

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efm100t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

A block diagram of the PIC32MZ EF family processor core is shown in Figure 3-1.

FIGURE 3-1: PIC32MZ EF FAMILY MICROPROCESSOR CORE BLOCK DIAGRAM

TABLE 4-9: SYSTEM BUS TARGET 1 REGISTER MAP (CONTINUED)

ess											Bits								
Virtual Addre (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
04E0		31:16								BA	SE<21:6>								xxxx
04⊑0	SBITKEGS	15:0			BA	\SE<5:0>			PRI	—			SIZE<4:0	>		—	—	—	xxxx
94E0		31:16			_	_	-	_	-			_	_	_	—	-	—	—	xxxx
041 0	3BTIKD5	15:0		-	-	-	_	_	_			_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
84E8	SBT1W/R5	31:16		_	-		_	-	_			_	—	—	—	_	—	—	xxxx
041.0	OBTIWI(5	15:0	—	—	—	—	—	—	—	—	—		—	—	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
8500	SBT1REG6	31:16								BA	SE<21:6>								xxxx
0000	ob incoo	15:0			BA	SE<5:0>			PRI	—			SIZE<4:0	>		—	—	—	xxxx
8510	SBT1RD6	31:16	—	—	—	—	—	—	—	_	—		_	—		—	—	—	xxxx
		15:0	—	—	—	—	—	—	—	_	—	—		—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8518	SBT1WR6	31:16	—	—	—	—	—	—	—	_	—	—		—		—	—	—	XXXX
		15:0		—	—	—		—		—	_		—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8520	SBT1REG7	31:16							1	BA	SE<21:6>								XXXX
	-	15:0			BA	\SE<5:0>			PRI	_			SIZE<4:0	>	1	—	—		XXXX
8530	SBT1RD7	31:16	—	—	_	_	—	_	—	_	_	—		—			—	—	XXXX
		15:0	—	—	—	—	—	_	—	_				—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8538	SBT1WR7	31:16		—	—	—	—	—	—	-	_	—	_	—	-	—	—	—	XXXX
		15:0		—	—	—	—	—	_	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
8540	SBT1REG8	31:16								BA	SE<21:6>						r		XXXX
		15:0			BA	\SE<5:0>			PRI	_			SIZE<4:0	>	-	_			XXXX
8550	SBT1RD8	31:16	_		_	_				_					-	-	-	-	XXXX
		15:0		_	_	_	_	_	_	_	_	_		_	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
8558	SBT1WR8	31:16	_	_	_	_	—	_	_	_	_		_	_		-			XXXX
		15:0	—	—	—	—	-	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	/ XXXX

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ()	N -	Ð								Bi	its								Ś
Virtual Add (BF81_#	Registe Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0650	055407(7)	31:16	_	_	—	—	—	—	_	—	_	_	—	_	_	_	VOFF<	17:16>	0000
06EC	OFF107	15:0								VOFF<15:1>									0000
06F4		31:16	_	_	—	—	—	—	—	—	_	_	—	—	—	_	VOFF<	17:16>	0000
0014	011103	15:0								VOFF<15:1>								—	0000
06F8	OFF110	31:16	_	—	—	—	—	—	—	—	—	_	—	—	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>								_	0000
06FC	OFF111	31:16	_	—	—	—	_	—	—	_	_	_	_			—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>									0000
0700	OFF112	31:16	—	—	—	—	—	—	—		—	—	—	_	—	—	VOFF<	17:16>	0000
		15:0			1	1	r	r	i	VOFF<15:1>		i	r		r		VOFF	_	0000
0704	OFF113	31:16	_	_	—	—	_	_	_		_	_	_	—	_	_	VOFF<	17:16>	0000
		15:0								VUFF<15:1>									0000
0708	OFF114	15.0		_	_			_	_	VOFE<15:1>							VOITS		0000
		31.16	_	_	_	_	_	_			_		_		_	_	VOFE	17.16>	0000
070C	OFF115	15:0								VOFF<15:1>							10113	_	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_		_	_	VOFF<	17:16>	0000
0710	OFF116	15:0								VOFF<15:1>								_	0000
	0	31:16	_	_	_	_	_	_	_	_	_	_	—	_	—	_	VOFF<	17:16>	0000
0714	OFF117	15:0								VOFF<15:1>								_	0000
0710	00000(2)	31:16	_	_	_	_	—	—	_	-	—	_	_	_	—	_	VOFF<	17:16>	0000
0718		15:0								VOFF<15:1>								_	0000
0710		31:16	_	-	—	—	—	—	—	—	1	—	—	_	—	_	VOFF<	17:16>	0000
0/10	011113	15:0								VOFF<15:1>								_	0000
0720	OFF120	31:16	—	—	—	—		—	—	_	_		—	—		—	VOFF<	17:16>	0000
0720	011120	15:0								VOFF<15:1>								—	0000
0724	OFF121	31:16	_	—	-	—	—	—	—	-	—	—	—	_	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>								—	0000
0728	OFF122	31:16	—	—	—	—	—	—	—		—	—	—	—	—	—	VOFF<	17:16>	0000
	-	15:0								VOFF<15:1>	•							—	0000

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

REGISTER 11-4: USBCSR3: USB CONTROL STATUS REGISTER 3 (CONTINUED)

bit 19-16 ENDPOINT<3:0>: Endpoint Registers Select bits

- bit 19-11 Unimplemented: Read as 0
- bit 10-0 RFRMNUM<10:0>: Last Received Frame Number bits

REGISTER 11-28: USBLPMR1: USB LINK POWER MANAGEMENT CONTROL REGISTER 1 (CONTINUED)

bit 16 LPMXMT: LPM Transition to the L1 State bit

When in Device mode:

1 = USB module will transition to the L1 state upon the receipt of the next LPM transaction. LPMEN must be set to `0b11. Both LPMXMT and LPMEN must be set in the same cycle.

0 = Maintain current state

When LPMXMT and LPMEN are set, the USB module can respond in the following ways:

- If no data is pending (all TX FIFOs are empty), the USB module will respond with an ACK. The bit will self clear and a software interrupt will be generated.
- If data is pending (data resides in at least one TX FIFO), the USB module will respond with a NYET. In this case, the bit will not self clear however a software interrupt will be generated.

When in Host mode:

- 1 = USB module will transmit an LPM transaction. This bit is self clearing, and will be immediately cleared upon receipt of any Token or three time-outs have occurred.
 0 = Maintain current state
- bit 15-12 ENDPOINT<3:0>: LPM Token Packet Endpoint bits
- This is the endpoint in the token packet of the LPM transaction.
- bit 11-9 Unimplemented: Read as '0'
- bit 8 **RMTWAK:** Remote Wake-up Enable bit

This bit is applied on a temporary basis only and is only applied to the current suspend state.

- 1 = Remote wake-up is enabled
- 0 = Remote wake-up is disabled
- bit 7-4 HIRD<3:0>: Host Initiated Resume Duration bits

The minimum time the host will drive resume on the bus. The value in this register corresponds to an actual resume time of:

Resume Time = 50 μ s + HIRD * 75 μ s. The resulting range is 50 μ s to 1200 μ s.

bit 3-0 LNKSTATE<3:0>: Link State bits

This value is provided by the host to the peripheral to indicate what state the peripheral must transition to after the receipt and acceptance of a LPM transaction. The only valid value for this register is '1' for Sleep State (L1). All other values are reserved.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R/W-1, HS
31:24	—	—	—	—	—	USBIF	USBRF	USBWKUP
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
	r-1	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	—	—	—	—	—	—	USB IDOVEN	USB IDVAL
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	PHYIDEN	VBUS MONEN	ASVAL MONEN	BSVAL MONEN	SEND MONEN	USBIE	USBRIE	USB WKUPEN

REGISTER 11-30: USBCRCON: USB CLOCK/RESET CONTROL REGISTER

l egend.

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bi

bit 31-27	Unimplemented: Read as '0'
bit 26	USBIF: USB General Interrupt Flag bit 1 = An event on the USB Bus has occurred 0 = No interrupt from USB module or interrupts have not been enabled
bit 25	USBRF: USB Resume Flag bit 1 = Resume from Suspend state. Device wake-up activity can be started. 0 = No Resume activity detected during Suspend, or not in Suspend state
bit 24	USBWK: USB Activity Status bit 1 = Connect, disconnect, or other activity on USB detected since last cleared 0 = No activity detected on USB
	Note: This bit should be cleared just prior to entering sleep, but it should be checked that no activit has already occurred on USB before actually entering sleep.
bit 23-14	Unimplemented: Read as '0'
bit 15	Reserved: Read as '1'
bit 14-10	Unimplemented: Read as '0'
bit 9	USBIDOVEN: USB ID Override Enable bit 1 = Enable use of USBIDVAL bit 0 = Disable use of USBIDVAL and instead use the PHY value
bit 8	USBIDVAL: USB ID Value bit 1 = ID override value is 1 0 = ID override value is 0
bit 7	PHYIDEN: PHY ID Monitoring Enable bit 1 = Enable monitoring of the ID bit from the USB PHY 0 = Disable monitoring of the ID bit from the USB PHY
bit 6	VBUSMONEN: VBUS Monitoring for OTG Enable bit 1 = Enable monitoring for VBUS in VBUS Valid range (between 4.4V and 4.75V) 0 = Disable monitoring for VBUS in VBUS Valid range
bit 5	ASVALMONEN: A-Device VBUS Monitoring for OTG Enable bit 1 = Enable monitoring for VBUS in Session Valid range for A-device (between 0.8V and 2.0V) 0 = Disable monitoring for VBUS in Session Valid range for A-device

BSVALMONEN: B-Device VBUS Monitoring for OTG Enable bit

0 = Disable monitoring for VBUS in Session Valid range for B-device

1 = Enable monitoring for VBUS in Session Valid range for B-device (between 0.8V and 4.0V)

© 2015-2016 Microchip Technology Inc.

bit 4

TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SSS		_								E	Bits								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1404		31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	_	—	0000
1404	INTIK	15:0	_	—	—	—	—	—	—	_	—	_	—	—		INT1F	2<3:0>		0000
1409		31:16	—	—	—	—	_	—	—	—	_	—	_		—	_		-	0000
1406	INTZR	15:0	—	—	—	—	_	—	—	—	_	—	_			INT2F	2<3:0>		0000
1400		31:16	_	—	_	_	_	_	—	—	_	_	—		—	_		_	0000
1400	INTOR	15:0	_	—	—	—	—	—	—	_	—	_	—	—		INT3F	2<3:0>		0000
1410		31:16	_	—	—	—	—	—	—	_	—	_	—	—	—	_	_	-	0000
1410	IN 14K	15:0	_	—	—	—	—	—	—	_	—	_	—	—		INT4F	2<3:0>		0000
1440	TOCKD	31:16	_	—	—	—	—	—	—	_	—	_	—	—	—	_	_	-	0000
1418	IZUKR	15:0	—	—	—	—	—	—	—	—	—	—	—	_		T2CKI	R<3:0>		0000
4.440		31:16	—	_	_	_	—	—	_	—	—	—	_	_	—	—	—	—	0000
1410	IJCKR	15:0	_	_	_	_	—	_	_	_	—	—	_	_		T3CKI	R<3:0>		0000
4.400	TIOKE	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1420	14CKR	15:0	_	—	—	—	—	—	—		—	—	_			T4CKI	R<3:0>	•	0000
	TEOKO	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1424	15CKR	15:0	_	—	—	—	—	—	—		—	—	_			T5CKI	R<3:0>	•	0000
4.400	TOOLD	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1428	TECKR	15:0	_	—	—	—	—	—	—		—	—	_			T6CKI	R<3:0>	•	0000
	770/0	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
142C	17CKR	15:0	—	_	_	_	_	_	_	—	_	—	_			T7CKI	R<3:0>		0000
	T 20//D	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
1430	TSCKR	15:0	—	_	_	_	_	_	_	—	_	—	_			T8CKI	R<3:0>		0000
	TAOLO	31:16	_	_	—	—	—	—	—		—	_	_	_	—	—	_	_	0000
1434	TYCKR	15:0	_	—	—	—	—	—	—		—	—	_			T9CKI	R<3:0>	•	0000
	1015	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
1438	IC1R	15:0	—	_	_	_	_	_	_	—	_	—	_			IC1R	<3:0>		0000
	1000	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
143C	IC2R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		IC2R	<3:0>		0000
	1005	31:16	_	_	_	_	_	_	_	—	_	_	_	—	—	—	—	—	0000
1440	IC3R	15:0	_	_	_	_	_	_	_	—	_	_	_	—		IC3R	<3:0>		0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is not available on 64-pin devices. Note 1:

2: This register is not available on devices without a CAN module.

SS										E	Bits								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	10.15	31:16	_	_	_	_	_	_	—	_	—	_	—	—	-	_	_	—	0000
1444	IC4R	15:0	—	—	—	_	—	-	—	—	—	-	—	—		IC4R	<3:0>		0000
	1055	31:16	—	—	—	—	-	_	—	—	—	-	—	—	-	—	_	_	0000
1448	IC5R	15:0		—	—	—	—	—	—	—	—	—	—	—		IC5R	<3:0>		0000
4440	1000	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
144C	IC6R	15:0		—	—	—	—	—	—	—	—	—	—	—		IC6R	<3:0>		0000
4.450	1070	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1450	IC/R	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC7R	<3:0>		0000
	1000	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—	0000
1454	IC8R	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC8R	<3:0>		0000
4.450	1000	31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1458	IC9R	15:0			—	—	—	_	—	—	—	_	—	—		IC9R	<3:0>		0000
4.400	00545	31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1460	OCFAR	15:0			—	—	—	_	—	—	—	_	—	—		OCFA	R<3:0>		0000
		31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1468	UIRXR	15:0			—	—	—	_	—	—	—	_	—	—		U1RX	R<3:0>		0000
	LUCTOR	31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
146C	UICISR	15:0			—	—	—	_	—	—	—	_	—	—		U1CTS	SR<3:0>		0000
4.470		31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1470	U2RXR	15:0			—	—	—	_	—	—	—	_	—	—		U2RX	R<3:0>		0000
4 474	LIGOTOD	31:16	—	—	—	—	—	—	_	—	—	_	_	—	—	—	_	—	0000
1474	U2CISR	15:0	—	—	—	—	—	—	_	—	—	_	_	—		U2CTS	SR<3:0>		0000
4.470		31:16	—	—	—	—	—	—	_	—	—	_	_	—	—	—	_	—	0000
1478	UJRXR	15:0	—	—	—	—	—	—	_	—	—	_	_	—		U3RX	R<3:0>		0000
4.470	LIDOTOD	31:16	—	—	—	—	—	—	_	—	—	_	_	—	—	—	—	—	0000
147C	U3CTSR	15:0			—	—	—	_	—	—	—	_	—	—		U3CTS	SR<3:0>		0000
		31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1480	U4RXR	15:0	—	—	—	-	-	-	—	—	—	-	-	—		U4RX	R<3:0>		0000
4.40.4		31:16	—	—	_	—	—	-	—	—	—	—	—	—	—	—	—	_	0000
1484	04CTSR	15:0	_	_	—	_	—	_	_	_	_	_	_	_		U4CTS	SR<3:0>		0000

TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

FIGURE 26-4: FORMAT OF BD_SRCADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24				BD_SCRAD	DR<31:24>			
23-16				BD_SCRAD	DR<23:16>			
15-8				BD_SCRAD	DR<15:8>			
7-0				BD_SCRA	DDR<7:0>			

bit 31-0 BD_SCRADDR: Buffer Source Address

The source address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 26-5: FORMAT OF BD_DSTADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24				BD_DSTAD	DR<31:24>			
23-16				BD_DSTAD	DR<23:16>			
15-8				BD_DSTAD	DR<15:8>			
7-0				BD_DSTAI	DDR<7:0>			

bit 31-0 BD_DSTADDR: Buffer Destination Address

The destination address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 26-6: FORMAT OF BD_NXTADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24				BD_NXTAD	DR<31:24>			
23-16				BD_NXTAD	DR<23:16>			
15-8				BD_NXTAD	DR<15:8>			
7-0				BD_NXTAI	DDR<7:0>			
15-8 7-0				BD_NXTAL	DR<15:8> DDR<7:0>			

bit 31-0 **BD_NXTADDR:** Next BD Pointer Address Has Next Buffer Descriptor The next buffer can be a next segment of the previous buffer or a new packet.

		x = 1 OK 2)						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31:24				SEED<3	31:24>			
22.16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10				SEED<2	23:16>			
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8				SEED<	15:8>			
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				SEED<	<7:0>			

REGISTER 27-5: RNGSEEDX: TRUE RANDOM NUMBER GENERATOR SEED REGISTER 'x'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **SEED<31:0>:** TRNG MSb/LSb Value bits (RNGSEED1 = LSb, RNGSEED2 = MSb)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	_	—	—	
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—		—	—	
45-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	—	—	—	—	-	—	—	
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	—	RCNT<6:0>							

REGISTER 27-6: RNGCNT: TRUE RANDOM NUMBER GENERATOR COUNT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-7 Unimplemented: Read as '0'

bit 6-0 RCNT<6:0>: Number of Valid TRNG MSB 32 bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	—	—	—		Т	RGSRC3<4:()>			
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	—	—	—	TRGSRC2<4:0>						
15.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.6	—	—	—		TRGSRC1<4:0>					
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_	_		TRGSRC0<4:0>					

REGISTER 28-17: ADCTRG1: ADC TRIGGER SOURCE 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28-24 TRGSRC3<4:0>: Trigger Source for Conversion of Analog Input AN3 Select bits
 - 11111 = Reserved . . 01101 = Reserved 01100 = Comparator 2 (COUT) 01011 = Comparator 1 (COUT) 01010 = OCMP5 01001 = OCMP3 01000 = OCMP1 00111 = TMR5 match 00100 = TMR3 match 00100 = TMR1 match 00100 = INT0 External interrupt 00011 = STRIG 00010 = Global level software trigger (GLSWTRG) 00001 = Global software edge Trigger (GSWTRG) 00000 = No Trigger

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSSx registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TRGSRC2<4:0>:** Trigger Source for Conversion of Analog Input AN2 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC1<4:0>:** Trigger Source for Conversion of Analog Input AN1 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC0<4:0>:** Trigger Source for Conversion of Analog Input AN0 Select bits See bits 28-24 for bit value definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC							
31.24		CVDDATA<15:8>								
22.16	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC							
23:16	CVDDATA<7:0>									
15.0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC		
15.6		—	AINID<5:0>							
7.0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO		

REGISTER 28-20: ADCCMPCON1: ADC DIGITAL COMPARATOR 1 CONTROL REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 CVDDATA<15:0>: CVD Data Status bits

In CVD mode, these bits obtain the CVD differential output data (subtraction of CVD positive and negative measurement), whenever a Digital Comparator interrupt is generated. The value in these bits is compliant with the FRACT bit (ADCCON1<23>) and is always signed.

bit 15-14 Unimplemented: Read as '0'

bit 13-8 AINID<5:0>: Digital Comparator 0 Analog Input Identification (ID) bits

When a digital comparator event occurs (DCMPED = 1), these bits identify the analog input being monitored by Digital Comparator 0.

Note: In normal ADC mode, only analog inputs <31:0> can be processed by the Digital Comparator 0. The Digital Comparator 0 also supports the CVD mode, in which all Class 2 and Class 3 analog inputs may be stored in the AINID<5:0> bits.

111111 = Reserved
•
- 101101 - Reserved
101100 - ANAI is being monitored
101100 - AN43 is being monitored
•
000001 = AN1 is being monitored
000000 = ANO is being monitored
ENDCMP: Digital Comparator 0 Enable bit
1 = Digital Comparator 0 is enabled
0 = Digital Comparator 0 is not enabled, and the DCMPED status bit (ADCCMP0CON<5>) is cleared
DCMPGIEN: Digital Comparator 0 Global Interrupt Enable bit
1 = A Digital Comparator 0 interrupt is generated when the DCMPED status bit (ADCCMP0CON<5>) is set $0 = A$ Digital Comparator 0 interrupt is disabled
DCMPED: Digital Comparator 0 "Output True" Event Status bit
The logical conditions under which the digital comparator gets "True" are defined by the IEBTWN IEHIHI
IEHILO, IELOHI, and IELOLO bits.
Note: This bit is cleared by reading the AINID<5:0> bits or by disabling the Digital Comparator module (by setting ENDCMP to '0').
1 = Digital Comparator 0 output true event has occurred (output of Comparator is '1')
0 = Digital Comparator 0 output is false (output of comparator is '0')
IEBTWN: Between Low/High Digital Comparator 0 Event bit
1 = Generate a digital comparator event when DCMPLO<15:0> \leq DATA<31:0> \leq DCMPHI<15:0>

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				SID<1	0:3>			
00.40	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
23.10	SID<2:0>			—	MIDE	—	EID<	17:16>
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	EID<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	EID<7:0>							

REGISTER 29-9: CIRXMN: CAN ACCEPTANCE FILTER MASK 'n' REGISTER ('n' = 0-3)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	k = Bit is unknown

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Include bit, SIDx, in filter comparison
 - 0 = Bit SIDx is 'don't care' in filter operation
- bit 20 Unimplemented: Read as '0'
- bit 19 MIDE: Identifier Receive Mode bit
 - 1 = Match only message types (standard/extended address) that correspond to the EXID bit in filter
 0 = Match either standard or extended address message if filters match (that is, if (Filter SID) = (Message SID) or if (FILTER SID/EID) = (Message SID/EID))
- bit 18 **Unimplemented:** Read as '0'
- bit 17-0 EID<17:0>: Extended Identifier bits
 - 1 = Include bit, EIDx, in filter comparison
 - 0 = Bit EIDx is 'don't care' in filter operation

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	—	—	—	—	
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
10.0	ALGNERRCNT<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0				ALGNERRO	CNT<7:0>				

REGISTER 30-22: ETHALGNERR: ETHERNET CONTROLLER ALIGNMENT ERRORS STATISTICS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 ALGNERRCNT<15:0>: Alignment Error Count bits

Increment count for frames with alignment errors. Note that an alignment error is a frame that has an FCS error and the frame length in bits is not an integral multiple of 8 bits (a.k.a., dribble nibble)

Note 1: This register is only used for RX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.

REGISTER 30-31: EMAC1MCFG: ETHERNET CONTROLLER MAC MII MANAGEMENT								
CONFIGURATION REGISTER								
Di+	D''		D ''	D.1	D.1	i.	D''	

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	_	—	_	—	_
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—		—	—	—	-
15.9	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	RESETMGMT	—	—		—	—	—	-
7:0	U-0	U-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		_		CLKSEI	NOPRE	SCANINC		

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **RESETMGMT:** Test Reset MII Management bit 1 = Reset the MII Management module 0 = Normal Operation
- bit 14-6 Unimplemented: Read as '0'

bit 1 NOPRE: Suppress Preamble bit

- 1 = The MII Management will perform read/write cycles without the 32-bit preamble field. Some PHYs support suppressed preamble
- 0 = Normal read/write cycles are performed

bit 0 SCANINC: Scan Increment bit

- 1 = The MII Management module will perform read cycles across a range of PHYs. The read cycles will start from address 1 through the value set in EMAC1MADR<PHYADDR>
- 0 = Continuous reads of the same PHY
- **Note 1:** Table 30-7 provides a description of the clock divider encoding.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

TABLE 30-7: MIIM CLOCK SELECTION

MIIM Clock Select	EMAC1MCFG<5:2>
TPBCLK5 divided by 4	000x
TPBCLK5 divided by 6	0010
TPBCLK5 divided by 8	0011
TPBCLK5 divided by 10	0100
TPBCLK5 divided by 14	0101
TPBCLK5 divided by 20	0110
TPBCLK5 divided by 28	0111
TPBCLK5 divided by 40	1000
TPBCLK5 divided by 48	1001
TPBCLK5 divided by 50	1010
Undefined	Any other combination

bit 5-2 **CLKSEL<3:0>:** MII Management Clock Select 1 bits⁽¹⁾ These bits are used by the clock divide logic in creating the MII Management Clock (MDC), which the IEEE 802.3 Specification defines to be no faster than 2.5 MHz. Some PHYs support clock rates up to 12.5 MHz.

37.1 DC Characteristics

TABLE 37-1: OPERATING MIPS VS. VOLTAGE

	VDD Range	Temp. Range	Max. Frequency	0	
Characteristic	(in voits) (Note 1)	(in °C)	PIC32MZ EF Devices	Comment	
DC5	2.1V-3.6V	-40°C to +85°C	200 MHz		

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

TABLE 37-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD - S IOH)	PD		PINT + PI/C)	w
I/O Pin Power Dissipation: PI/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 37-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θJA	28	—	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θJA	49	—	°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θJA	43		°C/W	1
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θJA	40	—	°C/W	1
Package Thermal Resistance, 124-pin VTLA (9x9x0.9 mm)	θJA	30	—	°C/W	1
Package Thermal Resistance, 144-pin TQFP (16x16x1 mm)	θJA	42		°C/W	1
Package Thermal Resistance, 144-pin LQFP (20x20x1.4 mm)	θJA	39	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

38.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MZ EF device AC characteristics and timing parameters.

TABLE 38-5:	SYSTEM TIMING REQUIREMENTS
-------------	----------------------------

AC CHARACTERISTICS		Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions
EOS51	Fsys	System Frequency	DC	—	180	MHz	USB module disabled
			30	_	180	MHz	USB module enabled
EOS55a	Fрв	Peripheral Bus Frequency	DC		90	MHz	For PBCLKx, 'x' \neq 4, 7
EOS55b			DC		180	MHz	For PBCLK4, PBCLK7
EOS56	Fref	Reference Clock Frequency	_		45	MHz	For REFCLKI1, 3, 4 and REFCLKO1, 3, 4 pins

TABLE 38-6: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard (unless of Operating	Operati therwise tempera	ng Conditio e stated) ature -40°C	n s: 2.1\ ≍ ≤ Ta ≤ +	/ to 3.6V ⊦125°C fe	or Extended
Param. No.	Symbol	Characteristics ⁽¹⁾		Min.	Typical	Max.	Units	Conditions
EOS54a	Fpll	PLL Output Frequency Range		10	_	180	MHz	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{PBCLK2}{\sqrt{CommunicationClock}}}}$$

For example, if PBCLK2 = 100 MHz and SPI bit rate = 50 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{100}{50}}} = \frac{D_{CLK}}{1.41}$$

NOTES:

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature						
Secondary Oscillator Enable							
	The location of the SOSCEN bit in the Flash Configuration Words has moved.						
FSOSCEN (DEVCFG1<5>)	FSOSCEN (DEVCFG1<6>)						
PLL Con	figuration						
The FNOSC<2:0> and NOSC<2:0> bits select between POSC and FRC.	Selection of which input clock (POSC or FRC) is now done through the FPLLICLK/PLLICLK bits.						
FNOSC<2:0> (DEVCFG1<2:0>) NOSC<2:0> (OSCCON<10:8>)	FPLLICLK (DEVCFG2<7>) PLLICLK (SPLLCON<7>)						
On PIC32MX devices, the input frequency to the PLL had to be between 4 MHz and 5 MHz. FPLLIDIV selected how to divide the input frequency to give it the appropriate range.	On PIC32MZ EF devices, the input range for the PLL is wider (5 MHz to 64 MHz). The input divider values have changed, and new FPLLRNG/PLLRNG bits have been added to indicate under what range the input frequency falls.						
FPLLIDIV<2:0> (DEVCFG2<2:0>) 111 = 12x divider 110 = 10x divider	FPLLIDIV<2:0> (DEVCFG2<2:0>) PLLIDIV<2:0> (SPLLCON<2:0>) 111 = Divide by 8						
101 = 6x divider	110 = Divide by 7						
011 = 4x divider	101 = Divide by 6 100 = Divide by 5						
010 = 3x divider	011 = Divide by 4						
001 = 2x divider 000 = 1x divider	010 = Divide by 3 0.01 = Divide by 2						
	000 = Divide by 1						
	FPLLRNG<2:0> (DEVCFG2<6:4>) PLLRNG<2:0> (SPLLCON<2:0>)						
	111 = Reserved						
	110 = Reserved						
	101 = 34-64 MHZ 100 = 21-42 MHZ						
	011 = 13-26 MHz						
	010 = 8-16 MHz						
	001 = 5-10 MHZ 000 = Bypass						
On PIC32MX devices, the output frequency of PLL is between 60 MHz and 120 MHz. The PLL multiplier and divider bits configure the PLL for this range.	The PLL multiplier and divider on PIC32MZ EF devices have a wider range to accommodate the wider PLL specification range.						
FPLLMUL<2:0> (DEVCFG2<6:4>)	FPLLMUL T<6 :0> (DEVCFG2< 14:8 >)						
PLLMULT<2:0> (OSCCON<18:16>)	PLLMULT<6:0> (SPLLCON<22:16>)						
111 = 24x multiplier $110 = 21x multiplier$	1111111 = Multiply by 128 1111110 = Multiply by 127						
101 = 20x multiplier	1111101 = Multiply by 126						
100 = 19x multiplier	1111100 = Multiply by 125						
011 = 18x multiplier 010 = 17x multiplier	•						
001 = 16x multiplier	•						
000 = 15x multiplier	0000000 = Multiply by 1						
FPLLODIV<2:0> (DEVCFG2<18:16>)	FPLLODIV<2:0> (DEVCFG2<18:16>)						
PLLODIV<2:0> (OSCCON<29:27>)	PLLODIV<2:0> (SPLLCON<26:24>)						
111 = 24x multiplier $110 = 21x multiplier$	111 = PLL Divide by 32 110 = PLL Divide by 32						
101 = 20x multiplier	101 = PLL Divide by 32						
100 = 19x multiplier	100 = PLL Divide by 16						
011 = 18x multiplier	011 = PLL Divide by 8						
010 = 1/x multiplier 001 = 16x multiplier	010 = PLL Divide by 4 001 = PLL Divide by 2						
000 = 15x multiplier	000 = PLL Divide by 2						

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)

B.6 Resets

On PIC32MZ EF devices, the Reset module adds eight bits to the NMICNT field to make the time-out period before device Reset longer, as described in Table B-5.

TABLE B-5: RESETS DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature				
Countdown to Reset During NMIs					
On PIC32MZ EC devices, the NMICNT<7:0> field is eight bits long, giving a maximum of 256 instructions before the device Reset.	On PIC32MZ EF devices, the NMICNT<15:0> field is now 16 bits long, giving a longer period of time (up to 65,536 instructions) prior to a device Reset.				

B.7 USB

On PIC32MZ EF devices, a new USBCRCON register has been added to assist in controlling the reset of the USB module, and triggering interrupts based on VBUS voltage levels. This register also overcomes an errata on PIC32MZ EC devices that requires a three second start-up on the USB module.

B.8 I/O Ports

On PIC32MZ EF devices, many of the I/O pins now feature slew rate control bits to control how fast the pin makes a low-to-high or high-to-low transition. The Change Notification feature has also been enhanced to allow detection of level events in addition to edge detection. However, the SIDL bit is not present in the CNCONx registers on PIC32MZ EF devices, as it is on PIC32MZ EC devices.

B.9 Watchdog Timer

PIC32MZ EF devices use a new Watchdog Timer, although the overall control through the DEVCFGx words remains identical to that of PIC32MZ EC devices. Table B-6 lists two more changes, as well.

TABLE B-6: WATCHDOG TIMER DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature
Watchdog Timer Postscaler	
On PIC32MZ EC devices, the SWDTPS<4:0> bits (WDTCON<6:2>) reflect the postscaler setting for the Watchdog Timer.	On PIC32MZ EF devices, the field has been changed to the RUNDIV<4:0> bits (WDTCON<12:8>).
Watchdog Windowed Mode	
On PIC32MZ EC devices, WDTWINEN is at bit position 1 (WDTCON<1>).	On PIC32MZ EF devices, WDTWINEN is now at bit position 0 (WDTCON<0>).