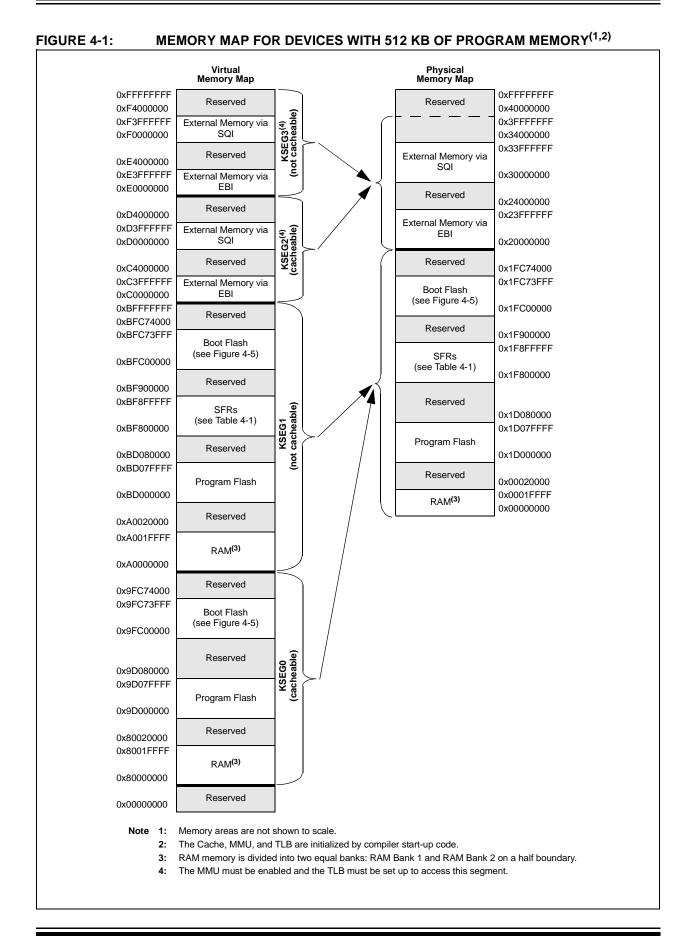


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efm064-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		x = 0-13)						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	_	_	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
7.0	—			—				CLEAR

REGISTER 4-6: SBTxECLRS: SYSTEM BUS TARGET 'x' SINGLE ERROR CLEAR REGISTER ('x' = 0-13)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Single Error on Read bit A single error as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

REGISTER 4-7: SBTxECLRM: SYSTEM BUS TARGET 'x' MULTIPLE ERROR CLEAR REGISTER ('x' = 0-13)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—			_	_	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_			_		—	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_	—	_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
7:0								CLEAR

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Multiple Errors on Read bit Multiple errors as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

© 2015-2016 Microchip Technology Inc.

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER (CONTINUED) bit 15-12 PRI3SS<3:0>: Interrupt with Priority Level 3 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 3 uses Shadow Set 0) 0111 = Interrupt with a priority level of 3 uses Shadow Set 7 0110 = Interrupt with a priority level of 3 uses Shadow Set 6 0001 = Interrupt with a priority level of 3 uses Shadow Set 1 0000 = Interrupt with a priority level of 3 uses Shadow Set 0 bit 11-8 **PRI2SS<3:0>:** Interrupt with Priority Level 2 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 2 uses Shadow Set 0) 0111 = Interrupt with a priority level of 2 uses Shadow Set 7 0110 = Interrupt with a priority level of 2 uses Shadow Set 6 0001 = Interrupt with a priority level of 2 uses Shadow Set 1 0000 = Interrupt with a priority level of 2 uses Shadow Set 0 PRI1SS<3:0>: Interrupt with Priority Level 1 Shadow Set bits⁽¹⁾ bit 7-4 1xxx = Reserved (by default, an interrupt with a priority level of 1 uses Shadow Set 0) 0111 = Interrupt with a priority level of 1 uses Shadow Set 7 0110 = Interrupt with a priority level of 1 uses Shadow Set 6 0001 = Interrupt with a priority level of 1 uses Shadow Set 1 0000 = Interrupt with a priority level of 1 uses Shadow Set 0 bit 3-1 Unimplemented: Read as '0' bit 0 SS0: Single Vector Shadow Register Set bit 1 = Single vector is presented with a shadow set 0 = Single vector is not presented with a shadow set

Note 1: These bits are ignored if the MVEC bit (INTCON<12>) = 0.

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

ss											Bits									
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
3340	USB	31:16	_	_	—	—	—	_		_	EP7TXD	EP6TXD	EP5TXD	EP4TXD	EP3TXD	EP2TXD	EP1TXD	_	0000	
3340	DPBFD	15:0	_	—	—	—	—	_	_	—	EP7RXD	EP6RXD	EP5RXD	EP4RXD	EP3RXD	EP2RXD	EP1RXD	—	0000	
3344		31:16		THHSRTN<15:0> 05E6																
5544	TMCON1	15:0	TUCH<15:0> 4074												4074					
3348	000	31:16	_		_	_	—	—	_	_	_	—	—	_	_	_	-	_	0000	
0040	TMCON2	15:0	_	—	—	_	—	—	-	—		—	—	_		THSBT<3	8:0>		0000	
		04.40	31:16		_	LPM	LPM		LPMNYIE	LPMSTIE	LPMTOIE				LPMNAK ⁽¹⁾		N<1:0>	LPMRES		0000
3360	USB LPMR1	51.10	_		ERRIE	RESIE						_	_	_(2)	(2)	(2)			0000	
	2	15:0		ENDPOIN	T<3:0>		—	_	_	RMTWAK		HIRI	D<3:0>			LNKSTATE	<3:0>		0000	
		31:16	_	—	_	_	—	_	_	—	_	—	—	_	_	_	—		0000	
3364	USB LPMR2	15:0	_			LPI	MFADDR<6:	0>			_	_	LPMERR ⁽¹⁾	LPMRES	LPMNC	LPMACK	LPMNY	LPMST	0000	

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: Device mode.

2: Host mode.

3:

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7). 4:

TABLE 11-2: USB REGISTER MAP 2

Bits																			
Virtual Addres (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_	—	—	_	—	USBIF	USBRF	USBWKUP	_	—	—	—	_	—	—	_	0100
4000	USB CRCON	15:0	_	_	_	_	_	_	USB IDOVEN	USB IDVAL	PHYIDEN	VBUS MONEN	ASVAL MONEN	BSVAL MONEN	SEND MONEN	USBIE	USBRIE	USB WKUPEN	8000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

21.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116) "PIC32 Family Reference the in Manual", which is available from the Microchip web site (www.microchip.com/ PIC32).

The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard.

Each I²C module has a 2-pin interface:

- SCLx pin is clock
- SDAx pin is data

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- Provides support for address bit masking
- SMBus support

Figure 21-1 illustrates the I²C module block diagram.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24		—	—	—	—	—	—	_						
00.40	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN						
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	ON	—	SIDL	SCKREL	STRICT	A10M	DISSLW	SMEN						
7.0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC						
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN						

REGISTER 21-1: I2CxCON: I²C CONTROL REGISTER

Legend:	HC = Cleared in Hardware					
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-23 Unimplemented: Read as '0'

DIL 31-23	Unimplemented: Read as 0
bit 22	PCIE: Stop Condition Interrupt Enable bit (I ² C Slave mode only)
	1 = Enable interrupt on detection of Stop condition
	0 = Stop detection interrupts are disabled
bit 21	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)
	1 = Enable interrupt on detection of Start or Restart conditions
	0 = Start detection interrupts are disabled
bit 20	BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only)
	$1 = I2CxRCV$ is updated and \overline{ACK} is generated for a received address/data byte, ignoring the state of the
	I2COV bit (I2CxSTAT<6>)only if the RBF bit (I2CxSTAT<2>) = 0 0 = I2CxRCV is only updated when the I2COV bit (I2CxSTAT<6>) is clear
bit 19	SDAHT: SDA Hold Time Selection bit
DIL 19	1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL
	1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL
bit 18	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only)
	1 = Enable slave bus collision interrupts
	0 = Slave bus collision interrupts are disabled
bit 18	AHEN: Address Hold Enable bit (Slave mode only)
	1 = Following the 8th falling edge of SCL for a matching received address byte; SCKREL bit will be cleared
	and the SCL will be held low.
bit 16	 0 = Address holding is disabled DHEN: Data Hold Enable bit (I²C Slave mode only)
DIT 16	
	1 = Following the 8th falling edge of SCL for a received data byte; slave hardware clears the SCKREL bit and SCL is held low
	0 = Data holding is disabled
bit 15	ON: I ² C Enable bit
	1 = Enables the I ² C module and configures the SDA and SCL pins as serial port pins
	0 = Disables the I ² C module; all I ² C pins are controlled by PORT functions
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
	0 = Continue module operation in Idle mode

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	_	_	_	—	_	_	—				
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—		_	_	—	_	—	—				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	WCS2 ⁽¹⁾	WCS1 ⁽³⁾										
	WADDR15 ⁽²⁾	WADDR14 ⁽⁴⁾	WADDR<13:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	WADDR<7:0>											

REGISTER 23-8: PMWADDR: PARALLEL PORT WRITE ADDRESS REGISTER

Legend:

- 5			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 WCS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
- bit 15 WADDR<15>: Target Address bit 15⁽²⁾
- bit 14 WCS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive
- bit 14 WADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 WADDR<13:0>: Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - 3: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

REGISTER 25-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER (CONTINUED)

bit 10-9 RTCCLKSEL<1:0>: RTCC Clock Select bits

When a new value is written to these bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.

- 11 = Reserved
- 10 = Reserved
- 01 = RTCC uses the external 32.768 kHz Secondary Oscillator (SOSC)
- 00 = RTCC uses the internal 32 kHz oscillator (LPRC)
- bit 8-7 RTCOUTSEL<1:0>: RTCC Output Data Select bits⁽²⁾
 - 11 = Reserved
 - 10 = RTCC Clock is presented on the RTCC pin
 - 01 = Seconds Clock is presented on the RTCC pin
 - 00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
- bit 6 RTCCLKON: RTCC Clock Enable Status bit⁽⁵⁾
 - 1 = RTCC Clock is actively running
 - 0 = RTCC Clock is not running
- bit 5-4 Unimplemented: Read as '0'
- bit 3 RTCWREN: Real-Time Clock Value Registers Write Enable bit⁽³⁾
 - 1 = Real-Time Clock Value registers can be written to by the user
 - 0 = Real-Time Clock Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: Real-Time Clock Value Registers Read Synchronization bit
 - 1 = Real-time clock value registers can change while reading (due to a rollover ripple that results in an invalid data read). If the register is read twice and results in the same data, the data can be assumed to be valid.
 - 0 = Real-time clock value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit⁽⁴⁾
 - 1 = Second half period of a second
 - 0 = First half period of a second
- bit 0 **RTCOE:** RTCC Output Enable bit
 - 1 = RTCC output is enabled
 - 0 = RTCC output is not enabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - **2:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 3: The RTCWREN bit can be set only when the write sequence is enabled.
 - 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).
 - 5: This bit is undefined when RTCCLKSEL<1:0> = 00 (LPRC is the clock source).

Note: This register is reset only on a Power-on Reset (POR).

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

REGIST	ER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER (CONTINUED)
bit 7-0	ARPT<7:0>: Alarm Repeat Counter Value bits ⁽²⁾
	11111111 = Alarm will trigger 256 times
	•
	00000000 = Alarm will trigger one time The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.
Note 1:	Hardware clears the ALRMEN bit anytime the alarm event occurs, when $ARPT < 7:0 > = 0.0$ and $CHIME = 0.$
2:	This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R-0, HS, HC							
31:24	EIRDY31 ⁽¹⁾	EIRDY30 ⁽¹⁾	EIRDY29 ⁽¹⁾	EIRDY28 ⁽¹⁾	EIRDY27 ⁽¹⁾	EIRDY26 ⁽¹⁾	EIRDY25 ⁽¹⁾	EIRDY24 ⁽¹⁾
00.40	R-0, HS, HC							
23:16	EIRDY23 ⁽¹⁾	EIRDY22 ⁽¹⁾	EIRDY21 ⁽¹⁾	EIRDY20 ⁽¹⁾	EIRDY19 ⁽¹⁾	EIRDY18	EIRDY17	EIRDY16
45.0	R-0, HS, HC							
15:8	EIRDY15	EIRDY14	EIRDY13	EIRDY12	EIRDY11	EIRDY10	EIRDY9	EIRDY8
7.0	R-0, HS, HC							
7:0	EIRDY7	EIRDY6	EIRDY5	EIRDY4	EIRDY3	EIRDY2	EIRDY1	EIRDY0

REGISTER 28-30: ADCEISTAT1: ADC EARLY INTERRUPT STATUS REGISTER 1

Legend:	HS = Hardware Set	HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 EIRDY31:EIRDY0: Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN1 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCCIS<2:0> bits in the ADCCON2 register.
- 0 = Interrupts are disabled
- Note 1: This bit is not available on 64-pin devices.

NOTES:

ess										Bits	6					-			
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0050	C1FLTCON3	31:16	FLTEN15	MSEL1	15<1:0>			FSEL15<4:0	>		FLTEN14	MSEL1	4<1:0>		F	SEL14<4:0>	>		0000
0010	CILEICONS	15:0	FLTEN13	MSEL1	3<1:0>			FSEL13<4:0	>		FLTEN12	MSEL1	2<1:0>		F	SEL12<4:0>	>		0000
0100	C1FLTCON4	31:16	FLTEN19	MSEL1				FSEL19<4:0			FLTEN18		8<1:0>			SEL18<4:0>			0000
0.00	0.1.2.00.1.1	15:0	FLTEN17	MSEL1	17<1:0>			FSEL17<4:0			FLTEN16	MSEL1	6<1:0>		F	SEL16<4:0>	>		0000
0110	C1FLTCON5	31:16	FLTEN23		23<1:0>			FSEL23<4:0			FLTEN22		22<1:0>			SEL22<4:0>			0000
0.110	0.1.2.00.10	15:0	FLTEN21	MSEL2				FSEL21<4:0			FLTEN20		20<1:0>			SEL20<4:0>			0000
0120	C1FLTCON6	31:16	FLTEN27	MSEL2				FSEL27<4:0			FLTEN26		26<1:0>			SEL26<4:0>			0000
		15:0	FLTEN25	MSEL2				FSEL25<4:0			FLTEN24	MSEL2	-			SEL24<4:0>			0000
0130	C1FLTCON7	31:16		MSEL3				FSEL31<4:0			FLTEN30	MSEL3				SEL30<4:0>			0000
		15:0	FLTEN29	MSEL2	29<1:0>			FSEL29<4:0	>		FLTEN28	MSEL2	28<1:0>			SEL28<4:0>	r		0000
0140- 0330	C1RXFn (n = 0-31)	31:16								xxxx									
0330	(1 = 0-31)	15:0		EID<15:0> xxxx															
0340	C1FIFOBA	31:16 15:0	C1EIEOBA<31:0>							0000									
0350	C1FIFOCONn	31:16	—	_	—	—	_		—	_	_	_	—			SIZE<4:0>		0000	
0000	(n = 0)	15:0	—	FRESET	UINC	DONLY	—	_	—		TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPRI<	:1:0>	0000
0360	C1FIFOINTn	31:16	—	_	—	_	_	TXNFULLIE	TXHALFIE	TXEMPTYIE	_	_	—	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000
0000	(n = 0)	15:0	_	-	—	—	_	TXNFULLIF	TXHALFIF	TXEMPTYIF	-	—	-	_	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000
0370	$\begin{array}{c} \text{C1FIFOUAn} \\ (n=0) \end{array}$	31:16 15:0								C1FIFOUA	<31:0>								0000
0380	C1FIFOCIn	31:16	_	_	_	—	_	_	—	_	—	—	—	_	—	_	—	—	0000
0380	(n = 0)	15:0	—	_	—	—	—	—	—		_	—	—		C1	FIFOCI<4:0)>		0000
		31:16	_	_	-	-	_	—	-	_	-	—	-			SIZE<4:0>			0000
		15:0	—	FRESET	UINC	DONLY	_	_	—	_	TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPRI<	<1:0>	0000
	C1FIFOCONn	31:16	—	_	—	_	_	TXNFULLIE	TXHALFIE	TXEMPTYIE	_	_	—	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000
0390- 0B40	C1FIFOINTn C1FIFOUAn C1FIFOCIn	15:0	_	_	—	—	_	TXNFULLIF	TXHALFIF	TXEMPTYIF	_	—	—	_	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000
	(n = 1-31)	31:16								C1FIFOUA	~31.0>								0000
	. ,	15:0								UNIFUUF									0000
		31:16	-	_	_	-	_	-	_	_	_	—	—	—	-	_	_	_	0000
		15:0	—	_	—	—	—	—	—	—	—	—	—		C1	FIFOCI<4:0)>		0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

REGISTER 29-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED) bit 15 FLTEN9: Filter 9 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL9<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL8<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'. Note:

	RE	GISTER									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	—	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	_	_	_	_	_	_	—			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.6		PMCS<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				PMCS	S<7:0>						

REGISTER 30-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits

bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 30-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
51.24	—	—	_			_		_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	_	—	—	—	—		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.6	PMO<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				PMO	<7:0>					

Le	gend:	
	Deside to the test	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **PMO<15:0>:** Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTI	ER 34-3:	DEVCFG0/ADEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)
bit 10	FSLEEP: F	Flash Sleep Mode bit
		s powered down when the device is in Sleep mode
		emains powered when the device is in Sleep mode
bit 9-8		I<1:0>: Dynamic Flash ECC Configuration bits
		vice Reset, the value of these bits is copied to the ECCCON<1:0> bits (CFGCON<5:4>).
		and dynamic ECC are disabled (ECCCON<1:0> bits are writable)
		and dynamic ECC are disabled (ECCCON<1:0> bits are locked) mic Flash ECC is enabled (ECCCON<1:0> bits are locked)
		ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
bit 7		Write as '1'
bit 6	BOOTISA:	Boot ISA Selection bit
	1 = Boot c	ode and Exception code is MIPS32 [®]
	•	NEXC bit is set to '0' and the ISA<1:0> bits are set to '10' in the CP0 Config3 register)
		ode and Exception code is microMIPS™
bit 5		NEXC bit is set to '1' and the ISA<1:0> bits are set to '11' in the CP0 Config3 register) race Enable bit
C IIC		
		features in the CPU are enabled features in the CPU are disabled
bit 4-3		:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
		C1/PGED1 pair is used
		C2/PGED2 pair is used
	01 = Reser	
	00 = Rese i	
bit 2		JTAG Enable bit ⁽¹⁾
	1 = JTAG i: 0 = JTAG i:	
bit 1-0		:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)
Dit 1-0		gger is disabled
		gger is enabled

Note 1: This bit sets the value of the JTAGEN bit in the CFGCON register.

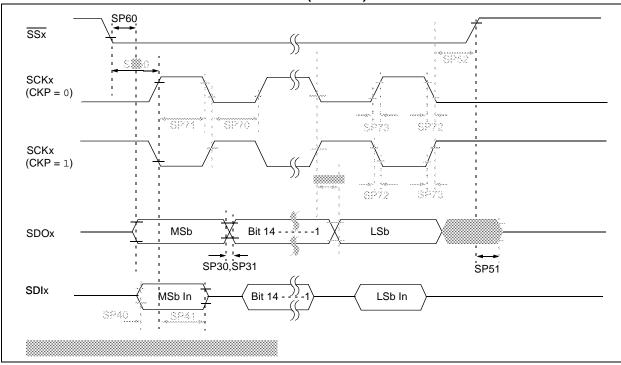

DC CHARACTERISTICS		Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽²⁾	Maximum ⁽⁴⁾	Units	Conditions			
Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)							
DC30a	7	22	mA	4 MHz (Note 3)			
DC31a	8	24	mA	10 MHz			
DC32a	13	32	mA	60 MHz (Note 3)			
DC33a	21	42	mA	130 MHz (Note 3)			
DC34	26	48	mA	180 MHz (Note 3)			
DC35	28	52	mA	200 MHz			

TABLE 37-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

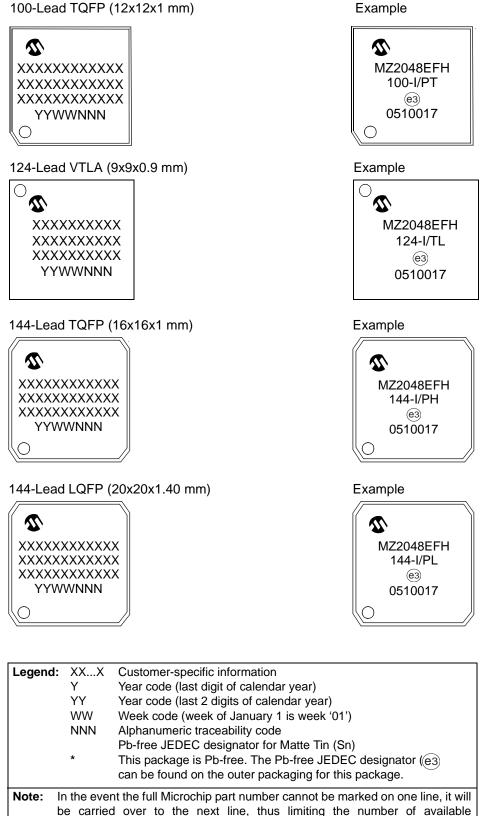
Note 1: The test conditions for IIDLE current measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBPMD = 1), VUSB3V3 is connected to VSS, PBCLKx divisor = 1:128 ('x' ≠ 7)
- CPU is in Idle mode (CPU core Halted)
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared (except USBPMD)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 37-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 37-33: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS


AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature -40°C \leq TA \leq +85°C for Industrial} \\ \mbox{-40°C \leq TA \leq +125°C for Extended} \\ \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	_	_	ns	—
SP71	TscH	SCKx Input High Time (Note 3)	TSCK/2	_		ns	—
SP72	TscF	SCKx Input Fall Time		_	10	ns	—
SP73	TscR	SCKx Input Rise Time	—	_	10	ns	—
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—		ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—		ns	See parameter DO31
SP35 TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	10	ns	VDD > 2.7V	
			_	15	ns	Vdd < 2.7V	
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	0	—	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	7	—	_	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The minimum clock period for SCKx is 20 ns.
- 4: Assumes 30 pF load on all SPIx pins.

41.1 Package Marking Information (Continued)

100-Lead TQFP (12x12x1 mm)

characters for customer-specific information.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
Scan Trigg	Jer Source				
On PIC32MX devices, there are four sources that can trigger a scan conversion in the ADC module: Auto, Timer3, INT0, and clearing the SAMP bit. SSRC<2:0> (AD1CON1<7:5>) 111 = Auto convert 110 = Reserved 101 = Reserved 100 = Reserved 011 = Reserved	On PIC32MZ EF devices, the list of sources for triggering a scan conversion has been expanded to include the comparators, Output Compare, and two additional Timers. In addition, trigger sources can be simulated by setting the RQCNVRT (ADCCON3<8>) bit. STRGSRC<4:0> (ADCCON1<20:16>) 11111 = Reserved • • • • • • • • • • •				
010 = Timer3 period match 001 = Active transition on INT0 pin 000 = Clearing SAMP bit	01011 = Comparator 1 COUT 01010 = OCMP5 01001 = OCMP3 01000 = OCMP1 00111 = TMR5 match 00101 = TMR3 match 00101 = TMR1 match 00100 = INT0 00011 = Reserved 00010 = Global level software trigger (GLSWTRG) 00001 = Global software trigger (GSWTRG) 00000 = No trigger				
Output	Format				
On PIC32MX devices, the output format was decided for all ADC channels based on the setting of the FORM<2:0> bits.	On PIC32MZ EF devices, the FRACT bit determines whether fractional or integer format is used. Then, each input can have its own setting for input (differential or single-ended) and sign (signed or unsigned) using the DIFFx and SIGNx bits in the ADCIMODx registers.				
FORM<2:0> (AD1CON1<10:8>) 011 = Signed Fractional 16-bit 010 = Fractional 16-bit 001 = Signed Integer 16-bit 000 = Integer 16-bit 111 = Signed Fractional 32-bit 110 = Fractional 32-bit	FRACT (ADCCON1<23>) 1 = Fractional 0 = Integer DIFFx (ADCIMODy) 1 = Channel x is using Differential mode 0 = Channel x is using Single-ended mode				
101 = Signed Integer 32-bit 100 = Integer 32-bit	SIGNx (ADCMODy) 1 = Channel x is using Signed Data mode 0 = Channel x is using Unsigned Data mode				
Inter	rupts				
On PIC32MX devices, an interrupt is triggered from the ADC module when a certain number of conversions have taken place, irrespective of which channel was converted.	On PIC32MZ EF devices, the ADC module can trigger an inter- rupt for each channel when it is converted. Use the Interrupt Con- troller bits, IEC1<31:27>, IEC2<31:0>, and IEC3<7:0>, to enable/ disable them. In addition, the ADC support one global interrupt to indicate conversion on any number of channels.				
SMPI<3:0> (AD1CON2<5:2>) 1111 = Interrupt for each 16th sample/convert sequence 1110 = Interrupt for each 15th sample/convert sequence	AGIENxx (ADCGIRQENx <y>) 1 = Data ready event will generate a Global ADC interrupt 0 = No global interrupt In addition, interrupts can be generated for filter and comparator</y>				
• 0001 = Interrupt for each 2nd sample/convert sequence 0000 = Interrupt for each sample/convert sequence	events.				

TABLE A-3: ADC DIFFERENCES (CONTINUED)

B.6 Resets

On PIC32MZ EF devices, the Reset module adds eight bits to the NMICNT field to make the time-out period before device Reset longer, as described in Table B-5.

TABLE B-5: RESETS DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature				
Countdown to Reset During NMIs					
On PIC32MZ EC devices, the NMICNT<7:0> field is eight bits long, giving a maximum of 256 instructions before the device Reset.	On PIC32MZ EF devices, the NMICNT<15:0> field is now 16 bits long, giving a longer period of time (up to 65,536 instructions) prior to a device Reset.				

B.7 USB

On PIC32MZ EF devices, a new USBCRCON register has been added to assist in controlling the reset of the USB module, and triggering interrupts based on VBUS voltage levels. This register also overcomes an errata on PIC32MZ EC devices that requires a three second start-up on the USB module.

B.8 I/O Ports

On PIC32MZ EF devices, many of the I/O pins now feature slew rate control bits to control how fast the pin makes a low-to-high or high-to-low transition. The Change Notification feature has also been enhanced to allow detection of level events in addition to edge detection. However, the SIDL bit is not present in the CNCONx registers on PIC32MZ EF devices, as it is on PIC32MZ EC devices.

B.9 Watchdog Timer

PIC32MZ EF devices use a new Watchdog Timer, although the overall control through the DEVCFGx words remains identical to that of PIC32MZ EC devices. Table B-6 lists two more changes, as well.

TABLE B-6: WATCHDOG TIMER DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature				
Watchdog Timer Postscaler					
On PIC32MZ EC devices, the SWDTPS<4:0> bits (WDTCON<6:2>) reflect the postscaler setting for the Watchdog Timer.	On PIC32MZ EF devices, the field has been changed to the RUNDIV<4:0> bits (WDTCON<12:8>).				
Watchdog Windowed Mode					
On PIC32MZ EC devices, WDTWINEN is at bit position 1 (WDTCON<1>).	On PIC32MZ EF devices, WDTWINEN is now at bit position 0 (WDTCON<0>).				