

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	MIPS32 [®] M-Class
Core Size	32-Bit Single-Core
Speed	252MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efh144t-250i-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA LQFP		Pin Type	Buffer Type	Description
					Output	Compare	
OC1	PPS	PPS	PPS	PPS	0	_	Output Compare Outputs 1-9
OC2	PPS	PPS	PPS	PPS	0	—	
OC3	PPS	PPS	PPS	PPS	0	_	1
OC4	PPS	PPS	PPS	PPS	0	_	1
OC5	PPS	PPS	PPS	PPS	0	_	1
OC6	PPS	PPS	PPS	PPS	0	_	1
OC7	PPS	PPS	PPS	PPS	0	_	1
OC8	PPS	PPS	PPS	PPS	0	_	1
OC9	PPS	PPS	PPS	PPS	0	_	1
OCFA	PPS	PPS	PPS	PPS	I	ST	Output Compare Fault A Input
DCFB 30 44 B24 62				62	I	ST	Output Compare Fault B Input
Legend:	CMOS = CI ST = Schm		•	•	_	Analog =	Analog input P = Power

TABLE 1-4: OC1 THROUGH OC9 PINOUT I/O DESCRIPTIONS

d: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input	P = Power
O = Output	I = Input
PPS = Peripheral Pin Select	

TABLE 1-5: EXTERNAL INTERRUPTS PINOUT I/O DESCRIPTIONS

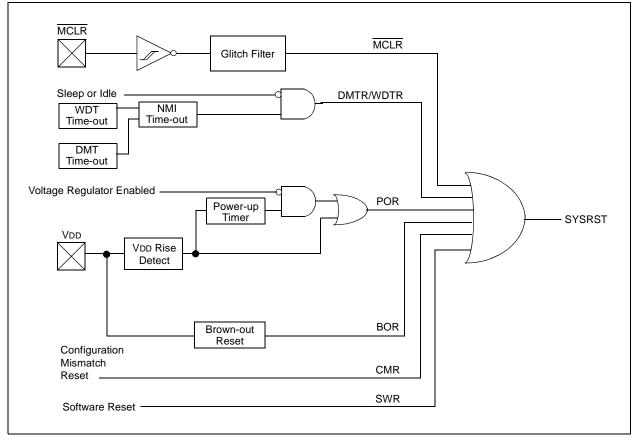
		Pin Nu	mber									
INTO 46 INT1 PP INT2 PP INT3 PP	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description					
					External	Interrupts						
INT0	46	71	A48	104	Ι	ST	External Interrupt 0					
INT1	PPS	PPS	PPS	PPS	I	ST	External Interrupt 1					
INT2	PPS	PPS	PPS	PPS	I	ST	External Interrupt 2					
INT3	PPS	PPS	PPS	PPS	I	ST	External Interrupt 3					
INT4	PPS	PPS	PPS	PPS	I	ST	External Interrupt 4					
Legend:	CMOS = CI	MOS-comp	atible input	or output	•	Analog =	Analog input P = Power					

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog inputP = PowerO = OutputI = InputPPS = Peripheral Pin Select

TABLE 4-20: SYSTEM BUS TARGET 12 REGISTER MAP

				000															
ess		6									Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI		—			CODE	<3:0>		—	_			—	—	—		0000
B020	SBT12ELOG1	15:0				INI	ΓID<7:0>					REGIO	N<3:0>		—	C	MD<2:0>		0000
D004	SBT12ELOG2	31:16	—	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	0000
D024	3BTT2ELOG2	15:0		—	_		—		—		_				—	_	GROU	P<1:0>	0000
B028	SBT12ECON	31:16		-	—	_	—		—	ERRP	_	_			—	—	_		0000
DU20	SBITZECON	15:0		—	_		—		—		_				—	_	_		0000
P020	SBT12ECLRS	31:16		—	_		—		—		_				—	_	_		0000
B030	SBI IZECLKS	15:0		—	_		—		—		_				—	_	_	CLEAR	0000
D020	SBT12ECLRM	31:16		—	_		—		—		_				—	_	_		0000
B030	3BT 12ECLRIVI	15:0		—	_		—		—		_				—	_	_	CLEAR	0000
B040	SBT12REG0	31:16								BA	SE<21:6>								xxxx
D040	SBITZREGU	15:0			BA	SE<5:0>			PRI		SE<21:6> SIZE<4:0>			>		—	_		xxxx
B050	SBT12RD0	31:16		—	_		—		—		_				—	_	_		xxxx
6050	3BT12RD0	15:0			—		_		_		_				GROUP3	GROUP2	GROUP1	GROUP0	xxxx
B058	SBT12WR0	31:16			—		_		_		_				—	-	_		xxxx
6056	36TT2WR0	15:0			-		_	-	—		_		_	-	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.


Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7**. "**Resets**" (DS60001118) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The device Reset sources are as follows:

- Power-on Reset (POR)
- Master Clear Reset pin (MCLR)
- Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)
- Deadman Timer Reset (DMTR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	—	—	—		IP3<2:0>		IS3<1:0>			
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	_	—	_		IP2<2:0>		IS2<	:1:0>		
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0	_	—	_		IP1<2:0>		IS1<	:1:0>		
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0	_	—	_		IP0<2:0>		IS0<	:1:0>		

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP3<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 25-24	IS3<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
bit 23-21	
bit 20-18	IP2<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 17-16	IS2<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0
hit 15-13	Unimplemented: Read as '0'
5115-15	ommplemented. Read as 0
Note:	This register represents a generic defi

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	—		—	—	—
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24 23:16		—						—
45.0	R/W-1	U-0	U-0	U-0	R-1	U-0	U-0	U-0
15:8	0N ⁽¹⁾	—	_	_	PBDIVRDY	_	_	_
7.0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
7:0					PBDIV<6:0>			

REGISTER 8-6: PBxDIV: PERIPHERAL BUS 'x' CLOCK DIVISOR CONTROL REGISTER ('x' = 1-7)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** Peripheral Bus 'x' Output Clock Enable bit⁽¹⁾ 1 = Output clock is enabled 0 = Output clock is disabled

bit 14-12 Unimplemented: Read as '0'

bit 11 **PBDIVRDY:** Peripheral Bus 'x' Clock Divisor Ready bit

- 1 = Clock divisor logic is not switching divisors and the PBxDIV<6:0> bits may be written
- 0 = Clock divisor logic is currently switching values and the PBxDIV<6:0> bits cannot be written

bit 10-7 Unimplemented: Read as '0'

- bit 6-0 **PBDIV<6:0>:** Peripheral Bus 'x' Clock Divisor Control bits
 - 1111111 = PBCLKx is SYSCLK divided by 128
 - 1111110 = PBCLKx is SYSCLK divided by 127
 - • • 0000011 = PBCLKx is SYSCLK divided by 4
 - 0000010 = PBCLKx is SYSCLK divided by 3
 - 0000001 = PBCLKx is SYSCLK divided by 2 (default value for $x \neq 7$)
 - 0000000 = PBCLKx is SYSCLK divided by 1 (default value for x = 7)
 - **Note 1:** The clock for peripheral bus 1 cannot be turned off. Therefore, the ON bit in the PB1DIV register cannot be written as a '0'.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

		1				. (-,			Bits								
ess				1	1					1	DIIS		1	1	1	1	1	1	
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3170	USB E7CSR0	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE7CSR0			•				0000
3174	USB E7CSR1	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE7CSR1							0000
3178	USB E7CSR2	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE7CSR2							0000
317C	USB E7CSR3	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE7CSR3							0000
3200	USB DMAINT	31:16 15:0		-	-			-		-	— DMA8IF	 DMA7IF	— DMA6IF	— DMA5IF	— DMA4IF	— DMA3IF	— DMA2IF	— DMA1IF	0000
3204	USB DMA1C	31:16 15:0		_				— DMABRS	— STM<1:0>	 DMAERR	—	— DMA	— =P<3:0>	—	— DMAIE	 DMAMODE	— DMADIR	— DMAEN	0000
3208	USB DMA1A	31:16 15:0		DMAADDR<31:16> 00									0000						
320C	USB DMA1N	31:16 15:0		DMACOUNT<31:16> 0000												0000			
		31:16	_	_	_	_	_			DIVIA		>		_				_	0000
3214	USB DMA2C	15:0	_	_		_		DMABRS	 GTM<1:0>	DMAERR	_		EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
3218	USB DMA2A	31:16									ADDR<31:16								0000
		15:0									ADDR<15:0>								0000
321C	USB DMA2N	31:16 15:0									COUNT<31:16 COUNT<15:0								0000
0004	USB	31:16	_	-	_	_	_	_	_	_	_	_	_	-	_	-	-	_	0000
3224	DMA3C	15:0	_	_		_		DMABRS	STM<1:0>	DMAERR		DMA	EP<3:0>	•	DMAIE	DMAMODE	DMADIR	DMAEN	0000
3228	USB	31:16									ADDR<31:16								0000
	DMA3A	15:0									ADDR<15:0>								0000
322C	USB DMA3N	31:16 15:0									COUNT<31:16 COUNT<15:0								0000
3234	USB	31:16	_	_	_	_	_	_	_	_	_		_	_	_	_	—	_	0000
0204	DMA4C	15:0	—	_	—	—	—	DMABRS	STM<1:0>	DMAERR			EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
3238	USB DMA4A	31:16																	0000
		15:0																	-
323C	USB DMA4N	31:16 15:0																	-
	USB	31:16	_	_	_	_	_	_	_				_	_	_	_	_	_	-
3244	DMA5C	15:0	_	_	_	_	_		STM<1:0>	DMAERR		DMA	EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
Leger		1	DMAADDR<15:0> 0000 DMACOUNT<31:16> 0000 DMACOUNT<15:0> 0000 OMACOUNT<15:0> 0000 OMACOUNT<15:0> 0000 OMACOUNT<15:0> 0000 OMACOUNT<15:0> 0000 OMACOUNT<15:0> 0000 OMACOUNT<15:0> 0000																

Legend: Note x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Device mode.

1:

2: Host mode.

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7). 3: 4:

REGISTER 11-5: USBIE0CSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 0) (CONTINUED)

bit 21 SENDSTALL: Send Stall Control bit (Device mode)

- 1 = Terminate the current transaction and transmit a STALL handshake. This bit is automatically cleared.
- 0 = Do not send STALL handshake.

REQPKT: IN transaction Request Control bit (Host mode)

- 1 = Request an IN transaction. This bit is cleared when the RXPKTRDY bit is set.
- 0 = Do not request an IN transaction
- bit 20 SETUPEND: Early Control Transaction End Status bit (Device mode)
 - 1 = A control transaction ended before the DATAEND bit has been set. An interrupt will be generated and the FIFO flushed at this time.
 - 0 = Normal operation

This bit is cleared by writing a '1' to the SVCSETEND bit in this register.

ERROR: No Response Error Status bit (Host mode)

- 1 = Three attempts have been made to perform a transaction with no response from the peripheral. An interrupt is generated.
- 0 = Clear this flag. Software must write a '0' to this bit to clear it.

DATAEND: End of Data Control bit (Device mode)

The software sets this bit when:

bit 19

- Setting TXPKTRDY for the last data packet
- Clearing RXPKTRDY after unloading the last data packet
- Setting TXPKTRDY for a zero length data packet

Hardware clears this bit.

SETUPPKT: Send a SETUP token Control bit (*Host mode*)

- 1 = When set at the same time as the TXPKTRDY bit is set, the module sends a SETUP token instead of an OUT token for the transaction
- 0 = Normal OUT token operation

Setting this bit also clears the Data Toggle.

- bit 18 SENTSTALL: STALL sent status bit (Device mode)
 - 1 = STALL handshake has been transmitted
 - 0 = Software clear of bit

RXSTALL: STALL handshake received Status bit (Host mode)

- 1 = STALL handshake was received
- 0 = Software clear of bit
- bit 17 **TXPKTRDY:** TX Packet Ready Control bit
 - 1 = Data packet has been loaded into the FIFO. It is cleared automatically.
 - 0 = No data packet is ready for transmit
- bit 16 **RXPKTRDY:** RX Packet Ready Status bit
 - 1 = Data packet has been received. Interrupt is generated (when enabled) when this bit is set.
 - 0 = No data packet has been received

This bit is cleared by setting the SVCRPR bit.

bit 15-0 Unimplemented: Read as '0'

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2 (CONTINUED)

bit 0 LPMSTIF: LPM STALL Interrupt Flag bit

When in Device mode:

- 1 = A LPM transaction was received and the USB Module responded with a STALL
- 0 = No Stall condition

When in Host mode:

- 1 = A LPM transaction was transmitted and the device responded with a STALL
- 0 = No Stall condition

TABLE 12-18: PORTH REGISTER MAP FOR 144-PIN DEVICES ONLY

ess		e la								Bits									
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	AII
	ANSELH	31:16	_		_	_		—	_	_		—	—	_	—	—	_	_	0
100	ANOLLII	15:0	—	_		—	_	—	_	_	—	ANSH6	ANSH5	ANSH4	—	—	ANSH1	ANSH0	0
710	TRISH	31:16	—			—		—	—	_	—	—	—	—	—	—	—	—	0
// 10	-	15:0	TRISH15	TRISH14	TRISH13	TRISH12	TRISH11	TRISH10	TRISH9	TRISH8	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	F
720	PORTH	31:16	—	—	—	—	—	—		—	—	—	—	—	—	—	—	—	0
	-	15:0	RH15	RH14	RH13	RH12	RH11	RH10	RH9	RH8	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	х
730	LATH	31:16	_	-	—	—	_	—	—	—	—	—	—	—	—	—	—	—	0
		15:0	LATH15	LATH14	LATH13	LATH12	LATH11	LATH10	LATH9	LATH8	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0	X
740	0 ODCH 15	31:16	_	-	—	—	_	—	—	—	—	—	—	—	—	—	—	—	(
		15:0	ODCH15	ODCH14	ODCH13	ODCH12	ODCH11	ODCH10	ODCH9	ODCH8	ODCH7	ODCH6	ODCH5	ODCH4	ODCH3	ODCH2	ODCH1	ODCH0	(
750	CNPUH	31:16	_	-	—	—	_	—	—	—	—	—	—	—	—	—	—	—	C
	0.11 0.11	15:0	CNPUH15	CNPUH14	CNPUH13	CNPUH12	CNPUH11	CNPUH10	CNPUH9	CNPUH8	CNPUH7	CNPUH6	CNPUH5	CNPUH4	CNPUH3	CNPUH2	CNPUH1	CNPUH0) (
760	CNPDH	31:16	_	-	—	—	_	—	—	—	—	—	—	—	—	—	—	—	(
	-	15:0	CNPDH15	CNPDH14	CNPDH13	CNPDH12	CNPDH11	CNPDH10	CNPDH9	CNPDH8	CNPDH7	CNPDH6	CNPDH5	CNPDH4	CNPDH3	CNPDH2	CNPDH1	CNPDH0) (
		31:16	_	-	—	—	_	—	—	_	—	—	—	—	—	—	—	—	(
0770	CNCONH	15:0	ON	—	—	—	EDGE DETECT	—	—	—	-	—	-	—	—	—	—	—	C
780	CNENH	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	(
180		15:0	CNENH15	CNENH14	CNENH13	CNENH12	CNENH11	CNENH10	CNENH9	CNENH8	CNENH7	CNENH6	CNENH5	CNENH4	CNENH3	CNENH2	CNENH1	CNENH0) (
		31:16	-	—	_	—	_	_	_	_	_	—	—	_	_	_	_	_	(
0790	CNSTATH	15:0	CN STATH15	CN STATH14	CN STATH13	CN STATH12	CN STATH11	CN STATH10	CN STATH9	CN STATH8	CN STATH7	CN STATH6	CN STATH5	CN STATH4	CN STATH3	CN STATH2	CN STATH1	CN STATH0	(
740	0111511	31:16	_	_	—	_	_	—	—	_	_	—	—	—	—	—	_	—	(
7A0	CNNEH	15:0	CNNEH15	CNNEH14	CNNEH13	CNNEH12	CNNEH11	CNNEH10	CNNEH9	CNNEH8	CNNEH7	CNNEH6	CNNEH5	CNNEH4	CNNEH3	CNNEH2	CNNEH1	CNNEH0) (
700		31:16	_	—	—	—	—	_	_	_	_	—	—	—	—	—	—	_	1
7B0	CNFH	15:0	CNFH15	CNFH14	CNFH13	CNFH12	CNFH11	CNFH10	CNFH9	CNFH8	CNFH7	CNFH6	CNFH5	CNFH4	CNFH3	CNFH2	CNFH1	CNFH0	(

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	_	_	-	_		—
00.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	-	_		—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	-	_		—
7.0	R-0, HC, HS	R-0, HC, HS	R-0, HC, HS	U-0	U-0	U-0	U-0	R-0, HC, HS
7:0	BAD1	BAD2	DMTEVENT	_		_	_	WINOPN

REGISTER 15-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is$	is unknown

bit 31-8	Unimplemented: Read as '0'
bit 7	BAD1: Bad STEP1<7:0> Value Detect bit
	1 = Incorrect STEP1<7:0> value was detected
	0 = Incorrect STEP1<7:0> value was not detected
bit 6	BAD2: Bad STEP2<7:0> Value Detect bit
	1 = Incorrect STEP2<7:0> value was detected
	0 = Incorrect STEP2<7:0> value was not detected
bit 5	DMTEVENT: Deadman Timer Event bit
	1 = Deadman timer event was detected (counter expired or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment)
	0 = Deadman timer even was not detected
bit 4-1	Unimplemented: Read as '0'
bit 0	WINOPN: Deadman Timer Clear Window bit
	1 = Deadman timer clear window is open
	0 = Deadman timer clear window is not open

16.1 Watchdog Timer Control Registers

TABLE 16-1: WATCHDOG TIMER REGISTER MAP

ess		œ.									Bits								s
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	WDTCON ⁽¹⁾	31:16		WDTCLRKEY<15:0> 0000															
0800	WD1CON.	15:0	ON	_	_		RI	UNDIV<4:0)>		_	_	_	_	_	_	—	WDTWINEN	xx00

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See 12.0 "I/O Ports" for more information.

TABLE 28-1: ADC REGISTER MAP (CONTINUED)

ess)		e								Bit	S								Ś
Virtual Address (BF84_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Recets
B04C	ADCCMP3	31:16		•	•	•				DCMPH	<15:0>	•	•	•	•				000
		15:0								DCMPLC)<15:0>								000
B050	ADCCMPEN4	31:16	CMPE31 ⁽¹⁾	CMPE30 ⁽¹⁾	CMPE29 ⁽¹⁾	CMPE28 ⁽¹⁾	CMPE27 ⁽¹⁾	CMPE26 ⁽¹⁾	CMPE25 ⁽¹⁾	CMPE24 ⁽¹⁾	CMPE23 ⁽¹⁾	CMPE22 ⁽¹⁾	CMPE21 ⁽¹⁾	CMPE20 ⁽¹⁾	CMPE19 ⁽¹⁾	CMPE18	CMPE17	CMPE16	000
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	000
B054	ADCCMP4	31:16								DCMPH	<15:0>								000
		15:0								DCMPLC)<15:0>								00
B058	ADCCMPEN5	31:16	CMPE31 ⁽¹⁾	CMPE30 ⁽¹⁾	CMPE29 ⁽¹⁾	CMPE28 ⁽¹⁾	CMPE27 ⁽¹⁾	CMPE26 ⁽¹⁾	CMPE25 ⁽¹⁾	CMPE24 ⁽¹⁾	CMPE23 ⁽¹⁾	CMPE22 ⁽¹⁾	CMPE21 ⁽¹⁾	CMPE20 ⁽¹⁾	CMPE19 ⁽¹⁾	CMPE18	CMPE17	CMPE16	000
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	000
B05C	ADCCMP5	31:16								DCMPH	<15:0>								000
		15:0								DCMPLC)<15:0>								000
B060	ADCCMPEN6	31:16	CMPE31 ⁽¹⁾	CMPE30 ⁽¹⁾	CMPE29 ⁽¹⁾	CMPE28 ⁽¹⁾	CMPE27 ⁽¹⁾	CMPE26 ⁽¹⁾	CMPE25 ⁽¹⁾	CMPE24 ⁽¹⁾	CMPE23 ⁽¹⁾	CMPE22 ⁽¹⁾	CMPE21 ⁽¹⁾	CMPE20 ⁽¹⁾	CMPE19 ⁽¹⁾	CMPE18	CMPE17	CMPE16	000
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	000
B064	ADCCMP6	31:16								DCMPH	<15:0>								000
		15:0								DCMPLC	0<15:0>								000
B068	ADCFLTR1	31:16	AFEN	DATA16EN	DFMODE	(OVRSAM<2:0	>	AFGIEN	AFRDY	_	_	—		C	HNLID<4:0>			000
		15:0				FLTRDATA<15:0>							000						
B06C	ADCFLTR2	31:16	AFEN	DATA16EN	DFMODE	(OVRSAM<2:0	>	AFGIEN	AFRDY	_	_	—		C	HNLID<4:0>			000
		15:0								FLTRDAT	A<15:0>								000
B070	ADCFLTR3	31:16	AFEN	DATA16EN	DFMODE	(OVRSAM<2:0	>	AFGIEN	AFRDY	-	_	_		C	HNLID<4:0>			000
		15:0								FLTRDAT	A<15:0>								000
B074	ADCFLTR4	31:16	AFEN	DATA16EN	DFMODE	(OVRSAM<2:0	>	AFGIEN	AFRDY		_	_		C	HNLID<4:0>			000
		15:0								FLTRDAT	A<15:0>								000
B078	ADCFLTR5	31:16	AFEN	DATA16EN	DFMODE	(OVRSAM<2:0	>	AFGIEN	AFRDY	_	_	—		C	HNLID<4:0>			000
		15:0								FLTRDAT	A<15:0>								000
B07C	ADCFLTR6	31:16	AFEN	DATA16EN	DFMODE	(OVRSAM<2:0	>	AFGIEN	AFRDY	—	—	—		C	HNLID<4:0>			000
		15:0								FLTRDAT	A<15:0>								000
B080	ADCTRG1	31:16	—	—	-		Т	RGSRC3<4:	0>		_	—	—		TF	GSRC2<4:0	>		000
		15:0		_	_		T	RGSRC1<4:	0>		-	_	_		TF	GSRC0<4:0	>		000
B084	ADCTRG2	31:16	—	—	-		Т	RGSRC7<4:	0>		_	—	—		TF	GSRC6<4:0	>		000
		15:0	—	—	-		Т	RGSRC5<4:	0>		_	—	—		TF	GSRC4<4:0	>		000
B088	ADCTRG3	31:16	—	—						000									
		15:0	—	TRGSRC9<4:0> TRGSRC8<4:0>						000									
B0A0	ADCCMPCON1	31:16								CVDDAT	A<15:0>								000
		15:0		—			AINIE)<5:0>			ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO	000
B0A4	ADCCMPCON2	31:16		_	_	—	—	_	_	_	_	_	_	_	—	_	_	—	000
		15:0		_	_			AINID<4:0>			ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO	000
B0A8	ADCCMPCON3	31:16	_	_	_	—	—	—	—	—	—	—	—	_	—	—	—	—	000
		15:0	_	_	_			AINID<4:0>			ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO	000

1: 2: 3:

This bit or register is not available on 64-pin devices. This bit or register is not available on 64-pin and 100-pin devices. Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory-programmed DEVADCx Flash registers into the corresponding ADCxCFG registers.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	PMM<31:24>										
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	PMM<23:16>										
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	PMM<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				PMM	<7:0>						

REGISTER 30-7: ETHPMM0: ETHERNET CONTROLLER PATTERN MATCH MASK 0 REGISTER

Legend:

9				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-24	PMM<31:24>: Pattern Match Mask 3 bits
hit 23-16	PMM-23-16> · Pattern Match Mack 2 hits

- bit 23-16 PMM<23:16>: Pattern Match Mask 2 bits
- bit 15-8 **PMM<15:8>:** Pattern Match Mask 1 bits
- bit 7-0 PMM<7:0>: Pattern Match Mask 0 bits
- Note 1: This register is only used for RX operations.
 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 30-8: ETHPMM1: ETHERNET CONTROLLER PATTERN MATCH MASK 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	PMM<63:56>										
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	PMM<55:48>										
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.6	PMM<47:40>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				PMM<	39:32>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	PMM<63:56>: Pattern Match Mask 7 bits
bit 23-16	PMM<55:48>: Pattern Match Mask 6 bits
bit 15-8	PMM<47:40>: Pattern Match Mask 5 bits
bit 7-0	PMM<39:32>: Pattern Match Mask 4 bits

Note 1: This register is only used for RX operations. 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTE	R 30-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER
bit 7	RXDONE: Receive Done Interrupt bit ⁽²⁾
	 1 = RX packet was successfully received 0 = No interrupt pending
	This bit is set whenever an RX packet is successfully received. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 6	PKTPEND: Packet Pending Interrupt bit ⁽²⁾
	 1 = RX packet pending in memory 0 = RX packet is not pending in memory
	This bit is set when the BUFCNT counter has a value other than '0'. It is cleared by either a Reset or by writing the BUFCDEC bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.
bit 5	RXACT: Receive Activity Interrupt bit ⁽²⁾
	 1 = RX packet data was successfully received 0 = No interrupt pending
	This bit is set whenever RX packet data is stored in the RXBM FIFO. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 4	Unimplemented: Read as '0'
bit 3	TXDONE: Transmit Done Interrupt bit ⁽²⁾
	 1 = TX packet was successfully sent 0 = No interrupt pending
	This bit is set when the currently transmitted TX packet completes transmission, and the Transmit Status Vector is loaded into the first descriptor used for the packet. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 2	TXABORT: Transmit Abort Condition Interrupt bit ⁽²⁾
	 1 = TX abort condition occurred on the last TX packet 0 = No interrupt pending
	This bit is set when the MAC aborts the transmission of a TX packet for one of the following reasons:
	Jumbo TX packet abort
	Underrun abort
	Excessive defer abort
	Late collision abort Excessive collisions abort
	This bit is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 1	RXBUFNA: Receive Buffer Not Available Interrupt bit ⁽²⁾
	1 = RX Buffer Descriptor Not Available condition has occurred
	0 = No interrupt pending
	This bit is set by a RX Buffer Descriptor Overrun condition. It is cleared by either a Reset or a CPU write of a '1' to the CLR register.
bit 0	RXOVFLW: Receive FIFO Over Flow Error bit ⁽²⁾
	 1 = RX FIFO Overflow Error condition has occurred 0 = No interrupt pending
	RXOVFLW is set by the RXBM Logic for an RX FIFO Overflow condition. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
	This bit is only used for TX operations.
2:	This bit is are only used for RX operations.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 30-17:	ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK
	STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	_	—	—
00.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	_	—
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	FRMTXOKCNT<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				FRMTXOK	(CNT<7:0>			

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTE	REGISTER 30-33: EMAC1MADR: ETHERNET CONTROLLER MAC MII MANAGEMENT ADDRESS										
	RI	EGISTER									
D'i											

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_			_	_		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	—	_	_	—	_	—
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
15.6	—	_	—	PHYADDR<4:0>				
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0					RE	GADDR<4:0)>	

Legend:

- 3			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

- bit 12-8 **PHYADDR<4:0>:** MII Management PHY Address bits This field represents the 5-bit PHY Address field of Management cycles. Up to 31 PHYs can be addressed (0 is reserved).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **REGADDR<4:0>:** MII Management Register Address bits This field represents the 5-bit Register Address field of Management cycles. Up to 32 registers can be accessed.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

34.2 Registers

Virtual Address (BFC0_#) Bits Bit Range All Resets Register Name 16/0 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 IOL1WAY PMDL1WAY PGL1WAY FETHIO FMIIEN FUSBIDIO 31:16 _ xxxx _ FFC0 DEVCFG3 15:0 USERID<15:0> xxxx UPLLFSEL FPLLODIV<2:0> 31:16 _ — _ _ _ _ _ _ _ _ _ xxxx FFC4 DEVCFG2 15:0 FPLLIDIV<2:0> FPLLMULT<6:0> FPLLICLK FPLLRNG<2:0> _ _ xxxx 31:16 FDMTEN DMTCNT<4:0> FWDTWINSZ<1:0> FWDTEN WINDIS WDTSPGM WDTPS<4:0> xxxx FFC8 DEVCFG1 FCKSM<1:0> POSCMOD<1:0> 15:0 _ OSCIOFNC IESO FSOSCEN DMTINTV<2:0> FNOSC<2:0> xxxx _ _ 31:16 _ EJTAGBEN _ _ _ _ POSCBOOST POSCGAIN<1:0> SOSCBOOST SOSCGAIN<1:0> _ _ _ _ xxxx FFCC DEVCFG0 15:0 SMCLR DBGPER<2:0> _ FSLEEP FECCCON<1:0> _ BOOTISA TRCEN ICESEL<1:0> JTAGEN DEBUG<1:0> xxxx _ _ xxxx 31:16 _ _ _ _ _ _ _ _ _ _ _ _ FFD0 DEVCP3 15:0 _ _ _ _ _ xxxx _ _ _ ____ _ _ _ _ _ _ _ 31:16 _ _ _ _ xxxx _ _ _ _ _ _ _ _ _ _ _ _ FFD4 DEVCP2 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx 31:16 xxxx _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ FFD8 DEVCP 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx _ _ CP 31:16 _ _ — _ _ _ _ _ _ _ _ _ _ _ _ xxxx FFDC DEVCP0 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx 31:16 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx FFE0 DEVSIGN 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx _ _ _ _ _ _ xxxx 31:16 _ _ _ _ _ — _ _ _ ____ FFE4 DEVSIGN2 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx _ _ _ _ _ _ _ _ _ _ _ 31:16 _ _ _ _ _ xxxx FFE8 DEVSIGN1 15:0 _ _ _ _ _ xxxx _ _ _ _ _ _ _ _ _ _ _ _ xxxx 31:16 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ FFEC DEVSIGNO 15:0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ xxxx

TABLE 34-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

Legend: x = unknown value on Reset; - = Reserved, read as '1'. Reset values are shown in hexadecimal

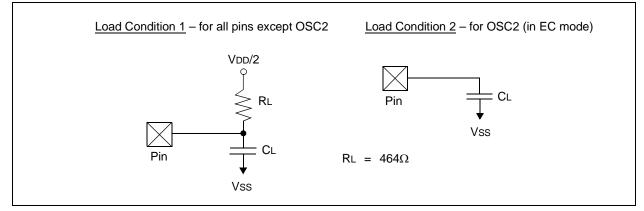
DC CHARA	C CHARACTERISTICSStandard Operating Conditions: 2.1V to 3.6V (unless otherwise states of the conditions)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Param. No.	Typical ⁽²⁾	Maximum ⁽⁵⁾	Units Conditions						
Power-Down Current (IPD) (Note 1)									
DC40k	0.7	7	mA	-40°C					
DC40I	1.5	7	mA	+25°C	Base Power-Down Current				
DC40n	7	20	mA	+85°C					
Module Dif	ferential Curre	ent							
DC41e	15	50	μA	3.6V	Watchdog Timer Current: ΔIWDT (Note 3)				
DC42e	25	50	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)				
DC43d	3	3.8	mA	3.6V	ADC: ΔIADC (Notes 3, 4)				
DC44	15	50	μA	3.6V	Deadman Timer Current: AIDMT (Note 3)				

TABLE 37-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
- CPU is in Sleep mode
- L1 Cache and Prefetch modules are disabled


No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)

- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- Voltage regulator is in Stand-by mode (VREGS = 0)
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Voltage regulator is operational (VREGS = 1).
- **5:** Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

37.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MZ EF device AC characteristics and timing parameters.

FIGURE 37-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 37-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T A \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq T A \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param. No.	Symbol	Characteristics	Min. Typical ⁽¹⁾ Max. Units Conditions				Conditions
DO56	CL	All I/O pins (except pins used as CxOUT)	_	_	50	pF	EC mode for OSC2
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C mode
DO59	Csqi	All SQI pins	—	—	10	pF	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

Revision C (March 2016)

In this revision, the Preliminary status was removed from the document footer.

The revision also includes the following major changes, which are referenced by their respective chapter in Table C-2. In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE C-2: MAJOR SECTION UPDATES

Section Name	Update Description
2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	2.9.1.3 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" and Figure 2-5 were updated.
4.0 "Memory Organization"	The names of the Boot Flash Words were updated from BFxSEQ0 to BFxSEQ3 (see 4.1.1 "Boot Flash Sequence and Configuration Spaces").
	The ABFxSEQx registers were removed from the Boot Flash Sequence and Configuration tables (see Table 4-2 and Table 4-3).
7.0 "CPU Exceptions and Interrupt Controller"	The Cache Error exception type was removed from the MIPS32 M-Class Microprocessor Core Exception Types (see Table 7-1).
8.0 "Oscillator Configuration"	The PLLODIV<2:0> bit value settings were updated in the SPLLCON register (see Register 8-3).
12.0 "I/O Ports"	The SIDL bit was removed from the CNCONx registers (see Table 12-4 through Table 12-21 and Register 12-3).
20.0 "Serial Quad Interface (SQI)"	The following bits were removed from the SQI1XCON1 register (see Table 20-1 and Register 20-1): DDRDATA, DDRDUMMY, DDRMODE, DDRADDR, and DDRCMD.
	The DDRMODE bit was removed from the SQI1CON register (see Table 20-1 and Register 20-4).
28.0 "12-bit High-Speed Successive Approximation	A note was added to the SELRES<1:0> bits in the ADCCON1 and ADCxTIME registers (see Register 28-1 and Register 28-27).
Register (SAR) Analog-to-Digital Converter (ADC)"	The ADCID<2:0 bit values were updated in the ADCFSTAT register (see Register 28-22).
34.0 "Special Features"	The bit value definitions for the POSCGAIN<1:0> and SOSCGAIN<1:0> bits were updated (see Register 34-3).
	The Device ADC Calibration Word (DEVADCx) register was added (see Table 34-5 and Register 34-13).