

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efm064-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

- bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾
 - 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
 - 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 CRCTYP: CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

TABLE 12-10: PORTD REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										E	lits								
Virtual Address (BF86_#) Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
0310	TRISD	31:16	_	-	—	_	-	-	—	_	—	—	_		—	—	—	—	0000
0310	TRIOD	15:0	—	—	—	_	TRISD11	TRISD10	TRISD9	—	—	—	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	0E3F
0320	PORTD	31:16	—	_	—	_	_	_	—	_	_	_	—	_	_	—	—	—	0000
0020	TOKID	15:0	—	_	—	_	RD11	RD10	RD9	_		—	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
0330	LATD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	EARD	15:0	—	_	—	_	LATD11	LATD10	LATD9	—	—	—	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
0340	ODCD	31:16	—	_	—	_	_	_	—	—	—	—	—	_	—	—	—	—	0000
0010	0000	15:0	—	_	—	_	ODCD11	ODCD10	ODCD9	—	—	—	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
0350	CNPUD	31:16	_	—	—	—	—	—	—	_	—	_	-	—	—	—	—	—	0000
	0.11 0.5	15:0	_	—	—	—	CNPUD11	CNPUD10	CNPUD9	_	—	_	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
0360	CNPDD	31:16	—	_	—	_	_	_	—	—	_	—		_	—	—	_	—	0000
		15:0	_	_		_	CNPDD11	CNPDD10	CNPDD9	_	_	_	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
		31:16	—	_	—	_	_	_	—	_	—	—		_	—		—	—	0000
0370	CNCOND	15:0	ON	—	-	—	EDGE DETECT	—	—	—	—	—	—	-	—	—	-	-	0000
0380	CNEND	31:16	-	—	—	—	—	—	—	_	_	_	—	—	—	—	_	_	0000
0360	CINEIND	15:0	_		_		CNEND11	CNEND10	CNEND9				CNEND5	CNEND4	CNEND3	CNEND2	CNEND1	CNEND0	0000
		31:16	-		_				_	_	_	_	_		_	_	_	-	0000
0390	CNSTATD	15:0		-	—	-	CN STATD11	CN STATD10	CN STATD9	—	_	—	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000
00.4.0		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
03A0	CNNED	15:0	_	-	—	_	CNNED11	CNNED10	CNNED9	_	—	—	CNNED5	CNNED4	CNNED3	CNNED2	CNNED1	CNNED0	0000
0000		31:16	_	_		_	-	-	_	—	_		—	-	—	—	_	_	0000
03B0	CNFD	15:0	_	—	—	_	CNFD11	CNFD10	CNFD9	_	—	—	CNFD5	CNFD4	CNFD3	CNFD2	CNFD1	CNFD0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_	-	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	_	-	_		—	_
45.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
15:8	ON	_		_	EDGEDETECT	_	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_						

REGISTER 12-3: CNCONX: CHANGE NOTICE CONTROL FOR PORTX REGISTER (X = A - K)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** Change Notice (CN) Control ON bit

1 = CN is enabled

0 = CN is disabled

bit 14-12 Unimplemented: Read as '0'

- bit 11 EDGEDETECT: Change Notification Style bit
 - 1 = Edge Style. Detect edge transitions (CNFx used for CN Event).
 - 0 = Mismatch Style. Detect change from last PORTx read (CNSTATx used for CN Event).
- bit 10-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
		PSINTV<31:24>											
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
23:16	PSINTV<23:16>												
45-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
15:8		PSINTV<15:8>											
7.0	R-0 R-0 R-0 R-0 R-y R-y R-y												
7:0		PSINTV<7:0>											

REGISTER 15-7: DMTPSINTV: POST STATUS CONFIGURE DMT INTERVAL STATUS REGISTER

Legend:		y = Value set from Co	onfiguration bits on POR
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 **PSINTV<31:0>:** DMT Window Interval Configuration Status bits

This is always the value of the DMTINTV<2:0> bits in the DEVCFG1 Configuration register.

21.1 I²C Control Registers

TABLE 21-1: I2C1 THROUGH I2C5 REGISTER MAP

ess										Bi	ts								
Virtual Address (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	I2C1CON	31:16	_	_	—	—	—		_			PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
0000	12010011	15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0010	I2C1STAT	31:16		—	—	—		-	—	_	—	—	-	_	_	—	—	-	0000
		15:0	ACKSTAT	TRSTAT	ACKTIM	_		BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0020	I2C1ADD	31:16	_	_			_			_	_	—			—	—		—	0000
		15:0	_				_						Address	Register					0000
0030	I2C1MSK	31:16 15:0			—				—	_	_	_	- Address Mr	ask Registe		_	—	—	0000
		31:16	_										Address Ma	ask Registe				_	0000
0040	I2C1BRG	15:0			_	_	_		Bau	d Rate Gen	erator Reg	ister	_	_	_	_	_		0000
		31:16		_	_	_		_					_	_	_	_	_	_	0000
0050	I2C1TRN	15:0	_	_	_	_		_	_	_				Transmit	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	_	_		—	_	_	_	0000
0060	I2C1RCV	15:0	_	_	_	_		_	_	_				Receive	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
0200	12C2CON ⁽²⁾	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0040	12C2STAT ⁽²⁾	31:16	_		_	—	—		_	_		_	—	—	_	_	—		0000
0210	12025TAT-	15:0	ACKSTAT	TRSTAT	ACKTIM	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0220	12C2ADD(2)	31:16	_		—	_	_		—	_	-	_	-	_	_	—	-		0000
0220	IZCZADD.	15:0	_	_	_	—	_	_					Address	Register			-		0000
0230	12C2MSK(2)	31:16	—	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	0000
0200		15:0	_			—	_						Address Ma	ask Registe	r				0000
0240	12C2BRG(2)	31:16	—	—	—	—	_	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0							Bau	d Rate Gen	erator Reg	ister							0000
0250	12C2TRN(2)	31:16	_			_	_		_	_	_	—				_		_	0000
		15:0	_							_				Transmit	Register				0000
0260	I2C2RCV(2)	31:16	_	_	_	_		_	_	_	-		—	-	—	—	—	—	0000
		15:0	_							_		DOIE	0015	Receive		00005		DUCH	0000
0400	I2C3CON	31:16 15:0	ON					— A10M	— DISSLW	 SMEN	— GCEN	PCIE STREN	SCIE ACKDT	BOEN ACKEN	SDAHT RCEN	SBCDE PEN	AHEN RSEN	DHEN SEN	0000
		31:16			SIDL	SULREL		A10M	DISSLW	SIMEIN	GCEN		ACKDI	ACKEN	RCEN	PEN	KSEN	SEN —	1000
0410	I2C3STAT	15:0	 ACKSTAT	 TRSTAT	ACKTIM	_		BCL	GCSTAT	ADD10		I2COV	 D/A	 P		R/W	 RBF	 TBF	0000
		31:16	-				_	BCL	GCSTAT			12000		г 	3	R/W			0000
0420	I2C3ADD	15:0											Address	Register					0000
Logon									chown in h				/1001033	register					0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

2: This register is not available on 64-pin devices.

Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/ 31:24 R-0		()	x = 1 OR 2										
31:24 SEED<31:24> 23:16 R-0 R	_								Bit 24/16/8/0				
R-0 R-0 <td>04-04</td> <td>R-0</td> <td>R-0</td> <td>R-0</td> <td>R-0</td> <td>R-0</td> <td>R-0</td> <td>R-0</td> <td>R-0</td>	04-04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
23:16 SEED<23:16> 15:8 R-0 R-0 <t< td=""><td>31:24</td><td></td><td></td><td></td><td>SEED<3</td><td>31:24></td><td></td><td></td><td></td></t<>	31:24				SEED<3	31:24>							
R-0 R-0 <td>00.40</td> <td>R-0</td> <td>R-0</td> <td>R-0</td> <td>R-0</td> <td>R-0</td> <td>R-0</td> <td>R-0</td> <td>R-0</td>	00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8 SEED<15:8>	23:16	SEED<23:16>											
SEED<15:8> R-0 R-	45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
	15:8				SEED<	15:8>							
	7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0 SEED<7:0>	7.0	SEED<7:0>											

REGISTER 27-5: RNGSEEDX: TRUE RANDOM NUMBER GENERATOR SEED REGISTER 'x' ('x' = 1 OR 2)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **SEED<31:0>:** TRNG MSb/LSb Value bits (RNGSEED1 = LSb, RNGSEED2 = MSb)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	_	_	_	_		_	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	_	_				-	—			
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	_	_	_	_		_	—			
7:0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	_	RCNT<6:0>									

REGISTER 27-6: RNGCNT: TRUE RANDOM NUMBER GENERATOR COUNT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-7 Unimplemented: Read as '0'

bit 6-0 RCNT<6:0>: Number of Valid TRNG MSB 32 bits

REGIST	ER 28-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)
bit 20-16	S STRGSRC<4:0>: Scan Trigger Source Select bits
	11111 = Reserved
	•
	•
	01101 = Reserved
	01100 = Comparator 2 (COUT)
	01011 = Comparator 1 (COUT) 01010 = OCMP5
	01001 = OCMP3
	01000 = OCMP1
	00111 = TMR5 match
	00110 = TMR3 match 00101 = TMR1 match
	00100 = INTO External interrupt
	00011 = Reserved
	00010 = Global level software trigger (GLSWTRG)
	00001 = Global software edge trigger (GSWTRG) 00000 = No Trigger
bit 15	ON: ADC Module Enable bit
bit 10	1 = ADC module is enabled
	0 = ADC module is disabled
	Note: The ON bit should be set only after the ADC module has been configured.
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	 Discontinue module operation when device enters Idle mode Continue module operation in Idle mode
bit 12	AICPMPEN: Analog Input Charge Pump Enable bit
	1 = Analog input charge pump is enabled (default)
	0 = Analog input charge pump is disabled
bit 11	CVDEN: Capacitive Voltage Division Enable bit
	 1 = CVD operation is enabled 0 = CVD operation is disabled
bit 10	FSSCLKEN: Fast Synchronous System Clock to ADC Control Clock bit
	1 = Fast synchronous system clock to ADC control clock is enabled
	0 = Fast synchronous system clock to ADC control clock is disabled
bit 9	FSPBCLKEN: Fast Synchronous Peripheral Clock to ADC Control Clock bit
	 1 = Fast synchronous peripheral clock to ADC control clock is enabled 0 = Fast synchronous peripheral clock to ADC control clock is disabled
bit 8-7	Unimplemented: Read as '0'
bit 6-4	IRQVS<2:0>: Interrupt Vector Shift bits
	To determine interrupt vector address, this bit specifies the amount of left shift done to the ARDYx status
	bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with the ADCBASE register.
	Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to
	ADCBASE + $x \ll IRQVS < 2:0$, where 'x' is the smallest active input ID from the ADCDSTAT1 or ADCDSTAT2 registers (which has highest priority).
	111 = Shift x left 7 bit position
	110 = Shift x left 6 bit position
	101 = Shift x left 5 bit position
	100 = Shift x left 4 bit position 011 = Shift x left 3 bit position
	010 = Shift x left 2 bit position
	001 = Shift x left 1 bit position
	000 = Shift x left 0 bit position

REGISTER 28-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 3 STRGLVL: Scan Trigger High Level/Positive Edge Sensitivity bit

- 1 = Scan trigger is high level sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), the scan trigger will continue for all selected analog inputs, until the STRIG option is removed.
- 0 = Scan trigger is positive edge sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), only a single scan trigger will be generated, which will complete the scan of all selected analog inputs.
- bit 2-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R-0, HS, HC							
31:24	EIRDY31 ⁽¹⁾	EIRDY30 ⁽¹⁾	EIRDY29 ⁽¹⁾	EIRDY28 ⁽¹⁾	EIRDY27 ⁽¹⁾	EIRDY26 ⁽¹⁾	EIRDY25 ⁽¹⁾	EIRDY24 ⁽¹⁾
00.40	R-0, HS, HC							
23:16	EIRDY23 ⁽¹⁾	EIRDY22 ⁽¹⁾	EIRDY21 ⁽¹⁾	EIRDY20 ⁽¹⁾	EIRDY19 ⁽¹⁾	EIRDY18	EIRDY17	EIRDY16
45.0	R-0, HS, HC							
15:8	EIRDY15	EIRDY14	EIRDY13	EIRDY12	EIRDY11	EIRDY10	EIRDY9	EIRDY8
7.0	R-0, HS, HC							
7:0	EIRDY7	EIRDY6	EIRDY5	EIRDY4	EIRDY3	EIRDY2	EIRDY1	EIRDY0

REGISTER 28-30: ADCEISTAT1: ADC EARLY INTERRUPT STATUS REGISTER 1

Legend:	HS = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 EIRDY31:EIRDY0: Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN1 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCCIS<2:0> bits in the ADCCON2 register.
- 0 = Interrupts are disabled
- Note 1: This bit is not available on 64-pin devices.

			-			-		
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	_	—	_	—
22:46	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23:16	—	WAKFIL	—	—	_	SEG	62PH<2:0> ⁽¹	,4)
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	:	SEG1PH<2:0>		Р	RSEG<2:0>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SJW<1:	0> (3)			BRP<	5:0>		

REGISTER 29-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	P = Programmable bit	r = Reserved bit
U = Unimplemented bit	-n = Bit Value at POR: ('0	0', '1', x = Unknown)	

bit 31-23 Unimplemented: Read as '0'

bit 22 WAKFIL: CAN Bus Line Filter Enable bit

1 = Use CAN bus line filter for wake-up

0 = CAN bus line filter is not used for wake-up

bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x Tq
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable
	0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point
	0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•

 $000 = \text{Length is } 1 \times TQ$

- Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
 - **2:** 3 Time bit sampling is not allowed for BRP < 2.
 - **3:** SJW \leq SEG2PH.
 - **4:** The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

		_						_
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
31:24	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	_	—	—
23:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	—	_	_	_	MODIE	CTMRIE	RBIE	TBIE
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
10.0	IVRIF	WAKIF	CERRIF	SERRIF ⁽¹⁾	RBOVIF	_	—	—
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_	_	_	MODIF	CTMRIF	RBIF	TBIF

REGISTER 29-3: CIINT: CAN INTERRUPT REGISTER

Legend:

bit 31

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	IVRIE: Invalid Message Received Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 30	WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 29	CERRIE: CAN Bus Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 28	SERRIE: System Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 27	RBOVIE: Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 26-20	Unimplemented: Read as '0'
bit 19	MODIE: Mode Change Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 18	CTMRIE: CAN Timestamp Timer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 17	RBIE: Receive Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 16	TBIE: Transmit Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 15	IVRIF: Invalid Message Received Interrupt Flag bit 1 = An invalid messages interrupt has occurred 0 = An invalid message interrupt has not occurred
Note 1:	This bit can only be cleared by turning the CAN module off and on by c

clearing or setting the ON bit (CiCON<15>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	FLTEN19	MSEL19<1:0>		FSEL19<4:0>		>		
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN18	MSEL1	8<1:0>	FSEL18<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	FLTEN17		7<1:0>		I	SEL17<4:0>	>	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN16	MSEL1	MSEL16<1:0>		I	SEL16<4:0>	>	

REGISTER 29-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN19: Filter 19 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL19<1:0>: Filter 19 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL19<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN18: Filter 18 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL18<1:0>: Filter 18 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL18<4:0>: FIFO Selection bits
511 20 10	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

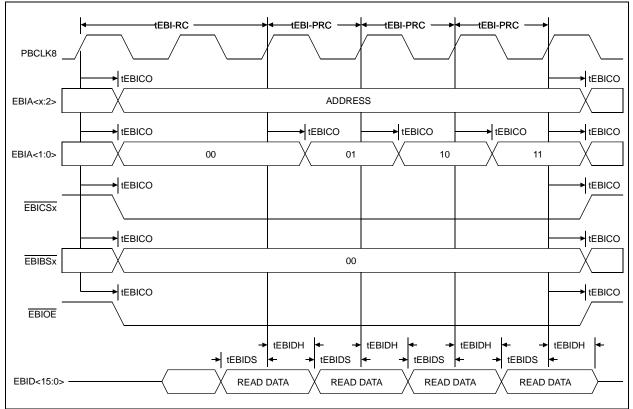
Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

NOTES:

Peripheral	PMDx bit Name	Register Name and Bit Location
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
UART6	U6MD	PMD5<5>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
SPI3	SPI3MD	PMD5<10>
SPI4	SPI4MD	PMD5<11>
SPI5	SPI5MD	PMD5<12>
SPI6	SPI6MD	PMD5<13>
I2C1	I2C1MD	PMD5<16>
I2C2	I2C2MD	PMD5<17>
12C3	I2C3MD	PMD5<18>
I2C4	I2C4MD	PMD5<19>
12C5	I2C5MD	PMD5<20>
USB ⁽²⁾	USBMD	PMD5<24>
CAN1	CAN1MD	PMD5<28>
CAN2	CAN2MD	PMD5<29>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output 1	REFO1MD	PMD6<8>
Reference Clock Output 2	REFO2MD	PMD6<9>
Reference Clock Output 3	REFO3MD	PMD6<10>
Reference Clock Output 4	REFO4MD	PMD6<11>
PMP	PMPMD	PMD6<16>
EBI	EBIMD	PMD6<17>
SQI1	SQI1MD	PMD6<23>
Ethernet	ETHMD	PMD6<28>
DMA	DMAMD	PMD7<4>
Random Number Generator	RNGMD	PMD7<20>
Crypto	CRYPTMD	PMD7<22>

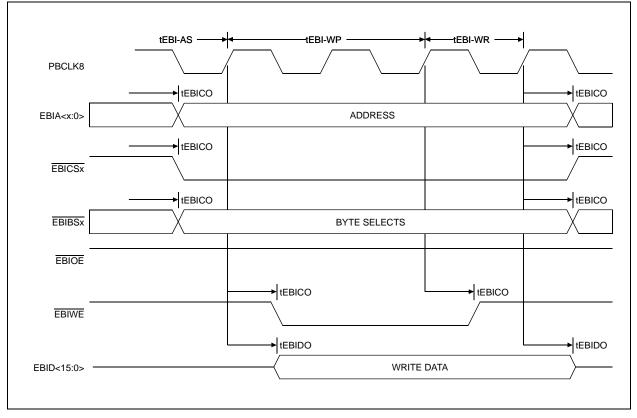
TABLE 33-1: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS⁽¹⁾ (CONTINUED)

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the lists of available peripherals.


2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DO31	U,4,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7	Port Output Rise Time I/O Pins: 4x Source Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-RB2, RB4, RB6-RB7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11		_	_	9.5	ns	Cload = 50 pF
				_	_	6	ns	Cload = 20 pF
		Port Output Rise Time I/O Pins: 8x Source Driver Pins - RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7		_		8	ns	Cload = 50 pF
				_	_	6	ns	Cload = 20 pF
		Port Output Rise Time I/O Pins: 12x Source Driver Pins - RA6, RA7 RE0-RE3 RF1 RG12-RG14	_	_	3.5	ns	CLOAD = 50 pF	
			_	_	2	ns	CLOAD = 20 pF	

TABLE 37-23: I/O TIMING REQUIREMENTS


Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

FIGURE 37-28: EBI PAGE READ TIMING

FIGURE 37-29: EBI WRITE TIMING

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
EB10	TEBICLK	Internal EBI Clock Period (PBCLK8)	10	—		ns	—	
EB11	TEBIRC	EBI Read Cycle Time (TRC<5:0>)	20	—	_	ns	—	
EB12	TEBIPRC	EBI Page Read Cycle Time (TPRC<3:0>)	20	—		ns	—	
EB13	TEBIAS	EBI Write Address Setup (TAS<1:0>)	10	—		ns	—	
EB14	TEBIWP	EBI Write Pulse Width (TWP<5:0>)	10	—	_	ns	—	
EB15	Tebiwr	EBI Write Recovery Time (TWR<1:0>)	10	—		ns	—	
EB16	Тевісо	EBI Output Control Signal Delay		—	5	ns	See Note 1	
EB17	Tebido	EBI Output Data Signal Delay	_	—	5	ns	See Note 1	
EB18	TEBIDS	EBI Input Data Setup	5	—	—	ns	See Note 1	
EB19	Tebidh	EBI Input Data Hold	3	_	_	ns	See Note 1, 2	

TABLE 37-47: EBI TIMING REQUIREMENTS

Note 1: Maximum pin capacitance = 10 pF.

2: Hold time from EBI Address change is 0 ns.

TABLE 37-48: EBI THROUGHPUT REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param. No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
EB20	Asynchronous SRAM Read	—	100		Mbps				
EB21	Asynchronous SRAM Write	_	533	_	Mbps	—			

Note 1: Maximum pin capacitance = 10 pF.

2: Hold time from EBI Address change is 0 ns.

39.0 252 MHz ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MZ EF electrical characteristics for devices running at 252 MHz. Additional information will be provided in future revisions of this document as it becomes available.

The specifications for 252 MHz are identical to those shown in **37.0** "Electrical Characteristics" including absolute maximum ratings, with the exception of the parameters listed in this chapter.

Parameters in this chapter begin with the letter "M", which denotes 252 MHz operation. For example, parameter DC27a in **37.0** "Electrical Characteristics", is the up to 200 MHz operation equivalent for MDC27a.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0765-2