NXP USA Inc. - SPAKDSP303VF100 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

2000	
Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	100MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	24kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spakdsp303vf100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal/ Connection Descriptions

1.1 Signal Groupings

The DSP56303 input and output signals are organized into functional groups as shown in **Table 1-1**. **Figure 1-1** diagrams the DSP56303 signals by functional group. The remainder of this chapter describes the signal pins in each functional group.

Table 1-1.	DSP56303	Functional	Signal	Groupings

				Number of Signals		
		TQFP	MAP- BGA			
Power (\	/ _{CC})			18	18	
Ground	(GND			19	66	
Clock				2	2	
PLL				3	3	
Address	bus			18	18	
Data bus	6		Port A ¹	24	24	
Bus control			13	13		
Interrupt and mode control			5	5		
Host interface (HI08) Port B ²		Port B ²	16	16		
Enhance	ed syr	nchronous serial interface (ESSI)	Ports C and D ³	12	12	
Serial co	ommu	nication interface (SCI)	Port E ⁴	3	3	
Timer				3	3	
OnCE/J	tag f	Port		6	6	
 Port A signals define the external memory interface port, including the external address bus, data bus, and control signals. Port B signals are the HI08 port signals multiplexed with the GPIO signals. Port C and D signals are the two ESSI port signals multiplexed with the GPIO signals. Port E signals are the SCI port signals multiplexed with the GPIO signals. There are 2 signal connections in the TQFP package and 7 signal connections in the MAP-BGA package that are not used. These are designated as no connect (NC) in the package description (see Chapter 3). 						

Note: This chapter refers to a number of configuration registers used to select individual multiplexed signal functionality. Refer to the *DSP56303 User's Manual* for details on these configuration registers.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
HA0	Input	Ignored Input	Host Address Input 0 —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 0 of the host address input bus.
HAS/HAS	Input		Host Address Strobe—When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is the host address strobe (HAS) Schmitt-trigger input. The polarity of the address strobe is programmable but is configured active-low (HAS) following reset.
PB8	Input or Output		Port B 8 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HA1	Input	Ignored Input	Host Address Input 1 —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 1 of the host address (HA1) input bus.
HA8	Input		Host Address 8 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 8 of the host address (HA8) input bus.
PB9	Input or Output		Port B 9 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HA2	Input	Ignored Input	Host Address Input 2 —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 2 of the host address (HA2) input bus.
HA9	Input		Host Address 9 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 9 of the host address (HA9) input bus.
PB10	Input or Output		Port B 10 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HCS/HCS	Input	Ignored Input	Host Chip Select —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is the host chip select (HCS) input. The polarity of the chip select is programmable but is configured active-low (HCS) after reset.
HA10	Input		Host Address 10 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 10 of the host address (HA10) input bus.
PB13	Input or Output		Port B 13 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.

 Table 1-11.
 Host Interface (Continued)

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC12	Input/Output	Ignored Input	Serial Control Signal 2—The frame sync for both the transmitter and receiver in synchronous mode and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PD2	Input or Output		Port D 2 —The default configuration following reset is GPIO input PD2. When configured as PD2, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC12 through the Port D Control Register.
SCK1	Input/Output	Ignored Input	Serial Clock—Provides the serial bit rate clock for the ESSI. The SCK1 is a clock input or output used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PD3	Input or Output		Port D 3 —The default configuration following reset is GPIO input PD3. When configured as PD3, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SCK1 through the Port D Control Register.
SRD1	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD1 is an input when data is being received.
PD4	Input or Output		Port D 4 —The default configuration following reset is GPIO input PD4. When configured as PD4, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SRD1 through the Port D Control Register.
STD1	Output	Ignored Input	Serial Transmit Data—Transmits data from the Serial Transmit Shift Register. STD1 is an output when data is being transmitted.
PD5	Input or Output		Port D 5 —The default configuration following reset is GPIO input PD5. When configured as PD5, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal STD1 through the Port D Control Register.
Notes: 1	n the Stop state, If the last state is If the last state is The Wait process All inputs are 5 V	the signal mainta s input, the signal s output, the sign ing state does no tolerant.	ins the last state as follows: l is an ignored input. al is tri-stated. of affect the signal state.

Table 1-13.	Enhanced Serial Sync	hronous Interface 1	(Continued)
-------------	----------------------	---------------------	-------------

2.6 AC Electrical Characteristics

The timing waveforms shown in the AC electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in Note 6 of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50 percent point of the respective input signal transition. DSP56303 output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.4 V and 2.4 V, respectively.

Note: Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test conditions are 15 MHz and rated speed.

2.6.1 Internal Clocks

Characteristics	Symbol	Expression ^{1, 2}		
Characteristics	Symbol	Min	Тур	Max
Internal operation frequency and CLKOUT with PLL enabled	f	_	$(Ef \times MF)/$ (PDF × DF)	_
Internal operation frequency and CLKOUT with PLL disabled	f		Ef/2	_
Internal clock and CLKOUT high period • With PLL disabled • With PLL enabled and MF ≤ 4 • With PLL enabled and MF > 4	Т _Н	$\begin{array}{c}\\ 0.49 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.47 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	ET _C —	$\begin{array}{c}\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.53 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$
Internal clock and CLKOUT low period • With PLL disabled • With PLL enabled and MF ≤ 4 • With PLL enabled and MF > 4	TL	$\begin{array}{c}\\ 0.49 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.47 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	ET _C — —	$\begin{array}{c}\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.53 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$
Internal clock and CLKOUT cycle time with PLL enabled	т _с		$ET_C \times PDF \times DF/MF$	
Internal clock and CLKOUT cycle time with PLL disabled	т _с	_	$2 \times ET_{C}$	—
Instruction cycle time	I _{CYC}	_	T _C	_
 Notes: 1. DF = Division Factor; Ef = External frequency; ET_C = External clock cycle; MF = Multiplication Factor; PDF = Predivision Factor; T_C = internal clock cycle See the PLL and Clock Generation section in the <i>DSP56300 Family Manual</i> for a detailed discussion of the PL I 				

Table 2-4. Internal Clocks, CLKOUT

				100	MHz	
No.		Characteristics	Expression Min M		Max	Unit
Notes:	1. 2. 3. 4.	When fast interrupts are used and IRQA, IRQB, IRQC, and IRQD prevent multiple interrupt service. To avoid these timing restriction fast interrupts are used. Long interrupts are recommended for Lew This timing depends on several settings: • For PLL disable, using internal oscillator (PLL Control Register (I 17 = 0), a stabilization delay is required to assure that the oscillato delay (Operating Mode Register Bit 6 = 0) provides the proper del recommended, and these specifications do not guarantee timings • For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and c delay is required and recovery is minimal (Operating Mode Regist • For PLL disable, using external clock (PCTL Bit 16 = 1), no stabi PCTL Bit 17 and Operating Mode Register Bit 6 settings. • For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during a PLL lock procedure duration, PLL Lock Cycles (PLC), may be in th with the stop delay counter, and stop recovery ends when the last count or PLL lock procedure completion. • PLC value for PLL disable is 0. • The maximum value for ET _C is 4096 (maximum MF) divided by t MHz = 62 µs). During the stabilization period, T _C , T _H , and T _L is no Periodically sampled and not 100 percent tested. Value depends on clock source: • For an external clock generator, RESET duration is measured w active and valid.	are defined as level-sensitive, tim s, the deasserted Edge-triggered rel-sensitive mode. PCTL) Bit 16 = 0) and oscillator di or is stable before programs are et ay. While Operating Mode Registe for that case. oscillator enabled during Stop (PC er Bit 6 setting is ignored). lization delay is required and reco Stop. Recovering from Stop requin he range of 0 to 1000 cycles. This of these two events occurs. The the desired internal frequency (that t constant, and their width may van hile RESET is asserted, V _{CC} is van	ings 19 thr mode is re sabled dur xecuted. Ro er Bit 6 = 1 TL Bit 17=' very time is res the PLL procedure stop delay t is, for 66 ry, so timir	ough 21 ap commende ing Stop (P esetting the can be set. 1), no stabil s defined b . to get lock occurs in p counter cor MHz it is 40 ing may vary	pply to ed when CTL Bit e Stop , it is not lization y the ced. The parallel mpletes 096/66 y as well. put is
		 For an internal oscillator, RESET duration is measured while RE the crystal oscillator stabilization time after power-up. This numbe components connected to the oscillator and reflects worst case co. When the V_{CC} is valid, but the other "required RESET duration" device circuitry is in an uninitialized state that can result in signific this state to the shortest possible duration. 	SET is asserted and V _{CC} is valid. r is affected both by the specificat onditions. conditions (as specified above) ha ant power consumption and heat-	The specif ions of the ave not bee up. Design	ied timing r crystal and n yet met, f s should m	eflects I other the inimize
	5.	If PLL does not lose lock.				
	6.	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{J} = -40^{\circ}\text{C} \text{ to } +100^{\circ}\text{C}, C_{L} = 50 \text{ pF}.$	- \			
	7.	WS = number of wait states (measured in clock cycles, number of	I _С).			
	δ.	Use the expression to compute a maximum value.				

Table 2-7.	Reset, Stop,	Mode Select,	and Interrupt	Timing ⁶	(Continued)
------------	--------------	--------------	---------------	---------------------	-------------

Figure 2-3. Reset Timing

state after a read or write operation.

state after a read or write operation.

Figure 2-13. SRAM Write Access

Figure 2-16. DRAM Page Mode Read Accesses

Figure 2-20. DRAM Refresh Access

Note: Address lines A[0-17] hold their state after a read or write operation. AA[0-3] do not hold their state after a read or write operation.

Figure 2-25. Bus Release Timings Case 2 (BRT Bit in Operating Mode Register Set)

Figure 2-35. Write Timing Diagram, Multiplexed Bus, Double Data Strobe

2.6.7 SCI Timing

Na	Characteristics1	Cumhal	Furnancian	100 MHz		11
NO.	Characteristics	Symbol	Expression	Min	Max	Unit
400	Synchronous clock cycle	t _{SCC} ²	$8 \times T_C$	53.3	_	ns
401	Clock low period		t _{SCC} /2 - 10.0	16.7	—	ns
402	Clock high period		t _{SCC} /2 - 10.0	16.7	_	ns
403	Output data setup to clock falling edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} - 17.0$	8.0	_	ns
404	Output data hold after clock rising edge (internal clock)		$t_{SCC}/4-0.5\times T_{C}$	15.0	_	ns
405	Input data setup time before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} + 25.0$	50.0	_	ns
406	Input data not valid before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} - 5.5$	_	19.5	ns
407	Clock falling edge to output data valid (external clock)			_	32.0	ns
408	Output data hold after clock rising edge (external clock)		T _C + 8.0	18.0	_	ns
409	Input data setup time before clock rising edge (external clock)			0.0	_	ns
410	Input data hold time after clock rising edge (external clock)			9.0	_	ns
411	Asynchronous clock cycle	t _{ACC} ³	$64 imes T_{C}$	640.0	_	ns
412	Clock low period		t _{ACC} /2 - 10.0	310.0	_	ns
413	Clock high period		t _{ACC} /2 - 10.0	310.0	_	ns
414	Output data setup to clock rising edge (internal clock)		t _{ACC} /2 - 30.0	290.0	_	ns
415	Output data hold after clock rising edge (internal clock)		t _{ACC} /2 - 30.0	290.0	_	ns
Notes	Notes: 1. $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_J = -40^{\circ}\text{C}$ to +100 °C, $C_L = 50 \text{ pF}$. 2. t_{SCC} = synchronous clock cycle time (for internal clock, t_{SCC} is determined by the SCI clock control register and T_C).					

Table 2-17. SCI Timings

t_{ACC} = asynchronous clock cycle time; value given for 1X Clock mode (for internal clock, t_{ACC} is determined by the SCI clock control register and T_C).
 An expression is used to compute the number listed as the minimum or maximum value as appropriate.

2.6.9 Timer Timing

Na	Characteristics	Evenessian ²	100	11-14	
NO.	Characteristics	Expression	Min	Max	Unit
480	TIO Low	$2 \times T_{C}$ + 2.0	22.0	—	ns
481	TIO High	$2 \times T_{C} + 2.0$	22.0	—	ns
482	Timer set-up time from TIO (Input) assertion to CLKOUT rising edge		9.0	10.0	ns
483	Synchronous timer delay time from CLKOUT rising edge to the external memory access address out valid caused by first interrupt instruction execution	10.25 × T _C + 1.0	103.5	—	ns
484	CLKOUT rising edge to TIO (Output) assertion • Minimum • Maximum	$0.5 \times T_{C} + 0.5$ $0.5 \times T_{C} + 19.8$	5.5 —	 24.8	ns ns
485	CLKOUT rising edge to TIO (Output) deassertion • Minimum • Maximum	$0.5 \times T_{C} + 0.5$ $0.5 \times T_{C} + 19.8$	5.5	 24.8	ns ns
Notes:	 V_{CC} = 3.3 V ± 0.3 V; T_J = -40°C to +100 ° An expression is used to compute the numerical appropriate. 	°C, C _L = 50 pF mber listed as the minimum	or maximum	n value as	

 Table 2-19.
 Timer Timing¹

Figure 2-40. TIO Timer Event Input Restrictions

Figure 2-41. Timer Interrupt Generation

Figure 2-42. External Pulse Generation

2.6.10 GPIO Timing

Table 2-20.	GPIO	Timing
-------------	------	--------

No.	Characteristics	Expression	100 MHz		Unit
	Gharacteristics	Expression	Min	Max	Unit
490	CLKOUT edge to GPIO out valid (GPIO out delay time)		—	8.5	ns
491	CLKOUT edge to GPIO out not valid (GPIO out hold time)		0.0		ns
492	GPIO In valid to CLKOUT edge (GPIO in set-up time)		8.5	—	ns
493	CLKOUT edge to GPIO in not valid (GPIO in hold time)		0.0	—	ns
494	Fetch to CLKOUT edge before GPIO change	Minimum: $6.75 \times T_{C}$	67.5	—	ns
Note:	V_{CC} = 3.3 V ± 0.3 V; T _J = -40°C to +100 °C, C _L = 50 pF				

Fetch the instruction MOVE X0, X:(R0); X0 contains the new value of GPIO and R0 contains the address of the GPIO data register.

Figure 2-43. GPIO Timing

AC Electrical Characteristics

3.1 Pin-Out and Package Information

This section includes diagrams of the DSP56303 package pin-outs and tables showing how the signals described in **Chapter 1** are allocated for each package.

The DSP56303 is available in two package types:

- 144-pin Thin Quad Flat Pack (TQFP)
- 196-pin Molded Array Process-Ball Grid Array (MAP-BGA)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
H1	42	HRD/HRD	22	PB2	41
H2	41	HREQ/HREQ	24	PB3	40
H3	40	HRRQ/HRRQ	23	PB4	37
H4	37	HRW	22	PB5	36
H5	36	HTRQ/HTRQ	24	PB6	35
H6	35	HWR/HWR	21	PB7	34
H7	34	IRQA	137	PB8	33
HA0	33	IRQB	136	PB9	32
HA1	32	IRQC	135	PC0	12
HA10	30	IRQD	134	PC1	4
HA2	31	MODA	137	PC2	3
HA8	32	MODB	136	PC3	17
HA9	31	MODC	135	PC4	7
HACK/HACK	23	MODD	134	PC5	10
HAD0	43	NC	20	PCAP	46
HAD1	42	NMI	6	PD0	11
HAD2	41	NC	49	PD1	144
HAD3	40	PB0	43	PD2	143
HAD4	37	PB1	42	PD3	16
HAD5	36	PB10	31	PD4	1
HAD6	35	PB11	22	PD5	2
HAD7	34	PB12	21	PE0	13
HAS/HAS	33	PB13	30	PE1	14
HCS/HCS	30	PB14	24	PE2	15
HDS/HDS	21	PB15	23	PINIT	6

 Table 3-2.
 DSP56303 TQFP Signal Identification by Name (Continued)

MAP-BGA Package Mechanical Drawing

4.4 PLL Performance Issues

The following explanations should be considered as general observations on expected PLL behavior. There is no test that replicates these exact numbers. These observations were measured on a limited number of parts and were not verified over the entire temperature and voltage ranges.

4.4.1 Phase Skew Performance

The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature and voltage ranges. As defined in **Figure 2-2**, *External Clock Timing*, on page 2-5 for input frequencies greater than 15 MHz and the MF \leq 4, this skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this skew is between -1.4 ns and +3.2 ns.

4.4.2 Phase Jitter Performance

The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL and CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive load on CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies greater than 15 MHz and MF \leq 4, this jitter is less than ±0.6 ns; otherwise, this jitter is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this jitter is less than ±2 ns.

4.4.3 Frequency Jitter Performance

The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF (MF < 10) this jitter is smaller than 0.5 percent. For mid-range MF (10 < MF < 500) this jitter is between 0.5 percent and approximately 2 percent. For large MF (MF > 500), the frequency jitter is 2–3 percent.

4.5 Input (EXTAL) Jitter Requirements

The allowed jitter on the frequency of EXTAL is 0.5 percent. If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time), then the allowed jitter can be 2 percent. The phase and frequency jitter performance results are valid only if the input jitter is less than the prescribed values.

Appendix A

Power Consumption Benchmark

The following benchmark program evaluates DSP56303 power use in a test situation. It enables the PLL, disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
; *
;* CHECKS Typical Power Consumption
                                                +
;*
                                                *
200,55,0,0,0
      page
      nolist
I_VEC EQU $000000; Interrupt vectors for program debug only
START EQU $8000; MAIN (external) program starting address
INT_PROG EQU $100 ; INTERNAL program memory starting address
INT_XDAT EQU $0; INTERNAL X-data memory starting address
INT_YDAT EQU $0; INTERNAL Y-data memory starting address
       INCLUDE "ioequ.asm"
INCLUDE "intequ.asm"
       list
       org
             P:START
;
       movep #$0243FF,x:M_BCR ;; BCR: Area 3 = 2 w.s (SRAM)
;
 Default: 2w.s (SRAM)
;
             #$0d0000,x:M_PCTL
                                  ; XTAL disable
       movep
                                  ; PLL enable
                                  ; CLKOUT disable
;
 Load the program
;
       move
              #INT_PROG,r0
              #PROG_START,r1
       move
             #(PROG_END-PROG_START), PLOAD_LOOP
       do
             p:(r1)+,x0
       move
             x0,p:(r0)+
      move
      nop
PLOAD LOOP
 Load the X-data
;
;
              #INT_XDAT,r0
      move
             #XDAT_START,r1
#(XDAT_END-XDAT_START),XLOAD_LOOP
      move
       do
      move
             p:(r1)+,x0
             x0,x:(r0)+
      move
XLOAD_LOOP
;
 Load the Y-data
;
              #INT_YDAT,r0
      move
      move
             #YDAT_START,r1
       do
             #(YDAT_END-YDAT_START),YLOAD_LOOP
      move
             p:(r1)+,x0
       move
             x0,y:(r0)+
YLOAD_LOOP
             INT_PROG
       jmp
PROG_START
      move
              #$0,r0
             #$0,r4
      move
             #$3f,m0
      move
             #$3f,m4
      move
;
       clr
             а
```

M_TLR0EQU\$FFFF8E; TIMER0LoadRegM_TCPR0EQU\$FFFF8D; TIMER0CompareRegisterM_TCR0EQU\$FFFF8C; TIMER0CountRegister Register Addresses Of TIMER1 M_TCSR1 EQU \$FFFF8B; TIMER1 Control/Status RegisterM_TLR1 EQU \$FFFF8A; TIMER1 Load RegM_TCPR1 EQU \$FFFF89; TIMER1 Compare RegisterM_TCR1 EQU \$FFFF88; TIMER1 Count Register Register Addresses Of TIMER2 ; M_TCSR2 EQU \$FFFF87 ; TIMER2 Control/Status Register ; TIMER2 Control/Status Regi ; TIMER2 Load Reg ; TIMER2 Compare Register ; TIMER2 Count Register ; TIMER Prescaler Load Register ; TIMER Prescalar Count Register M_TLR2 EQU \$FFFF86 M_TCPR2 EQU \$FFFF85 M_TCR2 EQU \$FFFF84 M_TPLR EQU \$FFFF83 M TPCR EOU \$FFFF82 ; Timer Control/Status Register Bit Flags M_TE EQU 0 ; Timer Enable ; Timer Enable ; Timer Overflow Interrupt Enable ; Timer Compare Interrupt Enable ; Timer Control Mask (TCO-TC3) ; Inverter Bit ; Timer Restart Mode ; Direction Bit ; Data Input ; Data Output ; Data Output ; Prescaled Clock Enable ; Timer Overflow Flag ; Timer Compare Flag M_TOIE EQU 1 M_TCIE EQU 2 M_TC EQU \$F0 M_INV EQU 8 M_TRM EQU 9 M_DIR EQU 11 M_DI EQU 12 M_DO EQU 13 M_PCE EQU 15 M_TOF EQU 20 ; Timer Compare Flag M_TCF EQU 21 Timer Prescaler Register Bit Flags ; M_PS EQU \$600000 ; Prescaler Source Mask M_PS0 EQU 21 M_PS1 EQU 22 Timer Control Bits M_TCO EQU 4 ; Timer Control 0 M_TC1 EQU 5 ; Timer Control 1 ; Timer Control 2 ; Timer Control 3 M_TC2 EQU 6 M TC3 EOU 7 ;-----EQUATES for Direct Memory Access (DMA) ; ;-----Register Addresses Of DMA ; M_DSTR EQU FFFFF4 ; DMA Status M_DOR0 EQU \$FFFFF3 ; DMA Offset Register 0 ; DMA Status Register M_DOR1 EQU \$FFFFF2 ; DMA Offset Register 1 $\rm M_DOR2~EQU~\$FFFFF1$; DMA Offset Register 2 M_DOR3 EQU \$FFFFF0 ; DMA Offset Register 3 ; Register Addresses Of DMA0 M_DSR0 EQU \$FFFFEF ; DMA0 Source Address Register M_DDR0 EQU \$FFFFEE ; DMA0 Destination Address Register M_DCO0 EQU \$FFFFED ; DMA0 Counter M_DCR0 EQU \$FFFFEC ; DMA0 Control Register Register Addresses Of DMA1 ; M_DSR1 EQU \$FFFFEB ; DMA1 Source Address Register M_DDR1 EQU \$FFFFEA ; DMA1 Destination Address Register M_DCO1 EQU \$FFFFE9 ; DMA1 Counter M_DCR1 EQU \$FFFFE8 ; DMA1 Control Register Register Addresses Of DMA2 ; M_DSR2 EQU \$FFFFE7 ; DMA2 Source Address Register