

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	97
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048efm124-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description		
					Output	Compare			
OC1	PPS	PPS	PPS	PPS	0	—	Output Compare Outputs 1-9		
OC2	PPS	PPS	PPS	PPS	0	—			
OC3	PPS	PPS	PPS	PPS	0	_	1		
OC4	PPS	PPS	PPS	PPS	0	_	1		
OC5	PPS	PPS	PPS	PPS	0	_	1		
OC6	PPS	PPS	PPS	PPS	0	_	1		
OC7	PPS	PPS	PPS	PPS	0	_	1		
OC8	PPS	PPS	PPS	PPS	0	_	1		
OC9	PPS	PPS	PPS	PPS	0	_	1		
OCFA	PPS	PPS	PPS	PPS	I	ST	Output Compare Fault A Input		
OCFB	30	44	B24	62	I	ST	Output Compare Fault B Input		
Legend:	CMOS = C	MOS-comp	atible input	or output	-	Analog =	Analog input P = Power		

TABLE 1-4: OC1 THROUGH OC9 PINOUT I/O DESCRIPTIONS

d: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input	P = Power
O = Output	I = Input
PPS = Peripheral Pin Select	

TABLE 1-5: EXTERNAL INTERRUPTS PINOUT I/O DESCRIPTIONS

		Pin Nu	mber				Description		
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type			
					External	Interrupts			
INT0	46	71	A48	104	I	ST	External Interrupt 0		
INT1	PPS	PPS	PPS	PPS	I	ST	External Interrupt 1		
INT2	PPS	PPS	PPS	PPS	I	ST	External Interrupt 2		
INT3	PPS	PPS	PPS	PPS	I	ST	External Interrupt 3		
INT4	PPS	PPS	PPS	PPS	I	ST	External Interrupt 4		
Logond	CMOS = CI	MOS-comp	atible input		•	Analog -	Analog input P - Power		

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog inputP = PowerO = OutputI = InputPPS = Peripheral Pin Select

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	ROTRIM<8:1>										
00.40	R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	ROTRIM<0>	—	—	—	—	—	—	—			
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	—	—	—	—	—	—	—			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
7:0				_	_						

REGISTER 8-5: REFOXTRIM: REFERENCE OSCILLATOR TRIM REGISTER ('x' = 1-4)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

bit 22-0 Unimplemented: Read as '0'

Note 1: While the ON bit (REFOxCON<15>) is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.

2: Do not write to this register when the ON bit (REFOxCON<15>) is not equal to the ACTIVE bit (REFOxCON<8>).

3: Specified values in this register do not take effect if RODIV<14:0> (REF0xCON<30:16>) = 0.

IAB	ADLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP														
ess				Bits											
/irtual Addr (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5		

A TUDOUCU CUANNEL 7 DE

es										Bit	3								ഗ
Virtual Addr (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset:
1060		31:16				CHPIG	GN<7:0>				—	—	_	—	_	—	—	_	0000
1060	DCHUCON	15:0	CHBUSY	_	CHPIGNEN	—	CHPATLEN	_	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	l<1:0>	0000
1070		31:16	—	CHAIRQ<7:0>								00FF							
1070	Deniecon	15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN — —						—	FF00										
1080	DCHOINT	31:16	—	_	—	_	—	_		—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
1000	DOMONY	15:0	—	_	—	_	—	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
1090	DCH0SSA	31:16								CHSSA	<31.0>								0000
1000	2011000/1	15:0								01100/1									0000
10A0	DCH0DSA	31:16	CHDSA<31:0>																
	201102011	15:0									10								0000
10B0	DCH0SSIZ	31:16	—		—	_	—	_	—	—	—			—	—	—	—	—	0000
		15:0 CHSSIZ<15:0>									0000								
10C0	DCH0DSIZ	31:16	—	—	—	_	—	_	—	-	—		—	_	—	—	—	—	0000
		15:0 CHDSIZ<15:0>								0000									
					_		0000												
	15:0 CHSPTR-15:0>									0000									
10E0	DCH0DPTR	31:16		_	—	_	—	_			—		_	—	_	—	_		0000
		15:0									<15:0>					1			0000
10F0	DCH0CSIZ	31:16		_	_	_	—	_	_	-	-	_	—	_	—	—	—	—	0000
		15:0									<15:0>								0000
1100	DCH0CPTR	15.0		_	_	_		_			-15:0>			_	_	_			0000
		21.16							1		<13.0>			1					0000
1110	DCH0DAT	15.0																	0000
		31.16				CHDIC	N -7:0>				<10.0>					_	_		0000
1120	DCH1CON	15.0	CHBUSY	_	CHPIGNEN		CHPATI EN	_	_	CHCHNS	CHEN		СНСНИ			CHEDET		1<1:0>	0000
		31.16									OHLIN	ONALD	CHOIN	CHAIR	0~7:0>	UNEDET			0000
1130	DCH1ECON	15.0				CHSIR	20<7:0>				CEORCE	CABORT	ράτεν						500PP
		31.16	_	_	_			_	_	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
1140	DCH1INT	15.0	_	_	_	_	_	_	_	_	CHSDIE	CHSHIF	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIF	CHERIE	0000
		31:16																	
1150	DCH1SSA	15:0								CHSSA	<31:0>								0000
		31:16																	0000
1160	DCH1DSA	15:0								CHDSA	<31:0>								0000
Leger	id: x = u	nknowr	n value on R	leset: — =	unimplement	ted, read a	s '0'. Reset v	alues are s	shown in he	exadecimal.									

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24		—	—	—	—		—					
22.16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
23.10	CHAIRQ<7:0> ⁽¹⁾											
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
10.0	CHSIRQ<7:0> ⁽¹⁾											
7.0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN							

REGISTER 10-8: DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

and set CHAIF flag

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress
	•
	•
	•

00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag

bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits⁽¹⁾

11111111 = Interrupt 255 will initiate a DMA transfer

• 00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer

bit 7 CFORCE: DMA Forced Transfer bit

1 = A DMA transfer is forced to begin when this bit is written to a '1'

0 = This bit always reads '0'

bit 6 CABORT: DMA Abort Transfer bit

- 1 = A DMA transfer is aborted when this bit is written to a '1'
- 0 = This bit always reads '0'

bit 5 **PATEN:** Channel Pattern Match Abort Enable bit

- 1 = Abort transfer and clear CHEN on pattern match
- 0 = Pattern match is disabled
- bit 4 SIRQEN: Channel Start IRQ Enable bit
 - 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
 - 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-2: "Interrupt IRQ, Vector, and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0
31.24	VBUSERRIE	SESSRQIE	DISCONIE	CONNIE	SOFIE	RESETIE	RESUMEIE	SUSPIE
22.16	R-0, HS	R-0, HS	R-0, HS					
23.10	VBUSERRIF	SESSRQIF	DISCONIF	CONNIF	SOFIF	RESETIF	RESUMEIF	SUSPIF
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	—	—	—
7.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0
7.0	EP7RXIE	EP6RXIE	EP5RXIE	EP4RXIE	EP3RXIE	EP2RXIE	EP1RXIE	_

REGISTER 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2

Legend:	HS = Hardware Set					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 30 SESSRQIE: Session Request Interrupt Enable bit 1 = Session request interrupt is enabled 0 = Session request interrupt is disabled bit 29 DISCONIE: Device Disconnect Interrupt Enable bit 1 = Device disconnect interrupt is enabled 0 = Device connection Interrupt is disabled bit 28 CONNIE: Device Connection Interrupt Enable bit 1 = Device connection Interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is disabled 0 = Sest/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble Interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend
bit 29 DISCONIE: Device Disconnect Interrupt Enable bit 1 = Device disconnect interrupt is enabled 0 = Device disconnect interrupt is disabled bit 28 CONNIE: Device Connection Interrupt Enable bit 1 = Device connection interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt 0 = No interrupt 0 = No interrupt
bit 28 CONNIE: Device Connection Interrupt Enable bit 1 = Device connection interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (<i>Device mode</i>) or Babble (<i>Host mode</i>) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 22 SESSRQIF: Session Request Interrupt bit 1 = Session request signaling has been detected 0 = No session request detected
 bit 21 DISCONIF: Device Disconnect Interrupt bit 1 = In Host mode, indicates when a device disconnect is detected. In Device mode, indicates when session ends. 0 = No device disconnect detected
bit 20 CONNIF: Device Connection Interrupt bit 1 = In <i>Host mode</i> , indicates when a device connection is detected 0 = No device connection detected

REGISTER 11-30: USBCRCON: USB CLOCK/RESET CONTROL REGISTER (CONTINUED)

- bit 3 SENDMONEN: Session End VBUS Monitoring for OTG Enable bit
 - 1 = Enable monitoring for VBUS in Session End range (between 0.2V and 0.8V)
 - 0 = Disable monitoring for VBUS in Session End range
- bit 2 USB General Interrupt Enable bit
 - 1 = Enables general interrupt from USB module
 - 0 = Disables general interrupt from USB module
- bit 1 USBRIE: USB Resume Interrupt Enable bit
 - 1 = Enable remote resume from suspend Interrupt
 - 0 = Disable interrupt to a Remote Devices USB resume signaling

bit 0 USBWKUPEN: USB Activity Detection Interrupt Enable bit

- 1 = Enable interrupt for detection of activity on USB bus in Sleep mode
- 0 = Disable interrupt for detection of activity on USB bus in Sleep mode

TABLE 12-10: PORTD REGISTER MAP FOR 64-PIN DEVICES ONLY

ess		0								В	its								
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0310	TRISD	31:16	_	_	—		—	—	—	_	_		—	-	—	—	—		0000
0310	INIOD	15:0	—	—	—		TRISD11	TRISD10	TRISD9	—	—		TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	0E3F
0320	PORTD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0020	TORTE	15:0	—	—	—	—	RD11	RD10	RD9	—	—	_	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
0330	LATD	31:16	_	_	_	_	_	—	_	_	_	_	_	_	_	—	_	_	0000
	2.12	15:0	_	—	—	_	LATD11	LATD10	LATD9	—	—	_	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
0340	ODCD	31:16	_	_					—	_	—		—	—				—	0000
		15:0	_	—	—	_	ODCD11	ODCD10	ODCD9	_	_	_	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
0350	CNPUD	31:16	_	_	_	_	—	—	—	_	_	_	—	—	—	—	—	—	0000
		15:0	_	_	_	_	CNPUD11	CNPUD10	CNPUD9	_	_	_	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
0360	CNPDD	31:16	_	_	_		-	-	-	_	_		-	-	-	-	-	-	0000
		15:0	_	_			CNPDD11	CNPDD10	CNPDD9				CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
0270		31:16	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	0000
0370	CINCOIND	15:0	ON	_	—		DETECT	—	—	—	—	-	—	-	—	—	—	-	0000
0380		31:16	-	-	_		_	_	_	-	-		_		_	_	-		0000
0380	CINEIND	15:0	-	_	_		CNEND11	CNEND10	CNEND9				CNEND5	CNEND4	CNEND3	CNEND2	CNEND1	CNEND0	0000
		31:16	—	—	—	_	—	—	—	—	—	-	—	-	—	—	—	—	0000
0390	CNSTATD	15:0	—	—	—	—	CN STATD11	CN STATD10	CN STATD9	—	—	—	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000
00 4 0		31:16	_	_	_		_	_	_	_	_	_	_		_	_	_		0000
03A0	CININED	15:0	_	_	—	_	CNNED11	CNNED10	CNNED9	_	_	_	CNNED5	CNNED4	CNNED3	CNNED2	CNNED1	CNNED0	0000
0200		31:16	_	_		_	_	_	_	_	_	_	—	_	_	_	_	—	0000
03B0	CINFD	15:0	_	_	_		CNFD11	CNFD10	CNFD9	_	_		CNFD5	CNFD4	CNFD3	CNFD2	CNFD1	CNFD0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SSS		_		Bits															
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1404		31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	_	—	0000
1404	INTIK	15:0	_	—	—	—	—	—	—	_	—	_	—	—		INT1F	2<3:0>		0000
1409		31:16	—	—	—	—	—	—	—	—	_	—	_		—	_		-	0000
1406	INTZK	15:0	—	—	—	—	_	—	—	—	_	—	_			INT2F	2<3:0>		0000
1400		31:16	_	—	_	_	_	_	—	—	_	_	—		—	_		_	0000
1400	INTOR	15:0	_	—	—	—	—	—	—	_	—	_	—	—		INT3F	2<3:0>		0000
1410		31:16	_	—	—	—	—	—	—	_	—	_	—	—	—	_	_	-	0000
1410	IN 14K	15:0	_	—	—	—	—	—	—	_	—	_	—	—		INT4F	2<3:0>		0000
1440	TOCKD	31:16	_	—	—	—	—	—	—	_	—	_	—	—	—	_	_	-	0000
1418	IZUKR	15:0	—	—	—	—	—	—	—	_	—	—	—	_		T2CKI	R<3:0>		0000
4.440		31:16	—	_	_	_	—	—	_	—	—	—	_	_	—	—	—	—	0000
1410	IJCKR	15:0	_	_	_	_	—	_	_	_	—	—	_	_		T3CKI	R<3:0>		0000
4.400	TIOKE	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1420	14CKR	15:0	_	—	—	—	—	—	—		—	—	_			T4CKI	R<3:0>	•	0000
	TEOKO	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1424	15CKR	15:0	_	—	—	—	—	—	—		—	—	_			T5CKI	R<3:0>	•	0000
4.400	TOOLD	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1428	TECKR	15:0	_	—	—	—	—	—	—		—	—	_			T6CKI	R<3:0>	•	0000
	770/0	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
142C	17CKR	15:0	—	_	_	_	_	_	_	—	_	—	_			T7CKI	R<3:0>		0000
	T 20//D	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
1430	TSCKR	15:0	—	_	_	_	_	_	_	—	_	—	_			T8CKI	R<3:0>		0000
	TAOLO	31:16	_	_	—	—	—	—	—		—	_	_	_	—	—	_	_	0000
1434	TYCKR	15:0	_	—	—	—	—	—	—		—	—	_			T9CKI	R<3:0>	•	0000
	1015	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
1438	IC1R	15:0	—	_	_	_	_	_	_	—	_	—	_			IC1R	<3:0>		0000
	1000	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
143C	IC2R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		IC2R	<3:0>		0000
	1000	31:16	_	_	_	_	_	_	_	—	_	_	_	—	—	—	—	—	0000
1440	IC3R	15:0	_	_	_	_	_	_	_	—	_	_	_	—		IC3R	<3:0>		0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is not available on 64-pin devices. Note 1:

2: This register is not available on devices without a CAN module.

REGIST	ER 23-1:	PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)
bit 7-6	CSF<1:0>	: Chip Select Function bits ⁽¹⁾
	11 = Rese 10 = PMC 01 = PMC 00 = PMC	erved S1 and PMCS2 function as Chip Select S2 functions as Chip Select and PMCS1 functions as address bit 14 S1 and PMCS2 function as address bit 14 and address bit 15
bit 5	ALP: Add	ress Latch Polarity bit ⁽¹⁾
	1 = Active 0 = Active 0	e-low (PMALL and PMALH) e-low (PMALL and PMALH)
bit 4	CS2P: Ch	ip Select 2 Polarity bit ⁽¹⁾
	1 = Active $0 = Active$	e-high <u>(PMCS2)</u> e-low (PMCS2)
bit 3	CS1P: Ch	ip Select 1 Polarity bit ⁽¹⁾
	1 = Active $0 = Active$	e-low (PMCS1)
bit 2	Unimplen	nented: Read as '0'
bit 1	WRSP: W	rite Strobe Polarity bit
	For Slave	Modes and Master mode 2 (MODE<1:0> = 00,01,10):
	1 = Write s 0 = Write s	strobe active-high <u>(PMWR)</u> strobe active-low (PMWR)
	For Maste	<u>r mode 1 (MODE<1:0> = 11)</u> :
	1 = Enable 0 = Enable	e strobe active-high (PMENB) e strobe active-low (PMENB)
bit 0	RDSP: Re	ead Strobe Polarity bit
	For Slave	modes and Master mode 2 (MODE<1:0> = 00,01,10):
	1 = Read 0 = Read	Strobe active-high (PMRD) Strobe active-low (PMRD)
	For Maste	r mode 1 (MODE<1:0> = 11):
	1 = Read/	write strobe active-high (PMRD/PMWR)
	0 = Read/	write strobe active-low (PMRD/PMWR)

Note 1: These bits have no effect when their corresponding pins are used as address lines.

RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER REGISTER 25-1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
	—	—	—	_	—	—	CAI	_<9:8>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	CAL<7:0>										
	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
15:8	ON ⁽¹⁾	—	SIDL	-	—	RTCCLK	LKSEL<1:0>	RTC OUTSEL<1> ⁽²⁾			
	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0			
7:0	RTC OUTSEL<0> ⁽²⁾	RTC CLKON ⁽⁵⁾	_	_	RTC WREN ⁽³⁾	RTC SYNC	HALFSEC ⁽⁴⁾	RTCOE			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25-16 CAL<9:0>: Real-Time Clock Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 real-time clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 real-time clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 real-time clock pulse every one minute 1000000000 = Maximum negative adjustment, subtracts 512 real-time clock pulses every one minute ON: RTCC On bit⁽¹⁾ bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables RTCC operation when CPU enters Idle mode 0 = Continue normal operation when CPU enters Idle mode bit 12-11 Unimplemented: Read as '0' **Note 1:** The ON bit is only writable when RTCWREN = 1.

- **2:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
- 3: The RTCWREN bit can be set only when the write sequence is enabled.
- 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).
- 5: This bit is undefined when RTCCLKSEL < 1:0 > = 00 (LPRC is the clock source).

Note: This register is reset only on a Power-on Reset (POR).

FIGURE 28-2: S&H BLOCK DIAGRAM

REGISTER 28-3: ADCCON3: ADC CONTROL REGISTER 3 (CONTINUED)

- bit 18 **DIGEN2:** ADC2 Digital Enable bit 1 = ADC2 is digital enabled
 - 0 = ADC2 is digital disabled
- bit 17 DIGEN1: ADC1 Digital Enable bit
 - 1 = ADC1 is digital enabled
 - 0 = ADC1 is digital disabled
- bit 16 **DIGEN0:** ADC0 Digital Enable bit 1 = ADC0 is digital enabled 0 = ADC0 is digital disabled
- bit 15-13 VREFSEL<2:0>: Voltage Reference (VREF) Input Selection bits

VREFSEL<2:0>	ADREF+	ADREF-		
1xx	Reserved; do not	use		
011	External VREFH	External VREFL		
010	AVdd	External VREFL		
001	External VREFH	AVss		
000	AVdd	AVss		

bit 12 **TRGSUSP:** Trigger Suspend bit

1 = Triggers are blocked from starting a new analog-to-digital conversion, but the ADC module is not disabled 0 = Triggers are not blocked

- bit 11 UPDIEN: Update Ready Interrupt Enable bit
 - $\ensuremath{\mathtt{1}}$ = Interrupt will be generated when the UPDRDY bit is set by hardware
 - 0 = No interrupt is generated
- bit 10 UPDRDY: ADC Update Ready Status bit
 - 1 = ADC SFRs can be updated
 - 0 = ADC SFRs cannot be updated
 - **Note:** This bit is only active while the TRGSUSP bit is set and there are no more running conversions of any ADC modules.
- bit 9 SAMP: Class 2 and Class 3 Analog Input Sampling Enable bit^(1,2,3,4)
 - 1 = The ADC S&H amplifier is sampling
 - 0 = The ADC S&H amplifier is holding
- bit 8 **RQCNVRT:** Individual ADC Input Conversion Request bit

This bit and its associated ADINSEL<5:0> bits enable the user to individually request an analog-to-digital conversion of an analog input through software.

- 1 = Trigger the conversion of the selected ADC input as specified by the ADINSEL<5:0> bits
- 0 =Do not trigger the conversion
 - **Note:** This bit is automatically cleared in the next ADC clock cycle.
- bit 7 GLSWTRG: Global Level Software Trigger bit
 - 1 = Trigger conversion for ADC inputs that have selected the GLSWTRG bit as the trigger signal, either through the associated TRGSRC<4:0> bits in the ADCTRGx registers or through the STRGSRC<4:0> bits in the ADCCON1 register
 - 0 = Do not trigger an analog-to-digital conversion
- **Note 1:** The SAMP bit has the highest priority and setting this bit will keep the S&H circuit in Sample mode until the bit is cleared. Also, usage of the SAMP bit will cause settings of SAMC<9:0> bits (ADCCON2<25:16>) to be ignored.
 - 2: The SAMP bit only connects Class 2 and Class 3 analog inputs to the shared ADC, ADC7. All Class 1 analog inputs are not affected by the SAMP bit.
 - **3:** The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first clear this bit and only after setting the RQCNVRT bit to start the analog-to-digital conversion.
 - 4: Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx<4:0> bits and STRGSRC<4:0> bits should be set to '00000' to disable all external hardware triggers and prevent them from interfering with the software-controlled sampling command signal SAMP and with the software-controlled trigger RQCNVRT.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	R/W-0							
31:24	DIFF31 ⁽¹⁾	SIGN31 ⁽¹⁾	DIFF30 ⁽¹⁾	SIGN30 ⁽¹⁾	DIFF29 ⁽¹⁾	SIGN29 ⁽¹⁾	DIFF28 ⁽¹⁾	SIGN28 ⁽¹⁾
	R/W-0							
23:16	DIFF27 ⁽¹⁾	SIGN27 ⁽¹⁾	DIFF26 ⁽¹⁾	SIGN26 ⁽¹⁾	DIFF25 ⁽¹⁾	SIGN25 ⁽¹⁾	DIFF24 ⁽¹⁾	SIGN24 ⁽¹⁾
45-0	R/W-0							
15:8	DIFF23 ⁽¹⁾	SIGN23 ⁽¹⁾	DIFF22 ⁽¹⁾	SIGN22 ⁽¹⁾	DIFF21 ⁽¹⁾	SIGN21 ⁽¹⁾	DIFF20 ⁽¹⁾	SIGN20 ⁽¹⁾
7.0	R/W-0							
7:0	DIFF19 ⁽¹⁾	SIGN19 ⁽¹⁾	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16

REGISTER 28-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	DIFF31: AN31 Mode bit ⁽¹⁾
	1 = AN31 is using Differential mode
	0 = AN31 is using Single-ended mode
bit 30	SIGN31: AN31 Signed Data Mode bit ⁽¹⁾
	1 = AN31 is using Signed Data mode
	0 = AN31 is using Unsigned Data mode
bit 29	DIFF30: AN30 Mode bit ⁽¹⁾
	1 = AN30 is using Differential mode
	0 = AN30 is using Single-ended mode
bit 28	SIGN30: AN30 Signed Data Mode bit ⁽¹⁾
	1 = AN30 is using Signed Data mode
	0 = AN30 is using Unsigned Data mode
bit 27	DIFF29: AN29 Mode bit ⁽¹⁾
	1 = AN29 is using Differential mode
	0 = AN29 is using Single-ended mode
	(4)
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode
bit 26	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode
bit 26 bit 25	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾
bit 26 bit 25	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode
bit 26 bit 25	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode
bit 26 bit 25 bit 24	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾
bit 26 bit 25 bit 24	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode
bit 26 bit 25 bit 24	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode
bit 25 bit 24 bit 23	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾
bit 25 bit 24 bit 23	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode
bit 25 bit 24 bit 23	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode 0 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode
bit 25 bit 25 bit 24 bit 23 bit 22	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode SIGN27: AN27 Signed Data Mode bit ⁽¹⁾
bit 25 bit 24 bit 23 bit 22	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode SIGN27: AN27 Signed Data Mode bit ⁽¹⁾ 1 = AN27 is using Signed Data mode
bit 25 bit 24 bit 23 bit 22	SIGN29: AN29 Signed Data Mode bit ⁽¹⁾ 1 = AN29 is using Signed Data mode 0 = AN29 is using Unsigned Data mode DIFF28: AN28 Mode bit ⁽¹⁾ 1 = AN28 is using Differential mode 0 = AN28 is using Single-ended mode SIGN28: AN28 Signed Data Mode bit ⁽¹⁾ 1 = AN28 is using Signed Data mode 0 = AN28 is using Unsigned Data mode DIFF27: AN27 Mode bit ⁽¹⁾ 1 = AN27 is using Differential mode 0 = AN27 is using Single-ended mode SIGN27: AN27 Signed Data Mode bit ⁽¹⁾ 1 = AN27 is using Signed Data mode 0 = AN27 is using Signed Data mode 0 = AN27 is using Signed Data mode 0 = AN27 is using Unsigned Data mode 0 = AN27 is using Unsigned Data mode

Note 1: This bit is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	—	—	—	_	TXNFULLIE	TXHALFIE	TXEMPTYIE
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	—	—	—	RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
45.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	—	—	—	—		TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0					RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

REGISTER 29-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('n' = 0-31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO not full
	0 = Interrupt disabled for FIFO not full
bit 25	TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full
	0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO empty
	0 = Interrupt disabled for FIFO empty
bit 23-20	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
	1 = Interrupt enabled for overflow event
	0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO full
L:1 47	
DIT 17	RXHALFIE: FIFO Haif Full Interrupt Enable bit
	\perp = Interrupt enabled for FIFO half full
bit 16	BYNEMBTYIE: Empty Interrupt Enable bit
	1 - Interrupt enabled for EIEO not empty
	1 = Interrupt disabled for FIFO not empty
bit 15-11	Unimplemented: Read as '0'
bit 10	TYNELIL LIE: Transmit EIEO Not Full Interrupt Elag hit ⁽¹⁾
DICTO	TXEN = 1: (EIEO configured as a Transmit Ruffer)
	1 = FIFO is not full
	0 = FIFO is full
	TXEN = 0 ; (FIFO configured as a Receive Buffer)
	Unused, reads '0'

Note 1: This bit is read-only and reflects the status of the FIFO.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—	—	—	-	—
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	-	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		—	_	_	LINKFAIL	NOTVALID	SCAN	MIIMBUSY

REGISTER 30-36: EMAC1MIND: ETHERNET CONTROLLER MAC MII MANAGEMENT INDICATORS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3 LINKFAIL: Link Fail bit

When '1' is returned - indicates link fail has occurred. This bit reflects the value last read from the PHY status register.

bit 2 NOTVALID: MII Management Read Data Not Valid bit When '1' is returned - indicates an MII management read cycle has not completed and the Read Data is not yet valid.

bit 1 SCAN: MII Management Scanning bit When '1' is returned - indicates a scan operation (continuous MII Management Read cycles) is in progress.

bit 0 MIIMBUSY: MII Management Busy bit

When '1' is returned - indicates MII Management module is currently performing an MII Management Read or Write cycle.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

33.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes power-saving features for the PIC32MZ EF devices. These devices offer various methods and modes that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

33.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the speed of PBCLK7, or selecting a lower power clock source (i.e., LPRC or Sosc).

In addition, the Peripheral Bus Scaling mode is available for each peripheral bus where peripherals are clocked at reduced speed by selecting a higher divider for the associated PBCLKx, or by disabling the clock completely.

33.2 Power-Saving with CPU Halted

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

33.2.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted and the associated clocks are disabled. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the peripheral bus clocks will start running and the device will enter into Idle mode.

33.2.2 IDLE MODE

In Idle mode, the CPU is Halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	—	—	—	—	—	—	CRYPTF	PG<1:0>
00.40	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
23:16	FCPG<1:0>		SQI1PG<1:0>		—	—	ETHPO	G<1:0>
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
15:8 CAN2PG<1:0		PG<1:0>	CAN1PG<1:0>		—	—	USBPC	G<1:0>
7.0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
7:0			DMAPG<1:0>			—	CPUPO	G<1:0>

REGISTER 34-10: CFGPG: PERMISSION GROUP CONFIGURATION REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-26 Unimplemented: Read as '0'

bit 25-24	CRYPTPG<1:0>: Crypto Engine Permission Group bits
	11 = Initiator is assigned to Permission Group 3
	10 = Initiator is assigned to Permission Group 2
	01 = Initiator is assigned to Permission Group 1
	00 = Initiator is assigned to Permission Group 0
bit 23-22	FCPG<1:0>: Flash Control Permission Group bits
	Same definition as bits 25-24.
bit 21-20	SQI1PG<1:0>: SQI Module Permission Group bits
	Same definition as bits 25-24.
bit 19-18	Unimplemented: Read as '0'
bit 17-16	ETHPG<1:0>: Ethernet Module Permission Group bits
	Same definition as bits 25-24.
bit 15-14	CAN2PG<1:0>: CAN2 Module Permission Group bits
	Same definition as bits 25-24.
bit 13-12	CAN1PG<1:0>: CAN1 Module Permission Group bits
	Same definition as bits 25-24.
bit 11-10	Unimplemented: Read as '0'
bit 9-8	USBPG<1:0>: USB Module Permission Group bits
	Same definition as bits 25-24.
bit 7-6	Unimplemented: Read as '0'

- bit 5-4 **DMAPG<1:0>:** DMA Module Permission Group bits Same definition as bits 25-24.
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 **CPUPG<1:0>:** CPU Permission Group bits Same definition as bits 25-24.

AC CHARACTERISTICS			Standard (unless o Operating	Operating therwise s temperatu	Condition tated) re -40°C : -40°C :	s (see Not ≤ Ta ≤ +85° ≤ Ta ≤ +125	e 1): 2.1V to 3.6V C for Industrial °C for Extended
Param. No.	Symbol	Characteristics	Min. Typical Max. Units Conditions				
TS10	VTS	Rate of Change	—	+5	_	mV/ºC	—
TS11	TR	Resolution	—	±5		°C	—
TS12	IVTEMP	Voltage Range	0.5	_	1.5	V	—
TS13	TMIN	Minimum Temperature	_	-40	_	°C	IVTEMP = 0.5V
TS14	Тмах	Maximum Temperature		160		°C	IVTEMP = 1.5V

TABLE 37-41: TEMPERATURE SENSOR SPECIFICATIONS

Note 1: The temperature sensor is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

38.1 DC Characteristics

TABLE 38-1: OPERATING MIPS VS. VOLTAGE

	VDD Range Temp. Range		Max. Frequency	•	
Characteristic	(In voits) (Note 1)	(in °C)	PIC32MZ EF Devices	Comment	
EDC5	2.1V-3.6V	-40°C to +125°C	180 MHz		

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

TABLE 38-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Parameter No.	Typical ⁽³⁾	Maximum ⁽⁶⁾	Units Conditions		
Operating Current (IDD) ⁽¹⁾					
EDC20	8	54	mA	4 MHz (Note 4,5)	
EDC21	10	60	mA	10 MHz (Note 5)	
EDC22	32	95	mA	60 MHz (Note 2,4)	
EDC23	40	105	mA	80 MHz (Note 2,4)	
EDC25	61	125	mA	130 MHz (Note 2,4)	
EDC26	72	140	mA	160 MHz (Note 2,4)	
EDC28	81	150	mA	180 MHz (Note 2,4)	

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC+PLL with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
 - CPU, Program Flash, and SRAM data memory are operational, Program Flash memory Wait states are equal to four
 - L1 Cache and Prefetch modules are enabled
 - No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
 - WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, +25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: Note 2 applies with the following exceptions: L1 Cache and Prefetch modules are disabled, Program Flash memory Wait states are equal to seven.
- 6: Data in the "Maximum" column is at 3.3V, +125°C at specified operating frequency. Parameters are for design guidance only and are not tested.

A.3 CPU

The CPU in the PIC32MZ EF family of devices has been changed to the MIPS32 M-Class MPU architecture. This CPU includes DSP ASE, internal data and instruction L1 caches, and a TLB-based MMU.

TABLE A-4: CPU DIFFERENCES

Table A-4 summarizes some of the key differences (indicated by **Bold** type) in the internal CPU registers.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature
L1 Data and Instruction Cad	he and Prefetch Wait States
On PIC32MX devices, the cache was included in the prefetch module outside the CPU.	On PIC32MZ EF devices, the CPU has a separate L1 instruction and data cache in the core. The PREFEN<1:0> bits still enable the prefetch module; however, the K0<2:0> bits in the CP0 regis- ters controls the internal L1 cache for the designated regions.
 PREFEN<1:0> (CHECON<5:4>) 11 = Enable predictive prefetch for both cacheable and non-cacheable regions 10 = Enable predictive prefetch for non-cacheable regions only 01 = Enable predictive prefetch for cacheable regions only 00 = Disable predictive prefetch 	PREFEN<1:0> (PRECON<5:4>) 11 = Enable predictive prefetch for any address 10 = Enable predictive prefetch for CPU instructions and CPU data 01 = Enable predictive prefetch for CPU instructions only 00 = Disable predictive prefetch
DCSZ<1:0> (CHECON<9:8>) Changing these bits causes all lines to be reinitialized to the "invalid" state. 11 = Enable data caching with a size of 4 lines 10 = Enable data caching with a size of 2 lines 01 = Enable data caching with a size of 1 line 00 = Disable data caching	K0<2:0> (CP0 Reg 16, Select 0) 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate
CHECOH (CHECON<16>) 1 = Invalidate all data and instruction lines 0 = Invalidate all data and instruction lines that are not locked	
	The Program Flash Memory read wait state frequency points have changed in PIC32MZ EF devices. The register for accessing the PFMWS field has changed from CHECON to PRECON.
PFMWS<2:0> (CHECON<2:0>) 111 = Seven Wait states 110 = Six Wait states 101 = Five Wait states 100 = Four Wait states 011 = Three Wait states 010 = Two Wait states (61-80 MHz) 001 = One Wait state (31-60 MHz) 000 = Zero Wait state (0-30 MHz)	PFMWS<2:0> (PRECON<2:0>) 111 = Seven Wait states • • 100 = Four Wait states (200-252 MHz) 011 = Reserved 010 = Two Wait states (133-200 MHz) 001 = One Wait state (66-133 MHz) 000 = Zero Wait states (0-66 MHz)
	Note: Wait states listed are for ECC enabled.
Core Instruct On PIC32MX devices, the CPU can execute MIPS16e instructions and uses a 16-bit instruction set, which reduces memory size.	On PIC32MZ EF devices, the CPU can operate a mode called microMIPS. microMIPS mode is an enhanced MIPS32® instruction set that uses both 16-bit and 32-bit opcodes. This mode of operation reduces memory size with minimum performance impact.
	The BOOTISA (DEVCFG0<6>) Configuration bit controls the MIPS32 and microMIPS modes for boot and exception code. 1 = Boot code and Exception code is MIPS32 [®] (ISAONEXC bit is set to '0' and the ISA<1:0> bits are set to '10' in the CP0 Config3 register) 0 = Boot code and Exception code is microMIPS™ (ISAONEXC bit is set to '1' and the ISA<1:0> bits are set to '11' in the CP0 Config3 register)