—	_	_	_		_	—	—	—	—	_		0000
0040	ODCA	15:0	ODCA15	ODCA14		_	—	ODCA10	ODCA9	_	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
0050	ONDUA	31:16	_	_		_	—	_	_	_		_	—	—	—	—	_		0000
0050	CNPUA	15:0	CNPUA15	CNPUA14		_	—	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
	01/22.4	31:16	_			_	_	_	_	_		_					_		0000
0060	CNPDA	15:0	CNPDA15	CNPDA14		_	—	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
0070	010014	31:16	_	_		_	—	_	_	_		_	—	—	—	—	_		0000
0070	CNCONA	15:0	ON	_	-	_	EDGEDETECT	—	—	_		_	_	_	_	_	_		0000
		31:16	_	_				_	_			_	_	_	_	_	_		0000
0080	CNENA	15:0	CNENA15	CNENA14		_	—	CNENA10	CNENA9		CNENA7	CNENA6	CNENA5	CNENA4	CNENA3	CNENA2	CNENA1	CNENA0	0000
		31:16	_	_		_	—	_	_	_		_	—	—	—	_	_		0000
0090	CNSTATA	15:0	CN STATA15	CN STATA14	_	_	-	CN STATA10	CN STATA9	_	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	0000
		31:16	_	_		_	—	_	_	_		_	_	_	_	_	_		0000
00A0	CNNEA	15:0	CNNEA15	CNNEA14		_	—	CNNEA10	CNNEA9	_	CNNEA7	CNNEA6	CNNEA5	CNNEA4	CNNEA3	CNNEA2	CNNEA1	CNNEA0	0000
	0.15	31:16	_			_	_	_	_	_		_					_		0000
00B0	CNFA	15:0	CNFA15	CNFA14	-	_	_	CNFA10	CNFA9	_	CNFA7	CNFA76	CNFA5	CNFA4	CNFA3	CNFA2	CNFA71	CNFA0	0000
	000000	31:16	_	_	-	_	_	—	—	_		_	_	_	_	_	—		0000
00C0	SRCON0A	15:0	—	_	_	_	_	_	—	_	SR0A7	SR0A6	—	—	—	—	_	_	0000
		31:16	—	_	_	_	_	_	—	_	—	—	—	—	—	—	_	_	0000
0000	SRCON1A	15:0	_	_	_	_	-	_	_	_	SR1A7	SR0A6	_	_	_	_	_	_	0000

x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 18-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP (CONTINUED)

ess				Bits															
Virtual Addr (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4400		31:16	_	-	_		—		-	_	—	—	—	—	—	_	_		0000
4A00		15:0	ON	_	SIDL	_	_	_	_	_	_	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4440	0000	31:16										xxxx							
4A10	UCOR	15:0								UCOR	<31:0>								xxxx
4420	OCERS	31:16								OCER	2-21:05								xxxx
4A20	UC0K3	15:0								OCORC	\$<31.0>								xxxx
4000		31:16	_		_		_			_	_	—	—	_	_		_		0000
4000		15:0	ON		SIDL					_		_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4010	OC7P	31:16									~21.0								xxxx
4010	007	15:0								0078	<31.0>								xxxx
4020	OC7RS	31:16									-31.0								xxxx
4020	00/110	15:0										-	-		-				xxxx
4E00		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1200	000001	15:0	ON	—	SIDL	—	—	—	—	—	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4F10	OC8R	31:16								OC8R	<31.0>								xxxx
		15:0								00011	101107								XXXX
4E20	OC8RS	31:16								OC8RS	S<31:0>								xxxx
		15:0										-	-		-				XXXX
5000		31:16	—	_	—	_	—	_	_	—	—	—	—	—		—	—	—	0000
		15:0	ON	—	SIDL	—	—	—	—	—	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
5010	OC9R	31:16								OC9R	<31:0>								XXXX
		15:0																	XXXX
5020	OC9RS	31:16 15:0								OC9R8	8<31:0>								xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31.24 — … <td rowspan="2">31:24</td> <td>U-0</td> <td>U-0</td> <td>U-0</td> <td>U-0</td> <td>U-0</td> <td>U-0</td> <td>U-0</td> <td>U-0</td>	31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
U-0 R/W-0 R/W-0 <th< td=""><td>_</td><td> </td><td>—</td><td> </td><td>-</td><td>_</td><td>—</td><td> </td></th<>		_		—		-	_	—					
23.10	00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R	23.10	—	—	—	—	—	—	—	_				
15.0 ALRMEN ^(1,2) CHIME ⁽²⁾ PIV ⁽²⁾ ALRMSYNC AMASK<3:0> ⁽²⁾ 7:0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	15.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
7.0 R/W-0	15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC	AMASK<3:0> ⁽²⁾							
	7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ARPT<7:0> ⁽²⁾	7:0		ARPT<7:0> ⁽²⁾										

REGISTER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 CHIME: Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is more than 32 real-time clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved
- 1011 = Reserved
- 11xx = Reserved
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

© 2015-2016 Microchip Technology Inc.

		x = 1 OK 2)										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
		SEED<31:24>										
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
23.10	SEED<23:16>											
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8	SEED<15:8>											
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
				SEED<	<7:0>							

REGISTER 27-5: RNGSEEDX: TRUE RANDOM NUMBER GENERATOR SEED REGISTER 'x' ('x' = 1 OR 2)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **SEED<31:0>:** TRNG MSb/LSb Value bits (RNGSEED1 = LSb, RNGSEED2 = MSb)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	_	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—		—	—
45-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	-	—	—
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	—				RCNT<6:0>			

REGISTER 27-6: RNGCNT: TRUE RANDOM NUMBER GENERATOR COUNT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-7 Unimplemented: Read as '0'

bit 6-0 RCNT<6:0>: Number of Valid TRNG MSB 32 bits

REGISTE	ER 29-17: CIFLTCON7: CAN FILTER CONTROL REGISTER 7 (CONTINUED)
bit 15	FLTEN29: Filter 29 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL29<1:0>: Filter 29 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
bit 12-8	FSEL29<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN28: Filter 28 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL28<1:0>: Filter 28 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
L:L 1 0	
DIT 4-0	FSEL28<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching litter is stored in FIFO buller 30
	•
	00001 = Message matching filter is stored in FIFO buffer 0
Notor	The hite in this register can only be medified if the corresponding filter angula (ELTEND) bit is (a)
NOLE.	The bits in this register can only be modified if the corresponding filter enable (FLTENII) bit is 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		HT<31:24>							
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	HT<23:16>								
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	HT<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		HT<7:0>							

REGISTER 30-5: ETHHT0: ETHERNET CONTROLLER HASH TABLE 0 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<31:0>: Hash Table Bytes 0-3 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

REGISTER 30-6: ETHHT1: ETHERNET CONTROLLER HASH TABLE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	HT<63:56>								
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	HT<55:48>								
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	HT<47:40>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	HT<39:32>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<63:32>: Hash Table Bytes 4-7 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	_					
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—		_				
	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SOFT	SIM			RESET	RESET	RESET	RESET
	RESET	RESET	_		RMCS	RFUN	TMCS	TFUN
7:0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
	_		_	LOOPBACK	TX PAUSE	RX PAUSE	PASSALL	RX ENABLE

REGISTER 30-23: EMAC1CFG1: ETHERNET CONTROLLER MAC CONFIGURATION 1 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15	SOFTRESET: Soft Reset bit
	Setting this bit will put the MACMII in reset. Its default value is '1'.
bit 14	SIMRESET: Simulation Reset bit
	Setting this bit will cause a reset to the random number generator within the Transmit Function.
bit 13-12	Unimplemented: Read as '0'
bit 11	RESETRMCS: Reset MCS/RX bit
	Setting this bit will put the MAC Control Sub-layer/Receive domain logic in reset.
bit 10	RESETRFUN: Reset RX Function bit
	Setting this bit will put the MAC Receive function logic in reset.
bit 9	RESETTMCS: Reset MCS/TX bit
	Setting this bit will put the MAC Control Sub-layer/TX domain logic in reset.
bit 8	RESETTFUN: Reset TX Function bit
	Setting this bit will put the MAC Transmit function logic in reset.
bit 7-5	Unimplemented: Read as '0'
bit 4	LOOPBACK: MAC Loopback mode bit
	 1 = MAC Transmit interface is loop backed to the MAC Receive interface 0 = MAC normal operation
bit 3	TXPAUSE: MAC TX Flow Control bit
	1 = PAUSE Flow Control frames are allowed to be transmitted0 = PAUSE Flow Control frames are blocked
bit 2	RXPAUSE: MAC RX Flow Control bit
	1 = The MAC acts upon received PAUSE Flow Control frames0 = Received PAUSE Flow Control frames are ignored
bit 1	PASSALL: MAC Pass all Receive Frames bit
	1 = The MAC will accept all frames regardless of type (Normal vs. Control)0 = The received Control frames are ignored
bit 0	RXENABLE: MAC Receive Enable bit
	1 = Enable the MAC receiving of frames0 = Disable the MAC receiving of frames

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 34-7: CFGCON: CONFIGURATION CONTROL REGISTER (CONTINUED)

- bit 7 IOANCPEN: I/O Analog Charge Pump Enable bit
 The analog IO charge pump improves analog performance when the device is operating at lower voltages. However, the charge pumps consume additional current.
 1 = Charge pump is enabled
 0 = Charge pump is disabled
- bit 6 Unimplemented: Read as '0'
- bit 5-4 ECCCON<1:0>: Flash ECC Configuration bits
 - 11 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are writable)
 - 10 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are locked)
 - 01 = Dynamic Flash ECC is enabled (ECCCON<1:0> bits are locked)
 - 00 = Flash ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port
- bit 2 TROEN: Trace Output Enable bit
 - 1 = Enable trace outputs and start trace clock (trace probe must be present)0 = Disable trace outputs and stop trace clock
- bit 1 Unimplemented: Read as '0'
- bit 0 TDOEN: TDO Enable for 2-Wire JTAG
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

35.0 INSTRUCTION SET

The PIC32MZ EF family instruction set complies with the MIPS32[®] Release 5 instruction set architecture. The PIC32MZ EF device family *does not* support the following features:

- Core extend instructions
- Coprocessor 2 instructions

Note: Refer to "MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set" at www.imgtec.com for more information.

36.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

36.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

FIGURE 37-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

Revision C (March 2016)

In this revision, the Preliminary status was removed from the document footer.

The revision also includes the following major changes, which are referenced by their respective chapter in Table C-2. In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE C-2:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	2.9.1.3 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" and Figure 2-5 were updated.
4.0 "Memory Organization"	The names of the Boot Flash Words were updated from BFxSEQ0 to BFxSEQ3 (see 4.1.1 "Boot Flash Sequence and Configuration Spaces").
	The ABFxSEQx registers were removed from the Boot Flash Sequence and Configuration tables (see Table 4-2 and Table 4-3).
7.0 "CPU Exceptions and Interrupt Controller"	The Cache Error exception type was removed from the MIPS32 M-Class Microprocessor Core Exception Types (see Table 7-1).
8.0 "Oscillator Configuration"	The PLLODIV<2:0> bit value settings were updated in the SPLLCON register (see Register 8-3).
12.0 "I/O Ports"	The SIDL bit was removed from the CNCONx registers (see Table 12-4 through Table 12-21 and Register 12-3).
20.0 "Serial Quad Interface (SQI)"	The following bits were removed from the SQI1XCON1 register (see Table 20-1 and Register 20-1): DDRDATA, DDRDUMMY, DDRMODE, DDRADDR, and DDRCMD.
	The DDRMODE bit was removed from the SQI1CON register (see Table 20-1 and Register 20-4).
28.0 "12-bit High-Speed Successive Approximation	A note was added to the SELRES<1:0> bits in the ADCCON1 and ADCxTIME registers (see Register 28-1 and Register 28-27).
Register (SAR) Analog-to-Digital Converter (ADC)"	The ADCID<2:0 bit values were updated in the ADCFSTAT register (see Register 28-22).
34.0 "Special Features"	The bit value definitions for the POSCGAIN<1:0> and SOSCGAIN<1:0> bits were updated (see Register 34-3).
	The Device ADC Calibration Word (DEVADCx) register was added (see Table 34-5 and Register 34-13).