

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	252MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-TFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efh144t-250i-jwx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-10: SYSTEM BUS TARGET 2 REGISTER MAP

ess		<i>a</i>	Ø Bits																
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	MULTI	—	—	—		CODE	<3:0>		—	—	—	-	—	_	-	—	0000
8620	SBIZELUGI	15:0				INI	TID<7:0>					REGIO	N<3:0>		_	C	MD<2:0>		0000
8824	SBT2ELOG2	31:16	—	—	_	—	_	_		_	_	_	—			—	_	—	0000
0024	001222002	15:0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	GROU	P<1:0>	0000
8828	SBT2ECON	31:16	—	—	—	—	—	—	_	ERRP	—	—	—		—	_	_	—	0000
0020	00.2200.0	15:0	—	—		—	—			_	_	_	—						0000
8830	SBT2ECLRS	31:16	—	—	—	—	—			_		_	—						0000
		15:0	_	—	—	_		—	—	_	—	—	_	_	_			CLEAR	0000
8838	SBT2ECLRM	31:16	—	—	—		—				—	—	—		—			—	0000
		15:0	_	-	—			_	—		—	—		—	—			CLEAR	0000
8840	SBT2REG0	31:16			D/				DDI	BA	SE<21:6>		0175 4-0						XXXX
		15:0			BA	ASE<5:0>			PRI				SIZE<4:0	>					XXXX
8850	SBT2RD0	15:0	_																XXXX
		31.16		_												GROUPZ		GROOPU	·
8858	SBT2WR0	15.0													GROUP3	GROUP2	GROUP1	GROUP	
		31.16								BA	SF<21.6>				on of the off of	ONOOL			XXXX
8860	SBT2REG1	15:0			BA	\SE<5:0>			PRI	_			SIZE<4:0	>		_	_	_	XXXX
		31:16	_	_	—	_	_	—	_	_	_	—	_	_	_	_	_	_	xxxx
8870	SBT2RD1	15:0	_		_				_	_		_	_	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
8878	SBT2WR1	15:0	_	_	_	_	_	_	_	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
0000		31:16								BA	SE<21:6>								xxxx
8880	SB12REG2	15:0			BA	\SE<5:0>			PRI	—			SIZE<4:0	>		_	_	—	xxxx
0000	SPT2PD2	31:16		—	—	_	_	—	—	_	—	—	_	—	_	—	—	—	xxxx
9990	SD12KD2	15:0	—	—	—	_	—	—	—	_	_	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
8898	SBT2WR2	31:16	_	—	—	—	—	—	_	-	—	_	—	_	-	-	-	—	xxxx
0030		15:0	—	—	—	—	_	—	-	-	—	—	_	-	GROUP3	GROUP2	GROUP1	GROUP0) xxxx

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

ILCI31	_N <i>T-</i> Z. r	- NIJJ. F NI									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		PRI7SS	<3:0> ⁽¹⁾			PRI6SS<3:0> ⁽¹⁾					
22.16	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0			
23:16		PRI5SS	<3:0> ⁽¹⁾			PRI4SS	<3:0> ⁽¹⁾	•			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0		PRI3S	S<3:0>		PRI2SS<3:0> ⁽¹⁾						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0			
7:0		PRI1SS	<3:0> ⁽¹⁾		_		—	SS0			

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 **PRI7SS<3:0>:** Interrupt with Priority Level 7 Shadow Set bits⁽¹⁾

1xxx = Reserved (by default, an interrupt with a priority level of 7 uses Shadow Set 0) 0111 = Interrupt with a priority level of 7 uses Shadow Set 7 0110 = Interrupt with a priority level of 7 uses Shadow Set 6 0001 = Interrupt with a priority level of 7 uses Shadow Set 1 0000 = Interrupt with a priority level of 7 uses Shadow Set 0 bit 27-24 **PRI6SS<3:0>:** Interrupt with Priority Level 6 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 6 uses Shadow Set 0) 0111 = Interrupt with a priority level of 6 uses Shadow Set 7 0110 = Interrupt with a priority level of 6 uses Shadow Set 6 0001 = Interrupt with a priority level of 6 uses Shadow Set 1 0000 = Interrupt with a priority level of 6 uses Shadow Set 0 bit 23-20 PRI5SS<3:0>: Interrupt with Priority Level 5 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 5 uses Shadow Set 0) 0111 = Interrupt with a priority level of 5 uses Shadow Set 7 0110 = Interrupt with a priority level of 5 uses Shadow Set 6 0001 = Interrupt with a priority level of 5 uses Shadow Set 1 0000 = Interrupt with a priority level of 5 uses Shadow Set 0 bit 19-16 PRI4SS<3:0>: Interrupt with Priority Level 4 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 4 uses Shadow Set 0) 0111 = Interrupt with a priority level of 4 uses Shadow Set 7 0110 = Interrupt with a priority level of 4 uses Shadow Set 6 0001 = Interrupt with a priority level of 4 uses Shadow Set 1 0000 = Interrupt with a priority level of 4 uses Shadow Set 0

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

ess		6								Bit	S								
Virtual Addr (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1500		N 31:16 CHAIR									Q<7:0>				00FF				
1360		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	-	-	FF00
1500		31:16	—	_	—	—	_	_	_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
1300	DOIT/INT	15:0	—	—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
15D0	DCH7SSA	31:16								CHSSA	31.0>								0000
1000	Donnoon	15:0								01100/14									0000
15E0	15E0 DCH7DSA 31:16 CHDSA<31:0>									0000									
															0000				
15F0	DCH7SSIZ	31:16	_	—		_	—	_	—	—		—	_	—	—	—	—	—	0000
		15:0								CHSSIZ	<15:0>								0000
1600	DCH7DSIZ	31:16		_			_	_	_	-	-	_	_		_	—	_	_	0000
		15:0								CHDSIZ	<15:0>								0000
1610	DCH7SPTR	31:16	_	_	_	_	_	_	_			_	_	_	_	_	_	_	0000
		15.0								CHOPIK	<13.0>								0000
1620	DCH7DPTR	15.0	_	_			_	_	_	CHOPTR		_		_	_	_	_		0000
		31.16	_	_	_	_	_	_	_			_	_	_	_	_	_	_	0000
1630	DCH7CSIZ	15:0								CHCSIZ	<15:0>								0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1640	DCH7CPTR	15:0								CHCPTR	<15:0>								0000
4050		31:16	_	—	—	_	_	—	_	—	—		_			—	—	_	0000
1650	DCH7DAI	15:0								CHPDAT	<15:0>								0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	-	—		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	_	—	—
45.0	R-0, HS, HC	R-0, HS, HC	R/C-0, HS, HC	U-0	U-0	R/C-0, HS	R-0, HS, HC	R-0, HS, HC
15:8	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10
7.0	R/C-0, HS, SC	R/C-0, HS, SC	R-0, HS, HC	R/C-0, HS, HC	R/C-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

REGISTER 21-2: I2CxSTAT: I²C STATUS REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared	SC = Software Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

bit 21 16 Linin nnla tod. De 24 <u>'</u>∩'

bit 31-16	Unimplemented: Read as 10
bit 15	ACKSTAT: Acknowledge Status bit (when operating as I ² C master, applicable to master transmit operation)
	1 = NACK received from slave
	0 = ACK received from slave
	Hardware set or clear at end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I^2C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK)
	0 = Master transmit is not in progress
	Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
bit 13	ACKTIM: Acknowledge Time Status bit (Valid in I ² C Slave mode only)
	 1 = I²C bus is in an Acknowledge sequence, set on the eight falling edge of SCL clock 0 = Not an Acknowledge sequence, cleared on 9th rising edge of SCL clock
bit 12-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation
	0 = No collision
	Hardware set at detection of bus collision.
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received
	0 = General call address was not received
	Hardware set when address matches general call address. Hardware clear at Stop detection.
bit 8	ADD10: 10-bit Address Status bit
	1 = 10-bit address was matched
	0 = 10-bit address was not matched
	Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
bit 7	IWCOL: Write Collision Detect bit
	1 = An attempt to write the I2CxTRN register failed because the I^2C module is busy 0 = No collision
	Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: Receive Overflow Flag bit
	 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow
	Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

REGIST	ER 23-1:	PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)
bit 7-6	CSF<1:0>	: Chip Select Function bits ⁽¹⁾
	11 = Rese 10 = PMC 01 = PMC 00 = PMC	erved S1 and PMCS2 function as Chip Select S2 functions as Chip Select and PMCS1 functions as address bit 14 S1 and PMCS2 function as address bit 14 and address bit 15
bit 5	ALP: Add	ress Latch Polarity bit ⁽¹⁾
	1 = Active 0 = Active 0	e-low (PMALL and PMALH) e-low (PMALL and PMALH)
bit 4	CS2P: Ch	ip Select 2 Polarity bit ⁽¹⁾
	1 = Active $0 = Active$	e-high <u>(PMCS2)</u> e-low (PMCS2)
bit 3	CS1P: Ch	ip Select 1 Polarity bit ⁽¹⁾
	1 = Active $0 = Active$	e-low (PMCS1)
bit 2	Unimplen	nented: Read as '0'
bit 1	WRSP: W	rite Strobe Polarity bit
	For Slave	Modes and Master mode 2 (MODE<1:0> = 00,01,10):
	1 = Write s 0 = Write s	strobe active-high <u>(PMWR)</u> strobe active-low (PMWR)
	For Maste	<u>r mode 1 (MODE<1:0> = 11)</u> :
	1 = Enable 0 = Enable	e strobe active-high (PMENB) e strobe active-low (PMENB)
bit 0	RDSP: Re	ead Strobe Polarity bit
	For Slave	modes and Master mode 2 (MODE<1:0> = 00,01,10):
	1 = Read 0 = Read	Strobe active-high (PMRD) Strobe active-low (PMRD)
	For Maste	r mode 1 (MODE<1:0> = 11):
	1 = Read/	write strobe active-high (PMRD/PMWR)
	0 = Read/	write strobe active-low (PMRD/PMWR)

Note 1: These bits have no effect when their corresponding pins are used as address lines.

EBI Control Registers 24.1

TABLE 24-2: EBI REGISTER MAP

DS60001320D-pag	
le 384	

ess											Bits								
Virtual Addr (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1014	FRICSO	31:16								С	SADDR<15:0	>							0000
1014	LDICOU	15:0	_	_	—	—		_	—	—	_		_		_	_	_	_	0000
1018	FRICS1(1)	31:16								С	SADDR<15:0	>				-			0000
1010	LDICOT	15:0	_	_	—	—		_	—	—	_	_	_		_	_	—	_	0000
1010	FBICS2(1)	31:16								С	SADDR<15:0	>				-			0000
1010	LDIOOZ	15:0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
1020	FBICS3(1)	31:16								C	SADDR<15:0	>							0000
1020	EBIOCO	15:0	_	—		—		—	—	—	—	_	—		—	—	—	_	0000
1054	EBIMSK0	31:16	_	—	—	—	-	—	—	—	—	—	—	-	—	—	—	—	0000
	22	15:0	_	—		—		REG	SEL<2:0)>	M	EMTYPE<2	2:0>		M	EMSIZE<4	:0>		0020
1058	EBIMSK1 ⁽¹⁾	31:16	_			_		-	—	—	-	—	—	-	—	—	-	—	0000
	22	15:0	_	—		—		REG	SEL<2:0)>	M	EMTYPE<2	2:0>		M	EMSIZE<4	:0>		0020
105C	EBIMSK2 ⁽¹⁾	31:16	_					_	—	—	—	—	—	-	_	—	—	—	0000
		15:0	_					REG	SEL<2:0)>	M	EMTYPE<2	2:0>		M	EMSIZE<4	:0>		0120
1060	EBIMSK3(1)	31:16	_					_	—	—	—	—	—	-	_	—	—	—	0000
		15:0	_	_				REG	SEL<2:0)>	M	EMTYPE<2	2:0>		Μ	EMSIZE<4	:0>		0120
1094	EBISMTO	31:16	—	—	—	—	-	RDYMODE	PAGESI	ZE<1:0>	PAGEMODE		TPRC<	<3:0>			TBTA<2:0>		0410
		15:0			TW	P<5:0>			TWR	<1:0>	TAS<	1:0>			TRC<	5:0>			2D4E
1098	EBISMT1	31:16	—	—	—	—	—	RDYMODE	PAGESI	ZE<1:0>	PAGEMODE		TPRC<	<3:0>			TBTA<2:0>		0410
	_	15:0			TW	P<5:0>			TWR	<1:0>	TAS<	1:0>			TRC<	5:0>			2D4E
109C	EBISMT2	31:16	—	—	—	—	—	RDYMODE	PAGESI	ZE<1:0>	PAGEMODE		TPRC<	<3:0>			TBTA<2:0>		0140
	_	15:0			TW	P<5:0>			TWR	<1:0>	TAS<	1:0>			TRC<	5:0>			2D41
10A0	EBIFTRPD	31:16	_	_		_	-	—	—	—	—	_	—	—	_	—	—	_	0000
		15:0	—	—	—	—						TR	PD<11:0>						0008
10A4	EBISMCON	31:16	—	—	—	—	—	—	—	—	—	—	—		—	—	—	—	0000
		15:0	SMD	WIDTH2<	2:0>	SM	DWIDTH1<	:2:0>	SN	IDWIDTH	10<2:0>	—	—	-	—	—	—	SMRP	0201

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: This register is available on 144-pin devices only.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	CSADDR<15:8>											
00:40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	CSADDR<7:0>											
45-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15:8	_		_	_	_	_	_	—				
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
7:0	_	_				_		_				

REGISTER 24-1: EBICSx: EXTERNAL BUS INTERFACE CHIP SELECT REGISTER ('x' = 0-3)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 CSADDR<15:0>: Base Address for Device bits

Address in physical memory, which will select the external device.

bit 15-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24				BDPADDR	<31:24>					
22.16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	BDPADDR<23:16>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8				BDPADD	R<15:8>					
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				BDPADD	R<7:0>					

REGISTER 26-3: CEBDADDR: CRYPTO ENGINE BUFFER DESCRIPTOR REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BDPADDR<31:0>:** Current Buffer Descriptor Process Address Status bits These bits contain the current descriptor address that is being processed by the Buffer Descriptor Processor (BDP).

REGISTER 26-4: CEBDPADDR: CRYPTO ENGINE BUFFER DESCRIPTOR PROCESSOR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24				BASEADDI	२<३१:२४>					
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	BASEADDR<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8				BASEADD	R<15:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				BASEADE)R<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BASEADDR<31:0>: Buffer Descriptor Base Address bits

These bits contain the physical address of the first Buffer Descriptor in the Buffer Descriptor chain. When enabled, the Crypto DMA begins fetching Buffer Descriptors from this address.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	EF	RRMODE<2:0	>		ERROP<2:0>	>	ERRPHA	ASE<1:0>
22.16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
23:16	—	—		BDSTAT	FE<3:0>		START	ACTIVE
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0				BDCTRL	<15:8>			
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0				BDCTRI	<7:0>			

REGISTER 26-5: CESTAT: CRYPTO ENGINE STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 ERRMODE<2:0>: Internal Error Mode Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CEK operation
- 010 = KEK operation
- 001 = Preboot authentication
- 000 = Normal operation

bit 28-26 ERROP<2:0>: Internal Error Operation Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Authentication
- 011 = Reserved
- 010 = Decryption
- 001 = Encryption
- 000 = Reserved

bit 25-24 ERRPHASE<1:0>: Internal Error Phase of DMA Status bits

- 11 = Destination data
- 10 = Source data
- 01 = Security Association (SA) access
- 00 = Buffer Descriptor (BD) access

bit 23-22 Unimplemented: Read as '0'

bit 21-18 BDSTATE<3:0>: Buffer Descriptor Processor State Status bits

The current state of the BDP:

- 1111 = Reserved
- •
- 0111 = Reserved
- 0110 = SA fetch
- 0101 = Fetch BDP is disabled
- 0100 = Descriptor is done
- 0011 = Data phase
- 0010 = BDP is loading
- 0001 = Descriptor fetch request is pending
- 0000 = BDP is idle
- bit 17 START: DMA Start Status bit
 - 1 = DMA start has occurred
 - 0 = DMA start has not occurred

26.2 Crypto Engine Buffer Descriptors

Host software creates a linked list of buffer descriptors and the hardware updates them. Table 26-3 provides a list of the Crypto Engine buffer descriptors, followed by format descriptions of each buffer descriptor (see Figure 26-2 through Figure 26-9).

Name (see No	ote 1)	Bit 31/2315/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
BD_CTRL	31:24	DESC_EN	—	(CRY_MODE<2:0	>	—	—	—
	23:16	_	SA_FETCH_EN	—	—	LAST_BD	LIFM	PKT_INT_EN	CBD_INT_EN
	15:8				BD_BUFLEN	l<15:8>			
	7:0				BD_BUFLEN	N<7:0>			
BD_SA_ADDR	31:24				BD_SAADDR	<31:24>			
	23:16				BD_SAADDR	<23:16>			
	15:8				BD_SAADDF	R<15:8>			
	7:0				BD_SAADR	R<7:0>			
BD_SCRADDR	31:24				BD_SRCADDF	R<31:24>			
	23:16				BD_SRCADDF	R<23:16>			
	15:8				BD_SRCADD	R<15:8>			
	7:0				BD_SRCADD)R<7:0>			
BD_DSTADDR	31:24				BD_DSTADDF	R<31:24>			
	23:16				BD_DSTADDF	?<23:16>			
	15:8				BD_DSTADD	R<15:8>			
	7:0				BD_DSTADD	0R<7:0>			
BD_NXTPTR	31:24				BD_NXTADDF	R<31:24>			
	23:16				BD_NXTADDF	R<23:16>			
	15:8				BD_NXTADDI	R<15:8>			
	7:0				BD_NXTADD)R<7:0>			
BD_UPDPTR	31:24				BD_UPDADDF	₹<31:24>			
	23:16				BD_UPDADDF	R<23:16>			
	15:8				BD_UPDADD	R<15:8>			
	7:0				BD_UPDADD)R<7:0>			
BD_MSG_LEN	31:24				MSG_LENGTH	1<31:24>			
	23:16				MSG_LENGTH	1<23:16>			
	15:8				MSG_LENGT	H<15:8>			
	7:0				MSG_LENGT	[H<7:0>			
BD_ENC_OFF	31:24				ENCR_OFFSE	T<31:24>			
	23:16				ENCR_OFFSE	T<23:16>			
	15:8				ENCR_OFFSE	T<15:8>			
	7:0				ENCR_OFFS	ET<7:0>			

TABLE 26-3: CRYPTO ENGINE BUFFER DESCRIPTORS

Note 1: The buffer descriptor must be allocated in memory on a 64-bit boundary.

REGISTER 28-5: ADCIMCON1: ADC INPUT MODE CONTROL REGISTER 1 (CONTINUED)

bit 4 SIGN2: AN2 Signed Data Mode bit 1 = AN2 is using Signed Data mode 0 = AN2 is using Unsigned Data mode bit 3 DIFF1: AN1 Mode bit 1 = AN1 is using Differential mode 0 = AN1 is using Single-ended mode bit 2 SIGN1: AN1 Signed Data Mode bit 1 = AN1 is using Signed Data mode 0 = AN1 is using Unsigned Data mode bit 1 DIFF0: AN0 Mode bit 1 = AN0 is using Differential mode 0 = AN0 is using Single-ended mode SIGNO: ANO Signed Data Mode bit bit 0 1 = AN0 is using Signed Data mode 0 = AN0 is using Unsigned Data mode

REGISTER 28-32: ADCANCON: ADC ANALOG WARM-UP CONTROL REGISTER (CONTINUED)

- bit 7 ANEN7: Shared ADC (ADC7) Analog and Bias Circuitry Enable bit
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled
- bit 5-6 Unimplemented: Read as '0'
- bit 4-0 **ANEN4: ANEN0:** ADC4-ADC0 Analog and Bias Circuitry Enable bits
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	FLTEN11	N11 MSEL11<1:0>				FSEL11<4:0>			
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	FLTEN10	FLTEN10 MSEL10<1:0>			F	FSEL10<4:0>			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	FLTEN9	MSEL	9<1:0>		F	SEL9<4:0>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	FLTEN8	MSEL	8<1:0>		F	SEL8<4:0>			

REGISTER 29-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31	FLTEN11: Filter 11 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL11<1:0>: Filter 11 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
h:+ 00 04	
DIT 28-24	FSEL11<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	- Message matching litter is stored in FIFO buller 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN10: Filter 10 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL10<1:0>: Filter 10 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
bit 20-16	FSEL10<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	UUUUU = Message matching miter is stored in FIFO buller 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN27	MSEL2	27<1:0>			FSEL27<4:0>	•	
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	FLTEN26	MSEL2	26<1:0>			FSEL26<4:0>		
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.6	FLTEN25	MSEL2	25<1:0>			FSEL25<4:0>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	FLTEN24	MSEL2	24<1:0>			FSEL24<4:0>		

REGISTER 29-16: CIFLTCON6: CAN FILTER CONTROL REGISTER 6

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31	FLTEN27: Filter 27 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL27<1:0>: Filter 27 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL27<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 •
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN26: Filter 26 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL26<1:0>: Filter 26 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL26<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • • • • • • • • • • • •

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTE	R 29-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER 'n' ('n' = 0-31) (CONTINUED)
bit 6	TXABAT: Message Aborted bit ⁽²⁾
	1 = Message was aborted
	0 = Message completed successfully
bit 5	TXLARB: Message Lost Arbitration bit ⁽³⁾
	1 = Message lost arbitration while being sent
	0 = Message did not lose arbitration while being sent
bit 4	TXERR: Error Detected During Transmission bit ⁽³⁾
	1 = A bus error occurred while the message was being sent
	0 = A bus error did not occur while the message was being sent
bit 3	TXREQ: Message Send Request
	<u>TXEN = 1:</u> (FIFO configured as a Transmit FIFO)
	Setting this bit to '1' requests sending a message.
	The bit will automatically clear when all the messages queued in the FIFO are successfully sent.
	TYEN - 0. (FIEO configured on a Descrive FIEO)
	This bit has no effect.
bit 2	RTREN: Auto RTR Enable bit
	1 = When a remote transmit is received, TXREQ will be set
	0 = When a remote transmit is received, TXREQ will be unaffected
bit 1-0	TXPR<1:0>: Message Transmit Priority bits
	11 = Highest Message Priority
	10 = High Intermediate Message Priority
	01 = Low Intermediate Message Priority
	UU = Lowest Message Priority
Note 1:	These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits
	(CiCON<23:21>) = 100).

- 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
- **3:** This bit is reset on any read of this register or when the FIFO is reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24		—	—	—	_	-	—	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		—	—	—	_	-	—	—	
15.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	
15.0	STNADDR6<7:0>								
7.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	
7.0	STNADDR5<7:0>								

REGISTER 30-37: EMAC1SA0: ETHERNET CONTROLLER MAC STATION ADDRESS 0 REGISTER

Legend:		P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15-8 **STNADDR6<7:0>:** Station Address Octet 6 bits These bits hold the sixth transmitted octet of the station address.
- bit 7-0 **STNADDR5<7:0>:** Station Address Octet 5 bits These bits hold the fifth transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

36.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

36.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

36.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

36.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
USB313	VUSB3V3	USB Voltage	3.0	—	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation		
Low-Spe	ed and Fu	ull-Speed Modes							
USB315	VILUSB	Input Low Voltage for USB Buffer	—	—	0.8	V	—		
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	_	_	V	_		
USB318	Vdifs	Differential Input Sensitivity	0.2		_	V	The difference between D+ and D- must exceed this value while VCM is met		
USB319	VCM	Differential Common Mode Range	0.8	—	2.5	V	—		
USB321	Vol	Voltage Output Low	0.0	_	0.3	V	1.425 kΩ load connected to VUSB3V3		
USB322	Vон	Voltage Output High	2.8	—	3.6	V	14.25 k Ω load connected to ground		
Hi-Speed	d Mode								
USB323	Vhsdi	Differential input signal level	150	_	_	mV	—		
USB324	VHSSQ	SQ detection threshold	100		150	mV	—		
USB325	VHSCM	Common mode voltage range	-50		500	mV	—		
USB326	VHSOH	Data signaling high	360	_	440	mV	_		
USB327	VHSOL	Data signaling low	-10		10	mV	—		
USB328	VCHIRPJ	Chirp J level	700	—	1100	mV	—		
USB329	VCHIRPK	Chirp K level	-900		-500	mV	—		
USB330	ZHSDRV	Driver output resistance	—	45	—	Ω	—		

TABLE 37-45: USB OTG ELECTRICAL SPECIFICATIONS

Note 1: These parameters are characterized, but not tested in manufacturing.

A.8 Flash Programming

The PIC32MZ EF family of devices incorporates a new Flash memory technology. Applications ported from PIC32MX5XX/6XX/7XX devices that take advantage of Run-time Self Programming will need to adjust the Flash programming steps to incorporate these changes.

Table A-9 lists the differences (indicated by **Bold** type) that will affect software migration.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
Program Flash Write Protection					
On PIC32MX devices, the Program Flash write-protect bits are part of the Flash Configuration words (DEVCFG0).	On PIC32MZ EF devices, the write-protect register is contained separately as the NVMPWP register. It has been expanded to 24 bits, and now represents the address below, which all Flash memory is protected. Note that the lower 14 bits are forced to zero, so that all memory locations in the page are protected.				
PWP< 7 :0> (DEVCFG0<19:12>)	PWP< 23 :0> (NVMPWP<23:0 >)				
<pre>11111111 = Disabled 11111110 = 0xBD000FFF 11111101 = 0xBD001FFF 1111100 = 0xBD002FFF 1111101 = 0xBD003FFF 1111001 = 0xBD005FFF 1111000 = 0xBD006FFF 1111011 = 0xBD007FFF 1111010 = 0xBD008FFF 1111010 = 0xBD009FFF 1111001 = 0xBD000FFF 1111001 = 0xBD000FFF 1111001 = 0xBD000FFF 1111000 = 0xBD000FFF</pre>	Physical memory below address 0x1Dxxxxx is write protected, where 'xxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire pro- gram Flash. If the specified address falls within the page, the entire page and all pages below the current page will be pro- tected.				
Code Pr	otection				
On PIC32MX devices code protection is enabled by the CP	On PIC32MZ FE devices, code protection is enabled by the CP				
(DEVCFG<28>) bit.	(DEVCP0<28>) bit.				
Boot Flash W	rite Protection				
On PIC32MX devices, Boot Flash write protection is enable by the BWP (DEVCFG<24>) bit and protects the entire Boot Flash memory.	On PIC32MZ EF devices, Boot Flash write protection is divided into pages and is enable by the LBWPx and UBWPx bits in the NVMBWP register.				
Low-Voltage Detect Status					
LVDSTAT (NVMCON<11>) 1 = Low-voltage event is active 0 = Low-voltage event is not active	The LVDSTAT bit is not available in PIC32MZ EF devices.				

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
Flash Programming					
	The op codes for programming the Flash memory have been changed to accommodate the new quad-word programming and dual-panel features. The row size has changed to 2 KB (512 IW) from 128 IW. The page size has changed to 16 KB (4K IW) from 4 KB (1K IW). Note that the NVMOP register is now protected, and requires the WREN bit be set to enable modification.				
NVMOP<3:0> (NVMCON<3:0>)	NVMOP<3:0> (NVMCON<3:0>)				
1111 = Reserved	1111 = Reserved				
•	•				
0111 = Reserved	1000 = Reserved				
0110 = No operation	0111 = Program erase operation				
0101 = Program Flash (PFM) erase operation	0110 = Upper program Flash memory erase operation				
0100 = Page erase operation	0101 = Lower program Flash memory erase operation				
0011 = Row program operation	0100 = Page erase operation				
0010 = No operation	0011 = Row program operation				
0001 = Word program operation	0010 = Quad Word (128-bit) program operation				
0000 = No operation	0001 = Word program operation				
	0000 = No operation				
PIC32MX devices feature a single NVMDATA register for word	On PIC32MZ EF devices, to support quad word programming,				
programming.	the NVMDATA register has been expanded to four words.				
NVMDATA	NVMDATA x , where 'x' = 0 through 3				
Flash Endurance and Retention					
PIC32MX devices support Flash endurance and retention of up to 20K E/W cycles and 20 years.	On PIC32MZ EF devices, ECC must be enabled to support the same endurance and retention as PIC32MX devices.				
Configuration Words					
On PIC32MX devices, Configuration Words can be programmed with Word or Row program operation.	On PIC32MZ EF devices, all Configuration Words must be programmed with Quad Word or Row Program operations.				
Configuration Words Reserved Bit					
On PIC32MX devices, the DEVCFG0<15> bit is Reserved and must be programmed to '0'.	On PIC32MZ EF devices, this bit is DEVSIGN0<31> .				

TABLE A-9: FLASH PROGRAMMING DIFFERENCES (CONTINUED)