

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2000	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efm064-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
CLKI	31	49	B28	71	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	31	49	B28	71	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	47	72	B41	105	Ι	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	48	73	A49	106	0	— —	32.768 low-power oscillator crystal output.
REFCLKI1	PPS	PPS	PPS	PPS	I	—	Reference Clock Generator Inputs 1-4
REFCLKI3	PPS	PPS	PPS	PPS	I	_	
REFCLKI4	PPS	PPS	PPS	PPS	Ι	-	1
REFCLKO1	PPS	PPS	PPS	PPS	0	-	Reference Clock Generator Outputs 1-4
REFCLKO3	PPS	PPS	PPS	PPS	0	—]
REFCLKO4	PPS	PPS	PPS	PPS	0	—	1
Legend: (CMOS = CI	MOS-compa	atible input	or output		Analog =	Analog input P = Power

TABLE 1-2: OSCILLATOR PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog input P O = Output I = PPS = Peripheral Pin Select

I = Input

TABLE 1-3: IC1 THROUGH IC9 PINOUT I/O DESCRIPTIONS

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
					Input	Capture	
IC1	PPS	PPS	PPS	PPS	Ι	ST	Input Capture Inputs 1-9
IC2	PPS	PPS	PPS	PPS	Ι	ST	1
IC3	PPS	PPS	PPS	PPS	Ι	ST	1
IC4	PPS	PPS	PPS	PPS	Ι	ST]
IC5	PPS	PPS	PPS	PPS	I	ST	
IC6	PPS	PPS	PPS	PPS	I	ST	
IC7	PPS	PPS	PPS	PPS	Ι	ST	1
IC8	PPS	PPS	PPS	PPS	Ι	ST	1
IC9	PPS	PPS	PPS	PPS	Ι	ST	1
Legend:	CMOS = CI	MOS-comp	atible input	or output		Analog =	Analog input P = Power

Legend:

CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select P = Power I = Input

TABLE 1-13:	EBI PINOUT I/O DESCRIPTIONS (CONTINUED)
-------------	---

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
EBIOE	_	9	A7	13	0	_	External Bus Interface Output Enable
EBIRDY1	—	<u> </u>			I	ST	External Bus Interface Ready Input
EBIRDY2	—	58	A39	84	I	ST	
EBIRDY3		57	B45	116	Ι	ST	
EBIRP	_	_	_	45	0	_	External Bus Interface Flash Reset Pin
EBIWE	— 8 B5 12		12	0	_	External Bus Interface Write Enable	
Legend:	CMOS = CI	MOS-comp	atible input	or output		Analog =	Analog input P = Power

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog inputP = PowerO = OutputI = InputPPS = Peripheral Pin Select

1									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—			—	
	U-0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	
23:16							CAUS	E<5:4>	
	—	_	_	_	_	_	E	V	
	R/W-x	R/W-x	R/W-x	U-0	U-0	U-0	U-0	U-0	
15:8		CAUSE	<3:0>						
	Z	0	U	I		_	_	_	
	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	U-0	U-0	
7:0				FLAGS<4:0>					
		V	Z	0	U	I		_	

REGISTER 3-8: FEXR: FLOATING POINT EXCEPTIONS STATUS REGISTER; CP1 REGISTER 26

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-18 Unimplemented: Read as '0'

bit 17-12 **CAUSE<5:0>:** FPU Exception Cause bits These bits indicated the exception conditions that arise during execution of an FPU arithmetic instruction.

- bit 17 E: Unimplemented Operation bit
- bit 16 V: Invalid Operation bit
- bit 15 **Z:** Divide-by-Zero bit
- bit 14 **O:** Overflow bit
- bit 13 **U:** Underflow bit
- bit 12 I: Inexact bit
- bit 11-7 Unimplemented: Read as '0'
- bit 6-2 FLAGS<4:0>: FPU Flags bits

These bits show any exception conditions that have occurred for completed instructions since the flag was last reset by software.

- bit 6 V: Invalid Operation bit
- bit 4 **Z:** Divide-by-Zero bit
- bit 4 O: Overflow bit
- bit 3 U: Underflow bit
- bit 2 I: Inexact bit
- bit 1-0 Unimplemented: Read as '0'

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ()		Ð								Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OFF032	31:16	_	_	-	—	-	_	-	_	_	_	—	_	—	—	VOFF<	17:16>	0000
0500	OFF032	15:0								VOFF<15:1>								—	0000
0504	OFF033	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0504	066033	15:0								VOFF<15:1>								_	0000
0500	OFF034	31:16	—		—	_	_	-	_		—		_	—	—	—	VOFF<	17:16>	0000
0508	0FF034	15:0								VOFF<15:1>								_	0000
0500	OFF035	31:16	—		_	_				—	_		—	_	—	_	VOFF<	17:16>	0000
0500	0FF035	15:0								VOFF<15:1>								_	0000
0500	OFF036	31:16	—		—	_					—		—	—	—	—	VOFF<	17:16>	0000
0500	066030	15:0								VOFF<15:1>								_	0000
05D4	OFF037	31:16	—		—	_				—	—		—	—	_	_	VOFF<	17:16>	0000
0304	011037	15:0								VOFF<15:1>								—	0000
0508	OFF038	31:16	_	-	—	—	-	-	-	_	_	-	—	_	—	—	VOFF<	17:16>	0000
0300	011030	15:0			-	-				VOFF<15:1>					-	-	-	—	0000
05DC	OFF039	31:16	_	—	-	—	_	—	_	—	_		—	_	—	—	VOFF<	17:16>	0000
0300	011039	15:0								VOFF<15:1>								—	0000
0550	OFF040	31:16	_	_						—	_		—	_			VOFF<	17:16>	0000
0520	011040	15:0			-	-				VOFF<15:1>					-	-	-		0000
05E4	OFF041	31:16	_	—	-	—	_	—	_	—	_		—	_	—	—	VOFF<	17:16>	0000
0564	011041	15:0								VOFF<15:1>									0000
05E8	OFF042	31:16	_	—	-	—	_	—	_	—	_		—	_	—	—	VOFF<	17:16>	0000
0520	011042	15:0			-	-				VOFF<15:1>					-	-	-		0000
05EC	OFF043	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0520	011043	15:0								VOFF<15:1>									0000
05E0	OFF044	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	VOFF<	17:16>	0000
001 0	011044	15:0			-	-				VOFF<15:1>					-	-	-	—	0000
05F4	OFF045	31:16	—	—	—	_	_	_	_	—	_	—	—	—	—	—	VOFF<	17:16>	0000
0014	011040	15:0								VOFF<15:1>						-	-		0000
0558	OFF046	31:16	—	_	-		_	_	—	—	_	_	—	_	—	—	VOFF<	17:16>	0000
05-0		15:0								VOFF<15:1>								_	0000

© 2015-2016 Microchip Technology Inc.

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

- Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:
- Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

^{2:}

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

ss											Bits								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3248	USB	31:16								DMA	ADDR<31:16	>							0000
3248	DMA5A	15:0								DM	ADDR<15:0	•							0000
324C	USB	31:16								DMA	COUNT<31:10	i>							0000
0240	DMA5N	15:0				-	•			DMA	COUNT<15:0	>							0000
3254	USB	31:16	_	_	-	—		_	—	-	_	—	—	-	-	-	_	-	0000
	DMA6C	15:0	—	—	—		-	DMABR	STM<1:0>	DMAERR			EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	
3258	USB DMA6A	31:16									ADDR<31:16								0000
		15:0									ADDR<15:0								0000
325C	USB DMA6N	31:16									COUNT<31:10								0000
\vdash		15:0				_	1				COUNT<15:0								0000
3264	USB DMA7C	31:16 15:0	_		_		_		 STM<1:0>		—	-	 EP<3:0>	_	— DMAIE	 DMAMODE			0000
		31:16	—	_	—		_	DIMABR	51M<1:0>	DMAERR	ADDR<31:16		EP<3:0>		DIVIAIE	DMAMODE	DMADIR	DMAEN	0000
3268	USB DMA7A	15:0		DMAADDR<1150> 0000															
	USB	31:16		DMAADDR<15:0> 0000 DMACOUNT<31:16> 0000															
326C	DMA7N	15:0		DMACOUNT<31:16> 0000 DMACOUNT<15:0> 0000															
	USB	31:16	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	0000
3274	DMA8C	15:0	_	_	_	_	_	DMABR	STM<1:0>	DMAERR		DMA	EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
0070	USB	31:16						1		DMA	ADDR<31:16	>			1		1	J	0000
3278	DMA8A	15:0								DM	ADDR<15:0	•							0000
327C	USB	31:16								DMA	COUNT<31:10	i>							0000
3270	DMA8N	15:0								DMA	COUNT<15:0	>							0000
3304	USB	31:16	—		—	_	—	_	—	—	_	—	_	-	—	_	_	—	0000
5504	E1RPC	15:0				-		-		RQP	KTCNT<15:0	>		-					0000
3308	USB	31:16	—	—	—	—	-	—	—	—	—	—	-	-	—	-	—	—	0000
	E2RPC	15:0								RQP	KTCNT<15:0	>	1						0000
330C	USB	31:16	_	_	—		—		—	—			_	_	_	_	_	—	0000
	E3RPC	15:0					1				KTCNT<15:0								0000
3310	USB E4RPC	31:16	_																
\vdash		15:0									KTCNT<15:0								0000
3314	USB E5RPC	31:16 15:0	—	_	—	_	—	_	—			_	—	—	_	—	—	—	0000
\vdash											KTCNT<15:0								0000
3318	USB E6RPC	31:16 15:0	—	_	—	_	_	_	_		— KTCNT<15:0	_	_	_	_	_	_	—	0000
\vdash		31:16	_	_	_			_				<u> </u>		_	_	_		_	0000
331C	USB E7RPC	15:0	_	_			_			ROP	 KTCNT<15:0		_	_		_			0000
1		10.0		RQPKICNI<15:0> 0000 n value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.															

Legend: Note x = unknownDevice mode.

Host mode.

1: 2: 3: 4: Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

TABLE 12-17: PORTH REGISTER MAP FOR 124-PIN DEVICES ONLY

ess	-	Ø								Bits									
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0700	ANSELH	31:16			_	—		-	_	—		—	—	—	_	—	—		0000
0100	/ TOLET	15:0	—	_	_	—	—	-	-	—	_	ANSH6	ANSH5	ANSH4	-	—	ANSH1	ANSH0	0073
0710	TRISH	31:16	—	—	—	—	—	—	_	—	—		—	—	—	—	—	—	0000
0710	INION	15:0	—	—	TRISH13	TRISH12	—	TRISH10	TRISH9	TRISH8	—	TRISH6	TRISH5	TRISH4	—	—	TRISH1	TRISH0	3773
0720	PORTH	31:16	—	—	_	—	_			—	_		—	—	_	—		—	0000
0720	1 OKIII	15:0	—	—	RH13	RH12	—	RH10	RH9	RH8	—	RH6	RH5	RH4	-	—	RH1	RH0	xxxx
0730	LATH	31:16	—	—	—	—	—	—	_	—	—	—	—	—	-	—	—	—	0000
0730	LAIN	15:0	—	—	LATH13	LATH12	—	LATH10	LATH9	LATH8	—	LATH6	LATH5	LATH4	-	—	LATH1	LATH0	xxxx
0740	ODCH	31:16	_	-		_	_			_	_	_	-	—		_	_	_	0000
0740	ODCH	15:0	_	-	ODCH13	ODCH12	_	ODCH10	ODCH9	ODCH8	_	ODCH6	ODCH5	ODCH4		_	ODCH1	ODCH0	0000
0750	CNPUH	31:16	_		-	_	—			_	—	—	_	—		_	—	—	0000
0750	CINFULL	15:0	_		CNPUH13	CNPUH12	—	CNPUH10	CNPUH9	CNPUH8	—	CNPUH6	CNPUH5	CNPUH4		_	CNPUH1	CNPUH0	0000
0760	CNPDH	31:16	_		-	_	—			_	—	—	_	—		_	—	—	0000
0700	CINEDIT	15:0	—		CNPDH13	CNPDH12	_	CNPDH10	CNPDH9	CNPDH8	—	CNPDH6	CNPDH5	CNPDH4		—	CNPDH1	CNPDH0	0000
		31:16	_		-	_	—			_	—	—	_	—		_	—	—	0000
0770	CNCONH	15:0	ON	Ι	_	-	EDGE DETECT	-	-	—	—	-	—	_	-	—	_	_	0000
0700		31:16	_	_	-	—	—		-	_	_	—	_	_			_	_	0000
0780	CNENH	15:0	_	_	CNENH13	CNENH12	_	CNENH10	CNENH9	CNENH8	_	CNENH6	CNENH5	CNENH4	_	—	CNENH1	CNENH0	0000
		31:16	_	_	_	_	_	_	_	_	_	—	—	—	_	—	—	_	0000
0790	CNSTATH	15:0	_	_	CN STATH13	CN STATH12	_	CN STATH10	CN STATH9	CN STATH8	_	CN STATH6	CN STATH5	CN STATH4	-	_	CN STATH1	CN STATH0	0000
0740		31:16	_	_	_	—	_	-	-	—	_	— —	—	—	_	—	_	_	0000
07A0	CNNEH	15:0	_	_	CNNEH13	CNNEH12	_	CNNEH10	CNNEH9	CNNEH8	_	CNNEH6	CNNEH5	CNNEH4	_	_	CNNEH1	CNNEH0	0000
	0.1511	31:16							_								_		0000
07B0	CNFH	15:0	_	_	CNFH13	CNFH12	_	CNFH10	CNFH9	CNFH8	_	CNFH6	CNFH5	CNFH4	_	_	CNFH1	CNFH0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

SQI Control Registers 20.1

TABLE 20-1: SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP

ess										В	its								s
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	SQI1	31:16	_	—		—	_	—	—	—	DUN	IMYBYTES<	:2:0>	AD	DRBYTES<2	2:0>	READOPC	CODE<7:6>	0000
2000	XCON1	15:0			READOPO	CODE<5:0>			TYPED/	ATA<1:0>	TYPEDUN	/MY<1:0>	TYPEMC	DE<1:0>	TYPEAD	DR<1:0>	TYPECI	MD<1:0>	0000
2004	SQI1	31:16	—	—	_	—	_	—	—	—	—	—	_	—	—	—	_	—	0000
	XCON2	15:0	_	_	_	_	DEVSE	L<1:0>	MODEBY	TES<1:0>				MODECO	DDE<7:0>				0000
2008	SQI1CFG	31:16	-	_	_	-	—	_	CSEN	l<1:0>	SQIEN	—	DATAE	N<1:0>	CON FIFORST	RXFIFO RST	TXFIFO RST	RESET	0000
		15:0	_	—	—	BURSTEN	_	HOLD	WP	—	—	—	LSBF	CPOL	CPHA		MODE<2:0>	•	0000
200C	SQI1CON	31:16	—	—	—	-	—	—	—	SCHECK	—	DASSERT	DEVSE	L<1:0>	LANEMC	DE<1:0>	CMDIN	IT<1:0>	0000
		15:0								TXRXCOL	JNT<15:0>								0000
2010	SQI1	31:16	—	—	—	-	—	—	—	—	_	_	_	_	_		LKDIV<10:8		0000
	CLKCON	15:0		CLKDIV<7:0> STABLE EN 0000															
2014	SQI1	31:16	—	_		-	—	—	—	—	_	_	—	—	—	—	—	—	0000
	CMDTHR	15:0	—	_	_		TX	CMDTHR<4	:0>		—	_	_			CMDTHR<4	4:0>		0000
2018	SQI1	31:16																	
	INTTHR	15:0	—	-	-			(INTTHR<4:			_	_	_			(INTTHR<4:	1	1	0000
201C	SQI1	31:16	_	_	_	_	_	-	-	-	-	-	—	-	-	-	-	— —	0000
2010	INTEN	15:0	_	_	_	_	DMAEIE	PKT COMPIE	BD DONEIE	CON THRIE	CON EMPTYIE	CON FULLIE	RX THRIE	RX FULLIE	RX EMPTYIE	TX THRIE	TX FULLIE	TX EMPTYIE	0000
0000	SQI1	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
2020	INTSTAT	15:0	—	_	—	-	DMAEIF	PKT COMPIF	BD DONEIF	CON THRIF	CON EMPTYIF	CON FULLIF	RX THRIF	RX FULLIF	RX EMPTYIF	TX THRIF	TX FULLIF	TX EMPTYIF	0000
2024	SQI1	31:16								TXDATA									0000
	TXDATA	15:0								TXDAT									0000
2028	SQI1	31:16								RXDATA									0000
	RXDATA	15:0			i			i		RXDAT	A<15:0>								0000
202C	SQI1 STAT1	31:16	_	_	_		_	_	_	_					REE<7:0>				0000
	-	15:0	_	_	_		_	_	_	_					CNT<7:0>		0,4507		0000
2030	SQI1 STAT2	31:16											0000						
	-	15:0	—	_		_							SDID2	-			RXUN	1x0v	00x0
2034	SQI1 BDCON	31:16 15:0			_	_	_			_	_		_			— START	POLLEN	— DMAEN	0000
		31:16	_	_	_	_	_	_	_		 DDR<31:16>	_	_	—	_	SIARI	POLLEN	DIVIAEN	0000
2038	SQI1BD CURADD	15:0									DDR<31:16>								0000
		31:16									R<31:16>								0000
2040	SQI1BD BASEADD	15:0																	
		15.0		BDADDR<15:0> 0000															

	1120-0.03					_		
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_		—			_	_
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_		—	_		_	_
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	—	DMAEIE	PKTCOMPIE	BDDONEIE	CONTHRIE
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CONEMPTYIE	CONFULLIE	RXTHRIE	RXFULLIE	RXEMPTYIE	TXTHRIE	TXFULLIE	TXEMPTYIE

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

HS = Hardware Set

W = Writable bit

'1' = Bit is set

REGISTER 20-8: SQI1INTEN: SQI INTERRUPT ENABLE REGISTER

bit 10	DMAEIE: DMA Bus Error Interrupt Enable bit Interrupt is enabled Interrupt is disabled PKTCOMPIE: DMA Buffer Descriptor Packet Complete Interrupt Enable bit Interrupt is enabled Interrupt is disabled BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
bit 10 I	 0 = Interrupt is disabled PKTCOMPIE: DMA Buffer Descriptor Packet Complete Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
bit 10	 PKTCOMPIE: DMA Buffer Descriptor Packet Complete Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
bit 9	 1 = Interrupt is enabled 0 = Interrupt is disabled BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
bit 9	 Interrupt is disabled BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
bit 9 I	BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
:	
l	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 8	CONTHRIE: Control Buffer Threshold Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 7	CONEMPTYIE: Control Buffer Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
	CONFULLIE: Control Buffer Full Interrupt Enable bit
	This bit enables an interrupt when the receive FIFO buffer is full.
	1 = Interrupt is enabled
	0 = Interrupt is disabled
	RXTHRIE: Receive Buffer Threshold Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
	RXFULLIE: Receive Buffer Full Interrupt Enable bit
	 1 = Interrupt is enabled 0 = Interrupt is disabled
	RXEMPTYIE: Receive Buffer Empty Interrupt Enable bit
	 1 = Interrupt is enabled 0 = Interrupt is disabled
	TXTHRIE: Transmit Threshold Interrupt Enable bit
	-
	 1 = Interrupt is enabled 0 = Interrupt is disabled
	TXFULLIE: Transmit Buffer Full Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
	TXEMPTYIE: Transmit Buffer Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled

Legend:

R = Readable bit

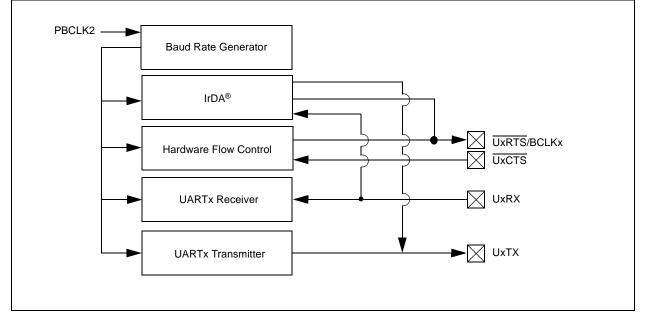
-n = Value at POR

REGISTE	R 21-2: I2CxSTAT: I ² C STATUS REGISTER (CONTINUED)
bit 5	 D_A: Data/Address bit (when operating as I²C slave) 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte.
bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

22.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The UART module is one of the serial I/O modules available in the PIC32MZ EF family of devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA[®]. The module also supports the hardware flow control option, with UXCTS and UXRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 25 Mbps at 100 MHz (PBCLK2)
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- LIN Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 22-1 illustrates a simplified block diagram of the UART module.

Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
SA_ENCIV1	31:24		ENCIV<31:24>								
	23:16				ENCIV<23	:16>					
	15:8				ENCIV<1	5:8>					
	7:0				ENCIV<7	:0>					
SA_ENCIV2	31:24				ENCIV<31	:24>					
	23:16		ENCIV<23:16>								
	15:8	ENCIV<15:8>									
	7:0	ENCIV<7:0>									
SA_ENCIV3	31:24				ENCIV<31	:24>					
	23:16				ENCIV<23	:16>					
	15:8	ENCIV<15:8>									
	7:0	ENCIV<7:0>									
SA_ENCIV4	31:24		ENCIV<31:24>								
_	23:16				ENCIV<23	:16>					
	15:8				ENCIV<1	5:8>					
	7:0				ENCIV<7	:0>					

TABLE 26-4: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE (CONTINUED)

REGIST	ER 28-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)
bit 20-16	S STRGSRC<4:0>: Scan Trigger Source Select bits
	11111 = Reserved
	•
	•
	01101 = Reserved
	01100 = Comparator 2 (COUT)
	01011 = Comparator 1 (COUT) 01010 = OCMP5
	01001 = OCMP3
	01000 = OCMP1
	00111 = TMR5 match
	00110 = TMR3 match 00101 = TMR1 match
	00100 = INTO External interrupt
	00011 = Reserved
	00010 = Global level software trigger (GLSWTRG)
	00001 = Global software edge trigger (GSWTRG) 00000 = No Trigger
bit 15	ON: ADC Module Enable bit
bit 10	1 = ADC module is enabled
	0 = ADC module is disabled
	Note: The ON bit should be set only after the ADC module has been configured.
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	 Discontinue module operation when device enters Idle mode Continue module operation in Idle mode
bit 12	AICPMPEN: Analog Input Charge Pump Enable bit
	1 = Analog input charge pump is enabled (default)
	0 = Analog input charge pump is disabled
bit 11	CVDEN: Capacitive Voltage Division Enable bit
	 1 = CVD operation is enabled 0 = CVD operation is disabled
bit 10	FSSCLKEN: Fast Synchronous System Clock to ADC Control Clock bit
	1 = Fast synchronous system clock to ADC control clock is enabled
	0 = Fast synchronous system clock to ADC control clock is disabled
bit 9	FSPBCLKEN: Fast Synchronous Peripheral Clock to ADC Control Clock bit
	 1 = Fast synchronous peripheral clock to ADC control clock is enabled 0 = Fast synchronous peripheral clock to ADC control clock is disabled
bit 8-7	Unimplemented: Read as '0'
bit 6-4	IRQVS<2:0>: Interrupt Vector Shift bits
	To determine interrupt vector address, this bit specifies the amount of left shift done to the ARDYx status
	bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with the ADCBASE register.
	Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to
	ADCBASE + $x \ll IRQVS < 2:0$, where 'x' is the smallest active input ID from the ADCDSTAT1 or ADCDSTAT2 registers (which has highest priority).
	111 = Shift x left 7 bit position
	110 = Shift x left 6 bit position
	101 = Shift x left 5 bit position
	100 = Shift x left 4 bit position 011 = Shift x left 3 bit position
	010 = Shift x left 2 bit position
	001 = Shift x left 1 bit position
	000 = Shift x left 0 bit position

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	PTV<15:8>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	PTV<7:0>									
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0		
15:8	ON	—	SIDL	_	—	_	TXRTS	RXEN ⁽¹⁾		
7:0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0		
	AUTOFC		—	MANFC	_	—	_	BUFCDEC		

REGISTER 30-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	PAUSE Timer Value used for Flow Control. This register should only be written when RXEN (ETHCON1<8>) is not set.
	These bits are only used for Flow Control operations.
bit 15	ON: Ethernet ON bit
	1 = Ethernet module is enabled0 = Ethernet module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Ethernet Stop in Idle Mode bit
	 1 = Ethernet module transfers are paused during Idle mode 0 = Ethernet module transfers continue during Idle mode
bit 12-10	Unimplemented: Read as '0'
bit 9	TXRTS: Transmit Request to Send bit
	 1 = Activate the TX logic and send the packet(s) defined in the TX EDT 0 = Stop transmit (when cleared by software) or transmit done (when cleared by hardware)
	After the bit is written with a '1', it will clear to a '0' whenever the transmit logic has finished transmitting the requested packets in the Ethernet Descriptor Table (EDT). If a '0' is written by the CPU, the transmit logic finishes the current packet's transmission and then stops any further.
	This bit only affects TX operations.
bit 8	RXEN: Receive Enable bit ⁽¹⁾
	1 Frankla DV largin manufactor and received and started in the DV hyther as controlled by the filter

- 1 = Enable RX logic, packets are received and stored in the RX buffer as controlled by the filter configuration
- $\ensuremath{\scriptscriptstyle 0}$ = Disable RX logic, no packets are received in the RX buffer

This bit only affects RX operations.

PTV<15:0>: PAUSE Timer Value bits

bit 31-16

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
					-	—		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	—	—	_	_
15.0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	_	TXBUSE	RXBUSE	_	—	—	EWMARK	FWMARK
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	RXDONE	PKTPEND	RXACT		TXDONE	TXABORT	RXBUFNA	RXOVFLW

REGISTER 30-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-15 Unimplemented: Read as '0'	
Dil 31-15 Unimplemented: Read as 0	

- bit 14 **TXBUSE:** Transmit BVCI Bus Error Interrupt bit⁽²⁾
 - 1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred

This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

- bit 13 **RXBUSE:** Receive BVCI Bus Error Interrupt bit⁽²⁾
 - 1 = BVCI Bus Error has occurred
 - 0 = BVCI Bus Error has not occurred

This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

bit 12-10 Unimplemented: Read as '0'

- bit 9 EWMARK: Empty Watermark Interrupt bit⁽²⁾
 - 1 = Empty Watermark pointer reached

0 = No interrupt pending

This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a '0' or a '1' has no effect.

bit 8 FWMARK: Full Watermark Interrupt bit⁽²⁾

1 = Full Watermark pointer reached

0 = No interrupt pending

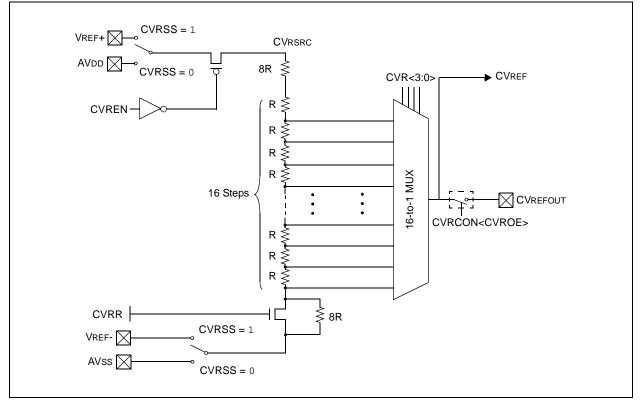
This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.

- Note 1: This bit is only used for TX operations.
 - 2: This bit is are only used for RX operations.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

32.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note:	This data sheet summarizes the
	features of the PIC32MZ EF family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 20. "Comparator
	Voltage Reference (CVREF)"
	(DS60001109) in the "PIC32 Family
	Reference Manual", which is available
	from the Microchip web site
	(www.microchip.com/PIC32).


The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The comparator voltage reference has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

A block diagram of the CVREF module is illustrated in Figure 32-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	r-1	R/P	r-1	r-1	r-1	r-1	r-1	r-1	
	—	UPLLFSEL	_	—	—	_	_	—	
	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P	
23:16	—	—	— — — — FPLLO)>	
45.0	r-1	R/P	R/P	R/P	R/P	R/P	R/P	R/P	
15:8		FPLLMULT<6:0>							
7:0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
	FPLLICLK	F	PLLRNG<2:0	>		F	PLLIDIV<2:0	>	

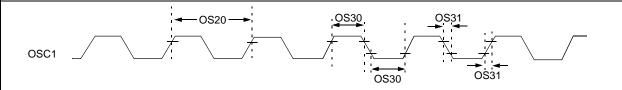
REGISTER 34-5: DEVCFG2/ADEVCFG2: DEVICE CONFIGURATION WORD 2

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31 Reserved: Write as '1'
- bit 30 UPLLFSEL: USB PLL Input Frequency Select bit 1 = UPLL input clock is 24 MHz 0 = UPLL input clock is 12 MHz
- bit 29-19 Reserved: Write as '1'

bit 18-16 **FPLLODIV<2:0>:** Default System PLL Output Divisor bits

- 111 = PLL output divided by 32
- 110 = PLL output divided by 32
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 2
- bit 15 Reserved: Write as '1'


bit 14-8 FPLLMULT<6:0>: System PLL Feedback Divider bits

- 1111111 = Multiply by 128 1111110 = Multiply by 127 1111101 = Multiply by 126
- 1111100 = Multiply by 125
- •
- 0000000 = Multiply by 1
- bit 7 FPLLICLK: System PLL Input Clock Select bit
 - 1 = FRC is selected as input to the System PLL
 - 0 = Posc is selected as input to the System PLL

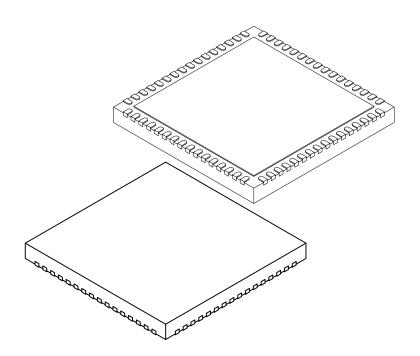
bit 6-4 **FPLLRNG<2:0>:** System PLL Divided Input Clock Frequency Range bits

- 111 = Reserved
- 110 = Reserved
- 101 = 34-64 MHz
- 100 = 21-42 MHz
- 011 = 13-26 MHz
- 010 = 8-16 MHz
- 001 = 5-10 MHz
- 000 = Bypass

FIGURE 37-2: EXTERNAL CLOCK TIMING

TABLE 37-17: EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	RACTERI	STICS	Standard Op (unless othe Operating ter	rwise state	nditions: 2.1 ed) -40°C ≤ TA ≤ -40°C ≤ TA ≤	+85°C fc	or Industrial
Param. No.	Symbol	Characteristics	Minimum	Typical ⁽¹⁾	Maximum	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		64	MHz	EC (Note 2,3)
OS13		Oscillator Crystal Frequency	4	—	32	MHz	HS (Note 2,3)
OS15			32	32.768	100	kHz	Sosc (Note 2)
OS20	Tosc	Tosc = 1/Fosc	_		—	_	See parameter OS10 for Fosc value
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.375 x Tosc	—	_	ns	EC (Note 2)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	7.5	ns	EC (Note 2)
OS40	Тоѕт	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 2)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	_	ms	(Note 2)
OS42	Gм	External Oscillator Transconductance	—	400	_	µA/V	VDD = 3.3V, TA = +25°C, HS (Note 2)


Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are characterized but are not tested.

2: This parameter is characterized, but not tested in manufacturing.

3: See parameter OS50 for PLL input frequency limitations.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimensior	Limits	MIN	NOM	MAX
Number of Pins	Ν	64		
Pitch	е	0.50 BSC		
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	7.60	7.70	7.80
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	7.60	7.70	7.80
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-213B Sheet 2 of 2

•				
PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature			
ADC Calibration				
On PIC32MX devices, the ADC module can be used immediately, once it is enabled.	 PIC32MZ devices require a calibration step prior to operation This is done by copying the calibration data from DEVADCx to the corresponding ADCxCFG register. 			
I/O Pin Analog Function Selection				
On PIC32MX devices, the analog function of an I/O pin was deter- mined by the PCFGx bit in the AD1PCFG register.	 On PIC32MZ EF devices, the analog selection function has bee moved into a separate register on each I/O port. Note that th sense of the bit is different. 			
PCFGx (AD1PCFG <x>) 1 = Analog input pin in Digital mode 0 = Analog input pin in Analog mode</x>	ANSxy (ANSELx <y>) 1 = Analog input pin in Analog mode 0 = Analog input pin in Digital mode</y>			
Electrical Specifications and Timing Requirements				
	On PIC32MZ EF devices, the ADC module sampling and conversion time and other specifications have changed. Refer to 37.0 "Electrical Characteristics " for more information.			

TABLE A-3: ADC DIFFERENCES (CONTINUED)

B.2 Analog-to-Digital Converter (ADC)

The PIC32MZ EC family features a Pipelined ADC module, while the PIC32MZ EF family of devices has an entirely new 12-bit High-Speed SAR ADC module. Nearly all registers in this new ADC module differ from the registers in PIC32MZ EC devices. Due to this difference, code will not port from PIC32MZ EC devices to PIC32MZ EF devices. Table B-2 lists some of the differences in registers to note to adapt code as quickly as possible.

TABLE B-2:ADC DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature
Clock Selection and O	perating Frequency (TAD)
On PIC32MZ EC devices, there are three possible sources of the ADC clock: FRC, REFCLKO3, and SYSCLK.	On PIC32MZ EF devices, there are four sources for the ADC clock. In addition to the ones for PIC32MZ EC, PBCLK4 is added as a source. Also, the clock source selection is in a different register.
ADCSEL<1:0> (AD1CON1<9:8>)	ADCSEL<1:0> (ADCCON3<31:30>)
11 = FRC	11 = FRC
10 = REFCLKO3	10 = REFCLKO3
01 = SYSCLK	01 = SYSCLK
00 = Reserved	00 = PBCLK4
Scan Trigg	ger Sources
On PIC32MZ EC devices, there are 10 available trigger sources for starting ADC sampling and conversion.	On PIC32MZ EF devices, two new sources have been added. One is a shared trigger source (STRIG). The other is a Global Level Software Trigger (GLSWTRG). With the GLSWTRG, the conversions continue until the bit is cleared in software.
STRGSRC<4:0> (AD1CON1<26:22>)	TRGSRC<4:0> (ADCTRGx <y:z>)</y:z>
11111 = Reserved	11111 = Reserved
•	•
•	•
• 01101 = Reserved	• 01101 = Reserved
01100 = Comparator 2 COUT	01100 = Comparator 2 COUT
01011 = Comparator 1 COUT	01011 = Comparator 1 COUT
01011 = 0CMP5	01011 = OCMP5
01001 = 0CMP3	01001 = OCMP3
01000 = OCMP1	01000 = OCMP1
00111 = TMR5 match	00111 = TMR5 match
00110 = TMR3 match	00110 = TMR3 match
00101 = TMR1 match	00101 = TMR1 match
00100 = INTO	00100 = INTO
00011 = Reserved	00011 = STRIG
00010 = Reserved	00010 = Global Level Software Trigger (GLSWTRG)
00001 = Global Software Trigger (GSWTRG)	00001 = Global Software Trigger (GSWTRG)
00000 = No trigger	00000 = No trigger
Debu	g Mode
On PIC32MZ EC devices, the ADC module continues operating when stopping on a breakpoint during debugging.	On PIC32MZ EF devices, the ADC module will stop during debugging when stopping on a breakpoint.
Electrical Specifications	and Timing Requirements
Refer to the "Electrical Characteristics" chapter in the	On PIC32MZ EF devices, the ADC module sampling and
PIC32MZ EC data sheet for ADC module specifications and timing requirements.	conversion time and other specifications have changed. Refer to 37.0 "Electrical Characteristics" for more information.
ADC Ca	libration
PIC32MZ EC devices require calibration values be copied into the AD1CALx registers before turning on the ADC. These values come from the DEVADCx registers.	