

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efm100-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	4-pin TOFP/ Type Type		Buffer Type	Description	
					J	ΓAG		
ТСК	27	38	B21	56	I	ST	JTAG Test Clock Input Pin	
TDI	28	39	A26	57	I	ST	JTAG Test Data Input Pin	
TDO	24	40	B22	58	0	—	JTAG Test Data Output Pin	
TMS	23	17	A11	22	I	ST	JTAG Test Mode Select Pin	
Trace								
TRCLK	57	89	A61	129	0	_	Trace Clock	
TRD0	58	97	B55	141	0	—	Trace Data bits 0-3	
TRD1	61	96	A65	140	0	—		
TRD2	62	95	B54	139	0	—		
TRD3	63	90	B51	130	0	—		
				Pro	grammiı	ng/Debugg	ing	
PGED1	16	25	A18	36	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1	
PGEC1	15	24	A17	35	Ι	ST	Clock input pin for Programming/Debugging Communication Channel 1	
PGED2	18	27	A19	38	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2	
PGEC2	17	26	B14	37	Ι	ST	Clock input pin for Programming/Debugging Communication Channel 2	
MCLR	9	15	A10	20	l/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.	
Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer						O = Outp	Analog input P = Power ut I = Input eripheral Pin Select	

TABLE 1-22: JTAG, TRACE, AND PROGRAMMING/DEBUGGING PINOUT I/O DESCRIPTIONS

REGISTE	ER 5-8:	NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER
bit 4	UBWP4:	Upper Boot Alias Page 4 Write-protect bit ⁽¹⁾
		protection for physical address 0x01FC30000 through 0x1FC33FFF enabled protection for physical address 0x01FC30000 through 0x1FC33FFF disabled
bit 3	UBWP3:	Upper Boot Alias Page 3 Write-protect bit ⁽¹⁾
	0 = Write	protection for physical address 0x01FC2C000 through 0x1FC2FFFF enabled protection for physical address 0x01FC2C000 through 0x1FC2FFFF disabled
bit 2	UBWP2:	Upper Boot Alias Page 2 Write-protect bit ⁽¹⁾
		protection for physical address 0x01FC28000 through 0x1FC2BFFF enabled protection for physical address 0x01FC28000 through 0x1FC2BFFF disabled
bit 1	UBWP1:	Upper Boot Alias Page 1 Write-protect bit ⁽¹⁾
	0 = Write	protection for physical address 0x01FC24000 through 0x1FC27FFF enabled protection for physical address 0x01FC24000 through 0x1FC27FFF disabled
bit 0	UBWP0:	Upper Boot Alias Page 0 Write-protect bit ⁽¹⁾
		protection for physical address 0x01FC20000 through 0x1FC23FFF enabled protection for physical address 0x01FC20000 through 0x1FC23FFF disabled

Note 1: These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	—	—	—		IP3<2:0>	IS3<1:0>		
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	_	—	_	IP2<2:0>			IS2<1:0>	
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	_	—	_		IP1<2:0>		IS1<	:1:0>
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	—	_		IP0<2:0>		IS0<	:1:0>

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP3<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 25-24	IS3<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
bit 23-21	
bit 20-18	IP2<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 17-16	IS2<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0
hit 15-13	Unimplemented: Read as '0'
5115-15	ommplemented. Read as 0
Note:	This register represents a generic defi

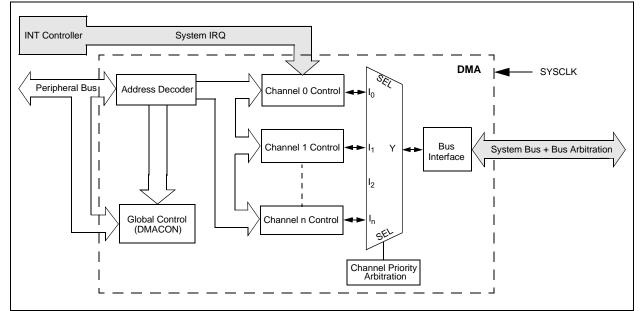
Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

REGISTE	ER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER
bit 10-8	NOSC<2:0>: New Oscillator Selection bits
	111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
	110 = Reserved
	101 = Internal Low-Power RC (LPRC) Oscillator
	100 = Secondary Oscillator (Sosc) 011 = Reserved
	010 = Primary Oscillator (Posc) (HS or EC)
	001 = System PLL (SPLL)
	000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
	On Reset, these bits are set to the value of the FNOSC<2:0> Configuration bits (DEVCFG1<2:0>).
bit 7	CLKLOCK: Clock Selection Lock Enable bit
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified
bit 6-5	Unimplemented: Read as '0'
bit 4	SLPEN: Sleep Mode Enable bit
	 1 = Device will enter Sleep mode when a WAIT instruction is executed 0 = Device will enter Idle mode when a WAIT instruction is executed
hi+ 0	CF: Clock Fail Detect bit
bit 3	
	 1 = FSCM has detected a clock failure 0 = No clock failure has been detected
bit 2	Unimplemented: Read as '0'
bit 1	SOSCEN: Secondary Oscillator (Sosc) Enable bit
	1 = Enable Secondary Oscillator
	0 = Disable Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit ⁽¹⁾
	1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	The reset value for this bit depends on the setting of the IESO bit (DEVCFG1<7>). When IESO = 1, the
NOLE I.	reset value is '1'. When IESO = 0, the reset value is '0'.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The Direct Memory Access (DMA) Controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the device such as SPI, UART, PMP, etc., or memory itself.

The following are key features of the DMA Controller:

- Eight identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination
- Fixed priority channel arbitration

FIGURE 10-1: DMA BLOCK DIAGRAM

- Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Up to 2-byte Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent error address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—			—	—	_		—	
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
23:16	CHAIRQ<7:0> ⁽¹⁾								
45.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
15:8	CHSIRQ<7:0> ⁽¹⁾								
7.0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
7:0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	_	

REGISTER 10-8: DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

and set CHAIF flag

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress
	•
	•
	•

00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag

bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits⁽¹⁾

11111111 = Interrupt 255 will initiate a DMA transfer

• 00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer

bit 7 CFORCE: DMA Forced Transfer bit

1 = A DMA transfer is forced to begin when this bit is written to a '1'

0 = This bit always reads '0'

bit 6 CABORT: DMA Abort Transfer bit

- 1 = A DMA transfer is aborted when this bit is written to a '1'
- 0 = This bit always reads '0'

bit 5 **PATEN:** Channel Pattern Match Abort Enable bit

- 1 = Abort transfer and clear CHEN on pattern match
- 0 = Pattern match is disabled
- bit 4 SIRQEN: Channel Start IRQ Enable bit
 - 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
 - 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-2: "Interrupt IRQ, Vector, and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	_		-		—	—	
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	_	_	_	—	—	
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8	CHSPTR<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0				CHSPTF	R<7:0>				

REGISTER 10-14: DCHxSPTR: DMA CHANNEL x SOURCE POINTER REGISTER

Legend:

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

111111111111111 = Points to byte 65,535 of the source

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24			_		—			—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	_	—	—	—	—	—	_	—			
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	CHDPTR<15:8>										
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
				CHDPTF	R<7:0>						

REGISTER 10-15: DCHxDPTR: DMA CHANNEL x DESTINATION POINTER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

111111111111111 = Points to byte 65,535 of the destination

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24		_	_	—	_	-	_	_		
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16					-					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHPDAT<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				CHPDAT	<7:0>					

REGISTER 10-18: DCHxDAT: DMA CHANNEL x PATTERN DATA REGISTER

Legend:

3						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **CHPDAT<15:0>:** Channel Data Register bits <u>Pattern Terminate mode:</u> Data to be matched must be stored in this register to allow terminate on match.

> All other modes: Unused.

TABLE 12-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

ss				Bits															
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
15B4	RPC13R	31:16	_		—		_			_		—	—	—	—	—	_	-	0000
1364	RECISK	15:0	_		_		_			_		_	_	_		RPC13	R<3:0>		0000
15B8	RPC14R	31:16	_		_		_			_		_	_	_	_	_	_	_	0000
1300	KFC14K	15:0	_		_		—			_		-	_	_		RPC14	R<3:0>		0000
15C0	RPD0R	31:16	—	-	—	-	—	—	-	—	-	—	—			—	—	—	0000
1300	REDOR	15:0	—	-	—	-	—	—	-	—	-	—	—			RPD0	R<3:0>		0000
15C4	RPD1R	31:16	—	_		_	_	_	_	—	_		_			_	—	—	0000
1304	REDIK	15:0	—		—	_	—	_		—	_	—	—	—		RPD1	R<3:0>		0000
15C8	RPD2R	31:16	—	-	—	-	—	—	-	—	-	—	—			—	—	—	0000
1300	KF D2K	15:0	—	_		_	_	_	_	—	_		_			RPD2	R<3:0>		0000
15CC	RPD3R	31:16	—	_	—	_	—	_	_	—	_	—	—	—	—	—	—	—	0000
1300	KF D3K	15:0	—	-	—	-	—	—	-	—	-	—	—			RPD3	R<3:0>		0000
15D0	RPD4R	31:16	—	_		_	_	_	_	—	_		_			_	—	—	0000
1300		15:0	_	_	_	-	—	_	_	—	-	_	_	_		RPD4	R<3:0>		0000
15D4	RPD5R	31:16	—	-	—	-	—	—	-	—	-	—	—			—	—	—	0000
1304	REDSK	15:0	—	_		_	_	_	_	—	_		_	—		RPD5	R<3:0>		0000
15D8	RPD6R ⁽²⁾	31:16	—	_		_	_	_	_	—	_		_	—		_	—	—	0000
1300	KFD0K*/	15:0	—	-	—	-	—	—	-	—	-	—	—			RPD6	R<3:0>		0000
15DC	RPD7R ⁽²⁾	31:16	—	_		_	_	_	_	—	_		_	—		_	—	—	0000
1300	KFD/K·/	15:0	_	_	_	-	—	_	_	—	-	_	_	_		RPD7	R<3:0>		0000
15E4	RPD9R	31:16	—	-	—	-	—	—	-	—	-	—	—			—	—	—	0000
1324	KF D9K	15:0	—	_		_	_	_	_	—	_		_	—		RPD9	R<3:0>		0000
15E8	RPD10R	31:16	—	_		_	_	_	_	—	_		_	—		_	—	—	0000
1020	IN DIGIN	15:0	—	_	—	_	—	_	_	—	_	—	—	—		RPD10	R<3:0>		0000
15EC	RPD11R	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
1020	KI DIIK	15:0	—	—	—	_	—	—	—	—	—	—	—	—		RPD11	R<3:0>		0000
15F0	RPD12R ⁽¹⁾	31:16	—	_	—	_	—	_	_	—	_	—	—	—	—	—	—	—	0000
1010	KI DIZIK ¹	15:0	—	—	—	_	—	—	—	—	—	—	—	—		RPD12	R<3:0>		0000
15F8	RPD14R ⁽¹⁾	31:16	—	_		_	_	_	_	—	_		_	—		_	—	—	0000
101.0	IN DI4IN	15:0	—	_	—	_	—	_	_	—	_	—	—	—		RPD14	R<3:0>		0000
15FC	RPD15R ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1010	N D ION /	15:0	—	_			—	_	_	—	_		_			RPD15	R<3:0>		0000
160C	RPE3R	31:16	—	_	—	_	—	—	_	—	—	—	—	—	—	—	—	—	0000
1000	INF LOIN	15:0	—	-	—		_	-	-	—		—	—	—		RPE3	R<3:0>		0000
1614	RPE5R	31:16	_		—		—			_	—	—	—	_	—	—	—	—	0000
1014		15:0	—		_	—	—	—	—	—	—	—	—	_		RPE5	R<3:0>		0000

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is not available on 64-pin devices. Note 1:

This register is not available on 64-pin and 100-pin devices. 2:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—			—			—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL ⁽²⁾	_	—	_	_	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
7:0	TGATE ⁽¹⁾	Т	CKPS<2:0>(1)	T32 ⁽³⁾	_	TCS ⁽¹⁾	—

TxCON: TYPE B TIMER CONTROL REGISTER ('x' = 2-9) REGISTER 14-1:

Legend:

bit 3

R = Readable bit	Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: Timer On bit⁽¹⁾
 - 1 = Module is enabled 0 = Module is disabled
 - Unimplemented: Read as '0'

bit 14 bit 13 SIDL: Stop in Idle Mode bit⁽²⁾

- 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation even in Idle mode

Unimplemented: Read as '0' bit 12-8

TGATE: Timer Gated Time Accumulation Enable bit⁽¹⁾ bit 7

When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

- 1 = Gated time accumulation is enabled
- 0 = Gated time accumulation is disabled

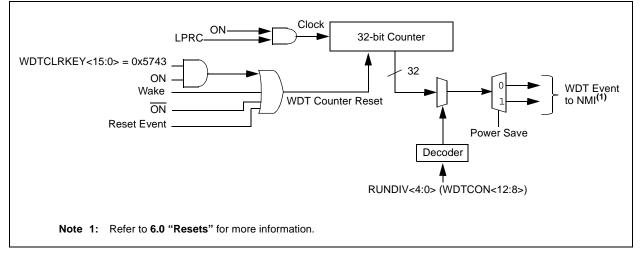
bit 6-4 TCKPS<2:0>: Timer Input Clock Prescale Select bits⁽¹⁾

- 111 = 1:256 prescale value
- 110 = 1:64 prescale value
- 101 = 1:32 prescale value
- 100 = 1:16 prescale value
- 011 = 1:8 prescale value
- 010 = 1:4 prescale value
- 001 = 1:2 prescale value

000 = 1:1 prescale value

T32: 32-Bit Timer Mode Select bit(3)

- 1 = Odd numbered and even numbered timers form a 32-bit timer
- 0 = Odd numbered and even numbered timers form separate 16-bit timers
- Note 1: While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
 - While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer 2: in Idle mode.
 - 3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).


16.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). When enabled, the Watchdog Timer (WDT) operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 16-1: WATCHDOG TIMER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—		—	-	—		—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	_		
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC		AMASK	<3:0> ⁽²⁾			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	ARPT<7:0> ⁽²⁾									

REGISTER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 CHIME: Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is more than 32 real-time clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved
- 1011 = Reserved
- 11xx = Reserved
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

© 2015-2016 Microchip Technology Inc.

26.2 Crypto Engine Buffer Descriptors

Host software creates a linked list of buffer descriptors and the hardware updates them. Table 26-3 provides a list of the Crypto Engine buffer descriptors, followed by format descriptions of each buffer descriptor (see Figure 26-2 through Figure 26-9).

Name (see No	ote 1)	Bit 31/2315/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
BD_CTRL	31:24	DESC_EN	—	(CRY_MODE<2:0	>	—	_	_			
	23:16	_	SA_FETCH_EN	-	_	LAST_BD	LIFM	PKT_INT_EN	CBD_INT_EN			
	15:8				BD_BUFLEN	<15:8>	•					
	7:0				BD_BUFLEN	N<7:0>						
BD_SA_ADDR	31:24	BD_SAADDR<31:24>										
	23:16		BD_SAADDR<23:16>									
	15:8				BD_SAADDR	<15:8>						
	7:0				BD_SAADR	<7:0>						
BD_SCRADDR	31:24				BD_SRCADDF	<31:24>						
	23:16				BD_SRCADDF	R<23:16>						
	15:8				BD_SRCADD	R<15:8>						
	7:0	BD_SRCADDR<7:0>										
BD_DSTADDR	31:24		BD_DSTADDR<31:24>									
	23:16	BD_DSTADDR<23:16>										
	15:8	BD_DSTADDR<15:8>										
	7:0				BD_DSTADD	R<7:0>						
BD_NXTPTR	31:24				BD_NXTADDR	<31:24>						
	23:16	BD_NXTADDR<23:16>										
	15:8	BD_NXTADDR<15:8>										
	7:0	BD_NXTADDR<7:0>										
BD_UPDPTR	31:24				BD_UPDADDF	R<31:24>						
	23:16				BD_UPDADDF	R<23:16>						
	15:8				BD_UPDADDI	R<15:8>						
	7:0				BD_UPDADD	R<7:0>						
BD_MSG_LEN	31:24				MSG_LENGTH	1<31:24>						
	23:16				MSG_LENGTH	1<23:16>						
	15:8				MSG_LENGT	H<15:8>						
	7:0				MSG_LENGT	H<7:0>						
BD_ENC_OFF	31:24				ENCR_OFFSE	T<31:24>						
	23:16				ENCR_OFFSE	T<23:16>						
	15:8				ENCR_OFFSE	T<15:8>						
	7:0				ENCR_OFFSI	ET<7:0>						

TABLE 26-3: CRYPTO ENGINE BUFFER DESCRIPTORS

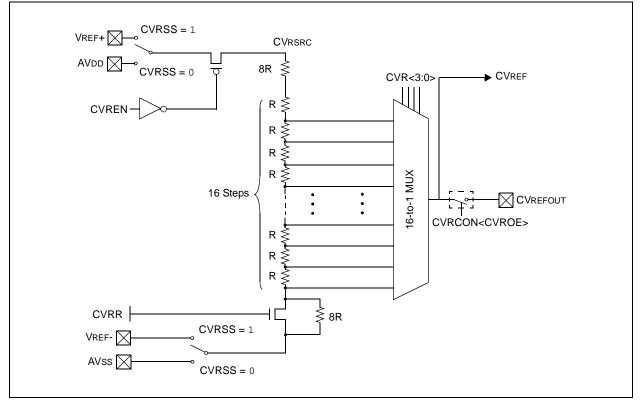
Note 1: The buffer descriptor must be allocated in memory on a 64-bit boundary.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

REGISTER 29-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1 (CONTINUED) bit 15 FLTEN5: Filter 17 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL5<1:0>: Filter 5 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL5<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN4: Filter 4 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL4<1:0>: Filter 4 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL4<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'. Note:

32.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note:	This data sheet summarizes the
	features of the PIC32MZ EF family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 20. "Comparator
	Voltage Reference (CVREF)"
	(DS60001109) in the "PIC32 Family
	Reference Manual", which is available
	from the Microchip web site
	(www.microchip.com/PIC32).


The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The comparator voltage reference has the following features:

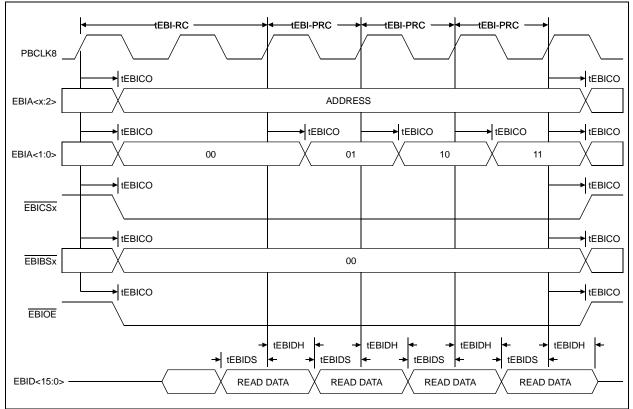
- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

A block diagram of the CVREF module is illustrated in Figure 32-1.

33.3 Peripheral Module Disable

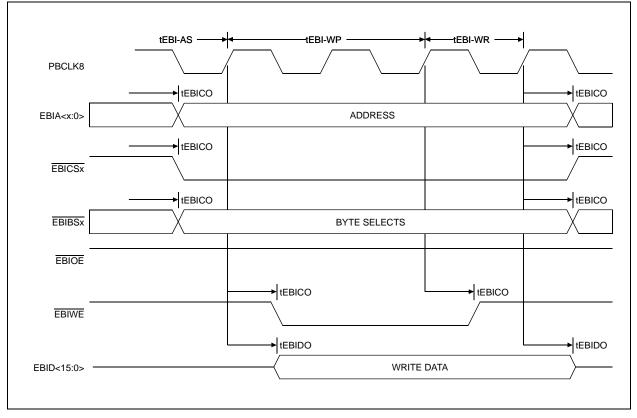
The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 33-1 for more information.

Note:	Disabling a peripheral module while it's
	ON bit is set, may result in undefined
	behavior. The ON bit for the associated
	peripheral module must be cleared prior to
	disable a module via the PMDx bits.


Peripheral	PMDx bit Name	Register Name and Bit Location PMD1<0>		
ADC	ADCMD			
Comparator Voltage Reference	CVRMD	PMD1<12>		
Comparator 1	CMP1MD	PMD2<0>		
Comparator 2	CMP2MD	PMD2<1>		
Input Capture 1	IC1MD	PMD3<0>		
Input Capture 2	IC2MD	PMD3<1>		
Input Capture 3	IC3MD	PMD3<2>		
Input Capture 4	IC4MD	PMD3<3>		
Input Capture 5	IC5MD	PMD3<4>		
Input Capture 6	IC6MD	PMD3<5>		
Input Capture 7	IC7MD	PMD3<6>		
Input Capture 8	IC8MD	PMD3<7>		
Input Capture 9	IC9MD	PMD3<8>		
Output Compare 1	OC1MD	PMD3<16>		
Output Compare 2	OC2MD	PMD3<17>		
Output Compare 3	OC3MD	PMD3<18>		
Output Compare 4	OC4MD	PMD3<19>		
Output Compare 5	OC5MD	PMD3<20>		
Output Compare 6	OC6MD	PMD3<21>		
Output Compare 7	OC7MD	PMD3<22>		
Output Compare 8	OC8MD	PMD3<23>		
Output Compare 9	OC9MD	PMD3<24>		
Timer1	T1MD	PMD4<0>		
Timer2	T2MD	PMD4<1>		
Timer3	T3MD	PMD4<2>		
Timer4	T4MD	PMD4<3>		
Timer5	T5MD	PMD4<4>		
Timer6	T6MD	PMD4<5>		
Timer7	T7MD PMD4<6			
Timer8	T8MD PMD4<7>			
Timer9	T9MD	PMD4<8>		
UART1	U1MD	PMD5<0>		
UART2	U2MD	PMD5<1>		

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the lists of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.


DC CHARACTERISTICS		SUIPUT SPECIFICATIONSStandard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾
DO10	Vol	Output Low Voltage I/O Pins 4x Sink Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-RB2, RB4, RB6, RB7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11		_	0.4	V	Iol \leq 10 mA, VDD = 3.3V
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7	_	_	0.4	V	Iol ≤ 15 mA, Vdd = 3.3V
		Output Low Voltage I/O Pins: 12x Sink Driver Pins - RA6, RA7 RE0-RE3 RF1 RG12-RG14	_	_	0.4	v	Iol \leq 20 mA, Vdd = 3.3V

Note 1: Parameters are characterized, but not tested.

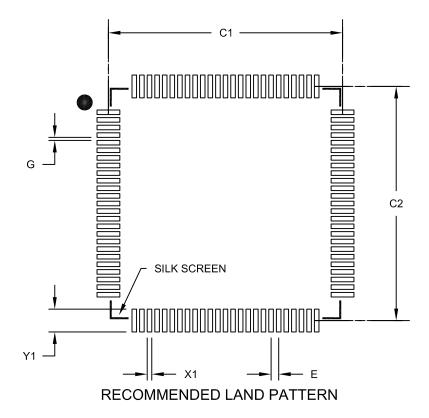

FIGURE 37-28: EBI PAGE READ TIMING

FIGURE 37-29: EBI WRITE TIMING

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC		
Contact Pad Spacing	C1		15.40		
Contact Pad Spacing	C2		15.40		
Contact Pad Width (X100)	X1			0.30	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

APPENDIX B: MIGRATING FROM PIC32MZ EC TO PIC32MZ EF

This appendix provides an overview of considerations for migrating from PIC32MZ EC devices to the PIC32MZ EF family of devices. The code developed for PIC32MZ EC devices can be ported to PIC32MZ EF devices after making the appropriate changes outlined in the following sections. The PIC32MZ EF devices are similar to PIC32MZ EC devices, with many feature improvements and new capabilities.

B.1 Oscillator and PLL Configuration

A number of new features have been added to the oscillator and PLL to enhance their ability to work with crystals and to change frequencies.

Table B-1 summarizes the differences (indicated by **Bold** type) between the family differences for the oscillator.

PIC32MZ EC Feature	PIC32MZ EF Feature			
Primary Oscillator Crystal Power				
On PIC32MZ EC devices, the crystal HS Posc mode is only functional with crystals that have certain characteristics, such as very low ESR.	On PIC32MZ EF devices, some DEVCFG0 bits have been added to allow control over the strength of the oscillator and to add a kick start boost. POSCBOOST (DEVCFG0<21>) 1 = Boost the kick start of the oscillator 0 = Normal start of the oscillator POSCGAIN<1:0> (DEVCFG0<20:19>) 11 = 2x gain setting 10 = 1.5x gain setting 01 = 0.5x gain setting 00 = 1x gain setting Note that the default for POSCGAIN (2x gain setting) may over- drive crystals and shorten their life. It is the responsibility of the designer to ensure crystals are operated properly.			
Secondary Oscilla	ator Crystal Power			
On PIC32MZ EC devices, the Secondary Oscillator (Sosc) is not functional.	On PIC32MZ EF devices, the Secondary Oscillator is now functional, and provides similar strength and kick start boost features as the Posc. SOSCBOOST (DEVCFG0<18>) 1 = Boost the kick start of the oscillator 0 = Normal start of the oscillator SOSCGAIN<1:0> (DEVCFG0<17:16>) 11 = 2x gain setting 10 = 1.5x gain setting 01 = 0.5x gain setting 00 = 1x gain setting Note that the default for SOSCGAIN (2x gain setting) may over- drive crystals and shorten their life. It is the responsibility of the designer to ensure crystals are operated properly.			
Clock St	atus Bits			
On PIC32MZ EC devices, the SOSCRDY bit (OSCCON<22>) indicates when the Secondary Oscillator is ready. There are no indications of other oscillator status.	 A new register, CLKSTAT, has been added, which includes the SOSCRDY bit (CLKSTAT<4>). In addition, new status bits are available: LPRCRDY (CLKSTAT<5>) POSCRDY (CLKSTAT<2>) DIVSPLLRDY (CLKSTAT<1>) FRCRDY (CLKSTAT<0>) 			
Clock S	witching			
On PIC32MZ EC devices, clock switches occur as soon as the switch command is issued. Also, the only clock sources that can be divided are the output of the PLL, and the FRC.	To reduce power spikes during clock switches, PIC32MZ EF devices add a clock slewing feature, so that clock switches can be controlled in their rate and size. The SLEWCON register controls this feature. The SLEWCON register also features a SYSCLK divider, so that all of the possible clock sources may be divided further as needed.			

TABLE B-1: OSCILLATOR DIFFERENCES