

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efm100t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 BOOT FLASH SEQUENCE AND CONFIGURATION SPACES

Sequence space is used to identify which boot Flash is aliased by aliased regions. If the value programmed into the TSEQ<15:0> bits of the BF1SEQ3 word is equal to or greater than the value programmed into the TSEQ<15:0> bits of the BF2SEQ3 word, boot Flash 1 is aliased by the lower boot alias region, and boot Flash 2 is aliased by the upper boot alias region. If the TSEQ<15:0> bits of the BF2SEQ3 word is greater than the TSEQ<15:0> bits of the BF1SEQ3 word, the opposite is true (see Table 4-2 and Table 4-3 for BFxSEQ3 word memory locations).

The CSEQ<15:0> bits must contain the one's complement value of the TSEQ<15:0> bits; otherwise, the value of the TSEQ<15:0> bits is considered invalid, and an alternate sequence is used. See Section 4.1.2 "Alternate Sequence and Configuration Words" for more information.

Once boot Flash memories are aliased, configuration space located in the lower boot alias region is used as the basis for the Configuration words, DEVSIGNO, DEVCPO, and DEVCFGx (and the associated alternate configuration registers). This means that the boot Flash region to be aliased by lower boot alias region memory must contain configuration values in the appropriate memory locations.

Note:	Do not use word program operation						
	(NVMOP<3:0> = 0001) when program-						
	ming data into the sequence and						
	configuration spaces.						

4.1.2 ALTERNATE SEQUENCE AND CONFIGURATION WORDS

Every word in the configuration space and sequence space has an associated alternate word (designated by the letter A as the first letter in the name of the word). During device start-up, primary words are read and if uncorrectable ECC errors are found, the BCFGERR (RCON<27>) flag is set and alternate words are used. If uncorrectable ECC errors are found in primary and alternate words, the BCFGFAIL (RCON<26>) flag is set and the default configuration is used.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	_	—	—	—	_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	—	_		_	_	
45.0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
15:8	LBWPULOCK	—	_	LBWP4 ⁽¹⁾	LBWP3 ⁽¹⁾	LBWP2 ⁽¹⁾	LBWP1 ⁽¹⁾	LBWP0 ⁽¹⁾	
7.0	R/W-1	r-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
7:0	UBWPULOCK	_		UBWP4 ⁽¹⁾	UBWP3 ⁽¹⁾	UBWP2 ⁽¹⁾	UBWP1 ⁽¹⁾	UBWP0 ⁽¹⁾	

REGISTER 5-8: NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER

Legend:		r = Reserved		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15		LBWPULOCK: Lower Boot Alias Write-protect Unlock bit
		1 = LBWPx bits are not locked and can be modified
		0 = LBWPx bits are locked and cannot be modified
		This bit is only clearable and cannot be set except by any reset.
bit 14-	-13	Unimplemented: Read as '0'
bit 12		LBWP4: Lower Boot Alias Page 4 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF enabled 0 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF disabled
bit 11		LBWP3: Lower Boot Alias Page 3 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF enabled 0 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF disabled
bit 10		LBWP2: Lower Boot Alias Page 2 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF enabled 0 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF disabled
bit 9		LBWP1: Lower Boot Alias Page 1 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF enabled 0 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF disabled
bit 8		LBWP0: Lower Boot Alias Page 0 Write-protect bit ⁽¹⁾
		 1 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF enabled 0 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF disabled
bit 7		UBWPULOCK: Upper Boot Alias Write-protect Unlock bit
		 1 = UBWPx bits are not locked and can be modified 0 = UBWPx bits are locked and cannot be modified This bit is only user-clearable and cannot be set except by any reset.
bit 6		Reserved: This bit is reserved for use by development tools
bit 5		Unimplemented: Read as '0'
Note	1:	These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7) (CONTINUED)

bit 15-11 MULT<4:0>: Multiplier Control bits

For Isochronous/Interrupt endpoints or of packet splitting on Bulk endpoints, multiplies TXMAXP by MULT+1 for the payload size.

For Bulk endpoints, MULT can be up to 32 and defines the number of "USB" packets of the specified payload into which a single data packet placed in the FIFO should be split, prior to transfer. The data packet is required to be an exact multiple of the payload specified by TXMAXP.

For Isochronous/Interrupts endpoints operating in Hi-Speed mode, MULT may be either 2 or 3 and specifies the maximum number of such transactions that can take place in a single microframe.

bit 10-0 TXMAXP<10:0>: Maximum TX Payload per transaction Control bits

This field sets the maximum payload (in bytes) transmitted in a single transaction. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transfers in Full-Speed and Hi-Speed operations.

TXMAXP must be set to an even number of bytes for proper interrupt generation in DMA Mode 1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				DMAADD	R<31:24>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	DMAADDR<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	DMAADDR<15:8>										
= 0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
7:0		DMAADDR<7:0>									

REGISTER 11-22: USBDMAXA: USB DMA CHANNEL 'x' MEMORY ADDRESS REGISTER ('x' = 1-8)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Memory Address bits

This register identifies the current memory address of the corresponding DMA channel. The initial memory address written to this register during initialization must have a value such that its modulo 4 value is equal to '0'. The lower two bits of this register are read only and cannot be set by software. As the DMA transfer progresses, the memory address will increment as bytes are transferred.

REGISTE	ER 11-23: U	USBDMAxN	: USB DMA	CHANNEL	'x' COUNT	REGISTER	('X' = 1-8)	
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
Danaa	24/22/4E/7	20/22/44/6	20/24/42/5	20/20/42/4	27/40/44/2	26/40/40/2	25/47/0/4	2 A / A C /0

Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		DMACOUNT<31:24>									
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	DMACOUNT<23:16>										
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	DMACOUNT<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				DMACOL	JNT<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMACOUNT<31:0>: DMA Transfer Count bits

This register identifies the current DMA count of the transfer. Software will set the initial count of the transfer which identifies the entire transfer length. As the count progresses this count is decremented as bytes are transferred.

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	_		_		_	—	_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	_		_		_	—	_		
45.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	—		LPMFADDR<6:0>							
7:0	U-0	U-0	R-0	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS		
7:0	_		LPMERRIF	LPMRESIF	LPMNCIF	LPMACKIF	LPMNYIF	LPMSTIF		

Legend:	HS = Hardware Set			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-15 Unimplemented: Read as '0'

bit 14-8 LPMFADDR<6:0>: LPM Payload Function Address bits These bits contain the address of the LPM payload function.

bit 7-6 Unimplemented: Read as '0'

bit 5 LPMERRIF: LPM Error Interrupt Flag bit (Device mode)

1 = An LPM transaction was received that had a LINKSTATE field that is not supported. The response will be a STALL.

0 =No error condition

bit 4 LPMRESIF: LPM Resume Interrupt Flag bit

- 1 = The USB module has resumed (for any reason)
- 0 = No Resume condition
- bit 3 LPMNCIF: LPM NC Interrupt Flag bit

When in Device mode:

- 1 = The USB module received a LPM transaction and responded with a NYET due to data pending in the RX FIFOs.
- 0 = No NC interrupt condition

When in Host mode:

- 1 = A LPM transaction is transmitted and the device responded with an ACK
- 0 = No NC interrupt condition

bit 2 LPMACKIF: LPM ACK Interrupt Flag bit

When in Device mode:

- 1 = A LPM transaction was received and the USB Module responded with an ACK
- 0 = No ACK interrupt condition

When in Host mode:

1 = The LPM transaction is transmitted and the device responds with an ACK

0 = No ACK interrupt condition

bit 1 LPMNYIF: LPM NYET Interrupt Flag bit

When in Device mode:

1 = A LPM transaction is received and the USB Module responded with a NYET

0 = No NYET interrupt flag

When in Host mode:

- 1 = A LPM transaction is transmitted and the device responded with an NYET
- 0 = No NYET interrupt flag

TABLE 12-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

ss										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	0000
1538	RPA14R ⁽¹⁾	15:0	_	_	_	_	_	_	_		_	_		_		RPA14	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	_	0000
153C	RPA15R ⁽¹⁾	15:0	_	—	—	_	_	_	_	—	_	_	_	_		RPA15	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	_	0000
1540	RPB0R	15:0	_	—	—	_	_	_	_	—	_	_	_	_		RPB0	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
1544	RPB1R	15:0	_	_	_	_	_	_	_		_	_		_		RPB1	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	_	0000
1548	RPB2R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB2	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
154C	RPB3R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB3	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
1554	RPB5R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB5	R<3:0>		0000
		31:16	_		_	_	_	_	_		_	_		_		_	_	_	0000
1558	RPB6R	15:0	_	_	_	_	_	_	_	_	_	_		_		RPB6	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
155C	RPB7R	15:0	_	_	_	_	_		_	_	_	_	_	_		RPB7	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1560	RPB8R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB8	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1564	RPB9R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB9	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1568	RPB10R	15:0	_	_	_	_	_		_	_	_	_	_	_		RPB10	R<3:0>		0000
		31:16	_	_	_	_	_	_	_		_	_		_		_	_	_	0000
1578	RPB14R	15:0	_	_	_	_	_	_	_		_	_		_		RPB14	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
157C	RPB15R	15:0	_	_	_	_	_	_	_		_	_		_		RPB15	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	0000
1584	RPC1R ⁽¹⁾	15:0	_		_	_	_	_	_		_	_		_		RPC1	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1588	RPC2R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPC2	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
158C	RPC3R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPC3	R<3:0>		0000
	(0)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1590	RPC4R ⁽¹⁾	15:0	_		_	_	_		_		_		_	_		RPC4	R<3:0>		0000
Legen	l		alua an Da	eset: — = u						h ava da aira					l				0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on 64-pin and 100-pin devices.

19.1 SPI Control Registers

TABLE 19-1: SPI1 THROUGH SPI6 REGISTER MAP

ess		ō								Bi	ts								
Virtual Address (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	SPI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:)>	MCLKSEL	—	—	—	—	-	SPIFE	ENHBUF	0000
1000	SFILCON	15:0	ON	-	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
1010	SPI1STAT	31:16	—	—	—			BUFELM<4:	0>		—	—	—		TXI	BUFELM<4	:0>		0000
1010		15:0	_	—	—	FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0008
1020	SPI1BUF	31:16 15:0								DATA<	:31:0>								0000
1030	SPI1BRG	31:16	_	-	—	-	-		_	_	_		_	-	_				0000
1030	SFIIDKG	15:0	—	—	—						В	RG<12:0>			-				0000
		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1040	SPI1CON2	15:0	SPI SGNEXT	_	—	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_	_	AUD MONO	_	AUDMO)D<1:0>	0000
1200	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:)>	MCLKSEL	_	_	_	—	_	SPIFE	ENHBUF	0000
1200	01 120011	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE		SRXISE	EL<1:0>	0000
1210	SPI2STAT	31:16	_		—			BUFELM<4:	0>		—	_	—			BUFELM<4			0000
		15:0		—	—	FRMERR	SPIBUSY	_	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0008
1220	SPI2BUF	31:16 15:0								DATA<	31:0>								0000
1230	SPI2BRG	31:16	—	—	—	-	—	_	—	—	—	—	—	—	—	—	—	—	0000
1200		15:0	—	—	—	—	—	—	—					BRG<8:0>					0000
10.40		31:16	-	_	_	-	-	-	_	_	_	_	_	_	-	_	_	_	0000
1240	SPI2CON2	15:0	SPI SGNEXT	—	—	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_	_	AUD MONO	_	AUDMO		0000
1400	SPI3CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW		RMCNT<2:		MCLKSEL	—			—	—	SPIFE	ENHBUF	
		15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE		SRXISE	EL<1:0>	0000
1410	SPI3STAT	31:16			_	FRMERR		BUFELM<4:	0>		-		-			BUFELM<4			0000
		15:0		—	—	FRMERR	SPIBUSY	_	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	_	SPITBF	SPIRBF	0008
1420	SPI3BUF	31:16 15:0					-			DATA<	31:0>						-		0000
1430	SPI3BRG	31:16	_	_	—	_	—	_	_	—	—	—	—	—	—	—	—	—	0000
1430		15:0	_	_	—	_	—	_	—					BRG<8:0>					0000
		31:16	—	—	—	—	—	—	—	—	—		—	—	—		—	—	0000
1440	SPI3CON2	15:0	SPI SGNEXT	—	-	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	—	—	AUD MONO	—	AUDMO)D<1:0>	0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

Legend:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	-	—	—	—	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	-	—	—	—	_	—
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0.61	SPISGNEXT	—	-	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	AUDEN ⁽¹⁾	—	_	—	AUDMONO ^(1,2)		AUDMOD	<1:0> ^(1,2)

REGISTER 19-2: SPIxCON2: SPI CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
bit 15	SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
	1 = Data from RX FIFO is sign extended
	0 = Data from RX FIFO is not sign extended
bit 14-13	Unimplemented: Read as '0'
bit 12	FRMERREN: Enable Interrupt Events via FRMERR bit
	1 = Frame Error overflow generates error events
	0 = Frame Error does not generate error events
bit 11	SPIROVEN: Enable Interrupt Events via SPIROV bit
	1 = Receive overflow generates error events
	0 = Receive overflow does not generate error events
bit 10	SPITUREN: Enable Interrupt Events via SPITUR bit
	1 = Transmit Underrun Generates Error Events
	0 = Transmit Underrun Does Not Generates Error Events
bit 9	IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
	1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data
	0 = A ROV is a critical error which stop SPI operation
bit 8	IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions)
	1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
1.1.7	0 = A TUR is a critical error which stop SPI operation
bit 7	AUDEN: Enable Audio CODEC Support bit ⁽¹⁾
	1 = Audio protocol is enabled 0 = Audio protocol is disabled
bit 6-5	·
	Unimplemented: Read as '0'
bit 3	AUDMONO: Transmit Audio Data Format bit ^(1,2)
	 1 = Audio data is mono (Each data word is transmitted on both left and right channels) 0 = Audio data is stereo
bit 2	Unimplemented: Read as '0'
bit 1-0	AUDMOD<1:0>: Audio Protocol Mode bit ^(1,2)
DIT I U	11 = PCM/DSP mode
	10 = Right Justified mode
	01 = Left Justified mode
	$00 = I^2 S \text{ mode}$

- **Note 1:** This bit can only be written when the ON bit = 0.
 - **2:** This bit is only valid for AUDEN = 1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—	-	_	—
00.40	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23:16	—	—	—	_	—	CL	KDIV<10:8>	(1)
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				CLKDIV<	:7:0> ⁽¹⁾			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R/W-0
7:0	_	—	_	_	—	_	STABLE	EN

REGISTER 20-5: SQI1CLKCON: SQI CLOCK CONTROL REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-19 Unimplemented: Read as '0'

bit 18-8 CLKDIV<10:0>: SQI Clock TsQI Frequency Select bit⁽¹⁾

					•		
1000000000 =	Base	clock	Твс	is	divided	by	2048
0100000000 =	Base	clock	Твс	is	divided	by	1024
0010000000 =	Base	clock	Твс	is	divided	by	512
00010000000 =	Base	clock	Твс	is	divided	by	256
00001000000 =	Base	clock	Твс	is	divided	by	128
00000100000 =							
00000010000 =	Base	clock	Твс	is	divided	by	32
0000001000 =	Base	clock	Твс	is	divided	by	16
0000000100 =	Base	clock	Твс	is	divided	by	8
0000000010 =	Base	clock	Твс	is	divided	by	4
0000000001 =	Base	clock	Твс	is	divided	by	2
00000000000 =	Base	clock	Твс				

Setting these bits to '0000000000' specifies the highest frequency of the SQI clock.

bit 7-2 Unimplemented: Read as '0'

bit 1 STABLE: TSQI Clock Stable Select bit

This bit is set to '1' when the SQI clock, TsQI, is stable after writing a '1' to the EN bit.

- 1 = Tsqi clock is stable
- 0 = Tsql clock is not stable

bit 0 EN: TSQI Clock Enable Select bit

When clock oscillation is stable, the SQI module will set the STABLE bit to '1'.

- 1 = Enable the SQI clock (TSQI) (when clock oscillation is stable, the SQI module sets the STABLE bit to '1')
- 0 = Disable the SQI clock (TsQI) (the SQI module should stop its clock to enter a low power state); SFRs can still be accessed, as they use PBCLK5
- **Note 1:** Refer to Table 37-34 in **37.0** "Electrical Characteristics" for the maximum clock frequency specifications.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0							
31:24	CSS31 ⁽¹⁾	CSS30 ⁽¹⁾	CSS29 ⁽¹⁾	CSS28 ⁽¹⁾	CSS27 ⁽¹⁾	CSS26 ⁽¹⁾	CSS25 ⁽¹⁾	CSS24 ⁽¹⁾
00.40	R/W-0							
23:16	CSS23 ⁽¹⁾	CSS22 ⁽¹⁾	CSS21 ⁽¹⁾	CSS20 ⁽¹⁾	CSS19 ⁽¹⁾	CSS18	CSS17	CSS16
45.0	R/W-0							
15:8	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
7.0	R/W-0							
7:0	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0

REGISTER 28-10: ADCCSS1: ADC COMMON SCAN SELECT REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CSS31:CSS0: Analog Common Scan Select bits^(2,3)

1 =Select ANx for input scan

0 =Skip ANx for input scan

Note 1: This bit is not available on 64-pin devices.

2: In addition to setting the appropriate bits in this register, Class 1 and Class 2 analog inputs must select the STRIG input as the trigger source if they are to be scanned through the CSS*x* bits. Refer to the bit descriptions in the ADCTRGx registers for selecting the STRIG option.

3: If a Class 1 or Class 2 input is included in the scan by setting the CSSx bit to '1' and by setting the TRGSRCx<4:0> bits to STRIG mode (`0b11), the user application must ensure that no other triggers are generated for that input using the RQCNVRT bit in the ADCCON3 register or the hardware input or any digital filter. Otherwise, the scan behavior is unpredictable.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01.04	U-0							
31:24	—	—	—	—	—	—	—	—
22.10	U-0							
23:16		—					-	—
45.0	U-0	U-0	U-0	R-0, HS, HC				
15:8	—	—	_	EIRDY44 ⁽²⁾	EIRDY43 ⁽²⁾	EIRDY42 ⁽²⁾	EIRDY41 ⁽²⁾	EIRDY40 ⁽²⁾
7.0	R-0, HS, HC							
7:0	EIRDY39 ⁽²⁾	EIRDY38 ⁽²⁾	EIRDY37 ⁽²⁾	EIRDY36 ⁽²⁾	EIRDY35 ⁽²⁾	EIRDY34 ⁽¹⁾	EIRDY33 ⁽¹⁾	EIRDY32 ⁽¹⁾

REGISTER 28-31: ADCEISTAT2: ADC EARLY INTERRUPT STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$

bit 31-13 Unimplemented: Read as '0'

bit 31-0 **EIRDY44:EIRDY32:** Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN2 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCEIS<2:0> bits in the ADCCON2 register.
- 0 = Interrupts are disabled

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64-pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	—	—	—	—	—
00.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0	—	—	_	—	—	R	XBUFSZ<6:	4>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
7:0		RXBUF	SZ<3:0>		—	_	—	—

REGISTER 30-2: ETHCON2: ETHERNET CONTROLLER CONTROL REGISTER 2

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

bit 10-4	RXBUFSZ<6:0>: RX Data Buffer Size for All RX Descriptors (in 16-byte increments) bits 1111111 = RX data Buffer size for descriptors is 2032 bytes
	•
	•
	1100000 = RX data Buffer size for descriptors is 1536 bytes
	•
	•
	•
	0000011 = RX data Buffer size for descriptors is 48 bytes 0000010 = RX data Buffer size for descriptors is 32 bytes 0000001 = RX data Buffer size for descriptors is 16 bytes 0000000 = Reserved
bit 3-0	Unimplemented: Read as '0'
Note 1:	This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

NOTES:

NOTES:

REGISTER 34-9: CFGEBIC: EXTERNAL BUS INTERFACE CONTROL PIN CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0
31:24	EBI RDYINV3	EBI RDYINV2	EBI RDYIN1	_	EBI RDYEN3	EBI RDYEN2	EBI RDYEN1	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16	_	_	_	_	_	_	EBIRDYLVL	EBIRPEN
45-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
15:8	-	-	EBIWEEN	EBIOEEN	—		EBIBSEN1	EBIBSEN0
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
7:0	EBICSEN3	EBICSEN2	EBICSEN1	EBICSEN0	_		EBIDEN1	EBIDEN0

· J · · ·			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	EBIRDYINV3: EBIRDY3 Inversion Control bit
	1 = Invert EBIRDY3 pin before use
	0 = Do not invert EBIRDY3 pin before use
bit 30	EBIRDYINV2: EBIRDY2 Inversion Control bit
	1 = Invert EBIRDY2 pin before use
	0 = Do not invert EBIRDY2 pin before use
bit 29	EBIRDYINV1: EBIRDY1 Inversion Control bit
	1 = Invert EBIRDY1 pin before use
	0 = Do not invert EBIRDY1 pin before use
bit 28	Unimplemented: Read as '0'
bit 27	EBIRDYEN3: EBIRDY3 Pin Enable bit
	1 = EBIRDY3 pin is enabled for use by the EBI module
	0 = EBIRDY3 pin is available for general use
bit 26	EBIRDYEN2: EBIRDY2 Pin Enable bit
	1 = EBIRDY2 pin is enabled for use by the EBI module
	0 = EBIRDY2 pin is available for general use
bit 25	EBIRDYEN1: EBIRDY1 Pin Enable bit
	1 = EBIRDY1 pin is enabled for use by the EBI module
	0 = EBIRDY1 pin is available for general use
	Unimplemented: Read as '0'
bit 17	EBIRDYLVL: EBIRDYx Pin Sensitivity Control bit
	1 = Use level detect for EBIRDYx pins
	0 = Use edge detect for EBIRDYx pins
bit 16	EBIRPEN: EBIRP Pin Sensitivity Control bit
	1 = EBIRP pin is enabled for use by the EBI module
	0 = EBIRP pin is available for general use
	Unimplemented: Read as '0'
bit 13	EBIWEEN: EBIWE Pin Enable bit
	1 = EBIWE pin is enabled for use by the EBI module
	0 = EBIWE pin is available for general use

Note: When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.

REGISTI	ER 34-9: CFGEBIC: EXTERNAL BUS INTERFACE CONTROL PIN CONFIGURATION REGISTER (CONTINUED)	
bit 12	EBIOEEN: EBIOE Pin Enable bit	
	$1 = \overline{\text{EBIOE}}$ pin is enabled for use by the EBI module	
	0 = EBIOE pin is available for general use	
bit 11-10	Unimplemented: Read as '0'	
bit 9	EBIBSEN1: EBIBS1 Pin Enable bit	
	1 = EBIBS1 pin is enabled for use by the EBI module 0 = EBIBS1 pin is available for general use	
bit 8	EBIBSEN1: EBIBSO Pin Enable bit	
bit 0	$1 = \overline{\text{EBIBS0}}$ pin is enabled for use by the EBI module	
	0 = EBIBS0 pin is available for general use	
bit 7	EBICSEN3: EBICS3 Pin Enable bit	
	$1 = \overline{EBICS3}$ pin is enabled for use by the EBI module	
	0 = EBICS3 pin is available for general use	
bit 6	EBICSEN2: EBICS2 Pin Enable bit	
	$1 = \overline{\text{EBICS2}}$ pin is enabled for use by the EBI module	
	0 = EBICS2 pin is available for general use	
bit 5	EBICSEN1: EBICS1 Pin Enable bit	
	1 = EBICS1 pin is enabled for use by the EBI module	
	0 = EBICS1 pin is available for general use	
bit 4	EBICSEN0: EBICS0 Pin Enable bit	
	$1 = \overline{\text{EBICS0}}$ pin is enabled for use by the EBI module	
1	0 = EBICS0 pin is available for general use	
bit 3-2	Unimplemented: Read as '0'	
bit 1	EBIDEN1: EBI Data Upper Byte Pin Enable bit	
	 1 = EBID<15:8> pins are enabled for use by the EBI module 0 = EBID<15:8> pins have reverted to general use 	
bit 0	EBIDEN0: EBI Data Lower Byte Pin Enable bit	
DIL U	1 = EBID<7:0> pins are enabled for use by the EBI module	
	0 = EBID < 7:0> pins have reverted to general use	
	-	
Note:	When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.	

36.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

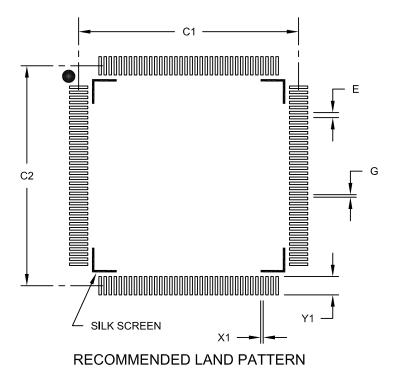
36.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

AC CHARACTERISTICS ⁽²⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T_A \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq T_A \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param. No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
AD60a	TSAMP	Sample Time for ADC7 (Class 2 and Class 3 Inputs) with the CVDEN bit (ADCCON1<11>) = 1	8 9 11 12 14 16 17	_		Tad	$\begin{array}{l} \label{eq:source} Source \mbox{ Impedance} \le 200\Omega \\ CVDCPL<2:0> (ADCCON2<28:26>) = 001 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 010 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 011 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 100 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 101 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 110 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 110 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 111 \\ \end{array}$
			10 12 14 16 18 19 21	_		Tad	Source Impedance $\leq 500\Omega$ CVDCPL<2:0> (ADCCON2<28:26>) = 001 CVDCPL<2:0> (ADCCON2<28:26>) = 010 CVDCPL<2:0> (ADCCON2<28:26>) = 011 CVDCPL<2:0> (ADCCON2<28:26>) = 100 CVDCPL<2:0> (ADCCON2<28:26>) = 101 CVDCPL<2:0> (ADCCON2<28:26>) = 110 CVDCPL<2:0> (ADCCON2<28:26>) = 111
			13 16 18 21 23 26 28	_		Tad	$\begin{array}{l} \mbox{Source Impedance} \leq 1 \ K\Omega \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 001 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 010 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 011 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 100 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 101 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 101 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 110 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 111 \\ \mbox{CVDCPL} = 111 \\ \m$
			41 48 56 63 70 78 85	_		Tad	$\begin{array}{l} \mbox{Source Impedance} \le 5 \ K\Omega \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 001 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 010 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 011 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 100 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 101 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 101 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 110 \\ \mbox{CVDCPL<2:0>} (ADCCON2<28:26>) = 111 \\ \mbox{CVDCPL} = 111 \\ \m$

TABLE 37-40: ADC SAMPLE TIMES WITH CVD ENABLED


Note 1: These parameters are characterized, but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

NOTES:

144-Lead Plastic Thin Quad Flat Pack (PH) - 16x16 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Contact Pitch	E	0.40 BSC		
Contact Pad Spacing	C1		17.40	
Contact Pad Spacing	C2		17.40	
Contact Pad Width (X144)	X1			0.20
Contact Pad Length (X144)	Y1			1.45
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2155B