NXP USA Inc. - SPAKXC309VF100A Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	100MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	24kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spakxc309vf100a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DSP56303 Features

High-Performance DSP56300 Core

- 100 million instructions per second (MIPS) with a 100 MHz clock at 3.3 V nominal
- Object code compatible with the DSP56000 core with highly parallel instruction set
 - Data Arithmetic Logic Unit (Data ALU) with fully pipelined 24 × 24-bit parallel Multiplier-Accumulator (MAC), 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing), conditional ALU instructions, and 24-bit or 16-bit arithmetic support under software control
 - Program Control Unit (PCU) with Position Independent Code (PIC) support, addressing modes optimized for DSP applications (including immediate offsets), on-chip instruction cache controller, on-chip memory-expandable hardware stack, nested hardware DO loops, and fast auto-return interrupts
 - Direct Memory Access (DMA) with six DMA channels supporting internal and external accesses; one-, two-, and three-dimensional transfers (including circular buffering); end-of-block-transfer interrupts; and triggering from interrupt lines and all peripherals
 - Phase Lock Loop (PLL) allows change of low-power Divide Factor (DF) without loss of lock and output clock with skew elimination
 - Hardware debugging support including On-Chip Emulation (OnCE™) module, Joint Test Action Group (JTAG) Test Access Port (TAP)

On-Chip Peripherals

- Enhanced DSP56000-like 8-bit parallel host interface (HI08) supports a variety of buses (for example, ISA) and provides glueless connection to a number of industry-standard microcomputers, microprocessors, and DSPs
- Two enhanced synchronous serial interfaces (ESSI), each with one receiver and three transmitters (allows six-channel home theater)
- Serial communications interface (SCI) with baud rate generator
- Triple timer module
- Up to thirty-four programmable general-purpose input/output (GPIO) pins, depending on which peripherals are enabled

On-Chip Memories

- 192×24 -bit bootstrap ROM
- 128 K RAM total
- Program RAM, Instruction Cache, X data RAM, and Y data RAM sizes are programmable:

Program RAM Size	Instruction Cache Size	X Data RAM Size	Y Data RAM Size	Instruction Cache	Switch Mode
4096 × 24-bit	0	2048×24 -bit	2048×24 -bit	disabled	disabled
3072×24 -bit	1024×24 -bit	2048×24 -bit	2048×24 -bit	enabled	disabled
2048×24 -bit	0	3072×24 -bit	3072×24 -bit	disabled	enabled
1024×24 -bit	1024×24 -bit	3072×24 -bit	3072×24 -bit	enabled	enabled

Signal/ Connection Descriptions

1.1 Signal Groupings

The DSP56303 input and output signals are organized into functional groups as shown in **Table 1-1**. **Figure 1-1** diagrams the DSP56303 signals by functional group. The remainder of this chapter describes the signal pins in each functional group.

Table 1-1.	DSP56303	Functional	Signal	Groupings

				Number o	of Signals
		Functional Group		TQFP	MAP- BGA
Power (\	/ _{CC})			18	18
Ground	(GND			19	66
Clock				2	2
PLL				3	3
Address	bus			18	18
Data bus	6		Port A ¹	24	24
Bus con	trol			13	13
Interrupt	and	mode control		5	5
Host inte	erface	(HI08)	Port B ²	16	16
Enhance	ed syr	nchronous serial interface (ESSI)	Ports C and D ³	12	12
Serial co	ommu	nication interface (SCI)	Port E ⁴	3	3
Timer				3	3
OnCE/J	tag f	Port		6	6
 Port A signals define the external memory interface port, including the external address bus, data bus, and control signals. Port B signals are the HI08 port signals multiplexed with the GPIO signals. Port C and D signals are the two ESSI port signals multiplexed with the GPIO signals. Port E signals are the SCI port signals multiplexed with the GPIO signals. There are 2 signal connections in the TQFP package and 7 signal connections in the MAP-BGA package that are not used. These are designated as no connect (NC) in the package description (see Chapter 3). 					

Note: This chapter refers to a number of configuration registers used to select individual multiplexed signal functionality. Refer to the *DSP56303 User's Manual* for details on these configuration registers.

1.9 Enhanced Synchronous Serial Interface 0 (ESSI0)

Two synchronous serial interfaces (ESSI0 and ESSI1) provide a full-duplex serial port for serial communication with a variety of serial devices, including one or more industry-standard codecs, other DSPs, microprocessors, and peripherals that implement the Motorola serial peripheral interface (SPI).

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC00	Input or Output	Ignored Input	Serial Control 0 —For asynchronous mode, this signal is used for the receive clock I/O (Schmitt-trigger input). For synchronous mode, this signal is used either for transmitter 1 output or for serial I/O flag 0.
PC0	Input or Output		Port C 0 —The default configuration following reset is GPIO input PC0. When configured as PC0, signal direction is controlled through the Port C Direction Register. The signal can be configured as ESSI signal SC00 through the Port C Control Register.
SC01	Input/Output	Ignored Input	Serial Control 1 —For asynchronous mode, this signal is the receiver frame sync I/O. For synchronous mode, this signal is used either for transmitter 2 output or for serial I/O flag 1.
PC1	Input or Output		Port C 1 —The default configuration following reset is GPIO input PC1. When configured as PC1, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC01 through the Port C Control Register.
SC02	Input/Output	Ignored Input	Serial Control Signal 2—The frame sync for both the transmitter and receiver in synchronous mode, and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PC2	Input or Output		Port C 2 —The default configuration following reset is GPIO input PC2. When configured as PC2, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC02 through the Port C Control Register.
SCK0	Input/Output	Ignored Input	Serial Clock—Provides the serial bit rate clock for the ESSI. The SCK0 is a clock input or output, used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PC3	Input or Output		Port C 3 —The default configuration following reset is GPIO input PC3. When configured as PC3, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SCK0 through the Port C Control Register.

Table 1-12. Enhanced Synchronous Serial Interface 0

Signal Name	Туре	State During Reset ^{1,2}	Signal Description			
SRD0	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD0 is an input when data is received.			
PC4	Input or Output		Port C 4 —The default configuration following reset is GPIO input PC4. When configured as PC4, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SRD0 through the Port C Control Register.			
STD0	Output	Ignored Input	Serial Transmit Data—Transmits data from the Serial Transmit Shift Register. STD0 is an output when data is transmitted.			
PC5	Input or Output		Port C 5 —The default configuration following reset is GPIO input PC5. When configured as PC5, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal STD0 through the Port C Control Register.			
Notes: 1.	n the Stop state,	the signal mainta	ins the last state as follows:			
•	If the last state is	s input, the signal	l is an ignored input.			
• •	If the last state is	s output, the sign	nal is tri-stated.			
3.	All inputs are 5 V	tolerant.	n aneor the signal state.			
÷. ,						

Table 1-12. Enhanced Synchronous Serial Interface 0 (Continued)

1.10 Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC10	Input or Output	Ignored Input	Serial Control 0 —For asynchronous mode, this signal is used for the receive clock I/O (Schmitt-trigger input). For synchronous mode, this signal is used either for transmitter 1 output or for serial I/O flag 0.
PD0	Input or Output		Port D 0 —The default configuration following reset is GPIO input PD0. When configured as PD0, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC10 through the Port D Control Register.
SC11	Input/Output	Ignored Input	Serial Control 1 —For asynchronous mode, this signal is the receiver frame sync I/O. For synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.
PD1	Input or Output		Port D 1 —The default configuration following reset is GPIO input PD1. When configured as PD1, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC11 through the Port D Control Register.

Table 1-13. Enhanced Serial Synchronous Interface 1

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC12	Input/Output	Ignored Input	Serial Control Signal 2—The frame sync for both the transmitter and receiver in synchronous mode and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PD2	Input or Output		Port D 2 —The default configuration following reset is GPIO input PD2. When configured as PD2, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC12 through the Port D Control Register.
SCK1	Input/Output	Ignored Input	Serial Clock—Provides the serial bit rate clock for the ESSI. The SCK1 is a clock input or output used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PD3	Input or Output		Port D 3 —The default configuration following reset is GPIO input PD3. When configured as PD3, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SCK1 through the Port D Control Register.
SRD1	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD1 is an input when data is being received.
PD4	Input or Output		Port D 4 —The default configuration following reset is GPIO input PD4. When configured as PD4, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SRD1 through the Port D Control Register.
STD1	Output	Ignored Input	Serial Transmit Data—Transmits data from the Serial Transmit Shift Register. STD1 is an output when data is being transmitted.
PD5	Input or Output		Port D 5 —The default configuration following reset is GPIO input PD5. When configured as PD5, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal STD1 through the Port D Control Register.
Notes: 1	n the Stop state, If the last state is If the last state is The Wait process All inputs are 5 V	the signal mainta s input, the signal s output, the sign ing state does no tolerant.	ins the last state as follows: l is an ignored input. al is tri-stated. of affect the signal state.

Table 1-13.	Enhanced Serial Sync	hronous Interface 1	(Continued)
-------------	----------------------	---------------------	-------------

2.6 AC Electrical Characteristics

The timing waveforms shown in the AC electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in Note 6 of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50 percent point of the respective input signal transition. DSP56303 output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.4 V and 2.4 V, respectively.

Note: Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test conditions are 15 MHz and rated speed.

2.6.1 Internal Clocks

Characteristics	Symbol	Expression ^{1, 2}				
Characteristics	Symbol	Min	Тур	Max		
Internal operation frequency and CLKOUT with PLL enabled	f	_	$(Ef \times MF)/$ (PDF × DF)	_		
Internal operation frequency and CLKOUT with PLL disabled	f		Ef/2	_		
Internal clock and CLKOUT high period • With PLL disabled • With PLL enabled and MF ≤ 4 • With PLL enabled and MF > 4	Т _Н	$\begin{array}{c}\\ 0.49 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.47 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	ET _C —	$\begin{array}{c}\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.53 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$		
Internal clock and CLKOUT low period • With PLL disabled • With PLL enabled and MF ≤ 4 • With PLL enabled and MF > 4	TL	$\begin{array}{c}\\ 0.49 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.47 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	ET _C — —	$\begin{array}{c}\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.53 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$		
Internal clock and CLKOUT cycle time with PLL enabled	т _с		$ET_C \times PDF \times DF/MF$			
Internal clock and CLKOUT cycle time with PLL disabled	т _с	_	$2 \times ET_{C}$	—		
Instruction cycle time	I _{CYC}	_	T _C	_		
 DF = Division Factor; Ef = External frequency; ET_C = External clock cycle; MF = Multiplication Factor; PDF = Predivision Factor; T_C = internal clock cycle See the PLL and Clock Generation section in the <i>DSP56300 Family Manual</i> for a detailed discussion of the PLL 						

Table 2-4. Internal Clocks, CLKOUT

				100	MHz	
No.		Characteristics	Expression	Max	Unit	
Notes:	1. 2. 3. 4.	When fast interrupts are used and IRQA, IRQB, IRQC, and IRQD prevent multiple interrupt service. To avoid these timing restriction fast interrupts are used. Long interrupts are recommended for Lew This timing depends on several settings: • For PLL disable, using internal oscillator (PLL Control Register (I 17 = 0), a stabilization delay is required to assure that the oscillato delay (Operating Mode Register Bit 6 = 0) provides the proper del recommended, and these specifications do not guarantee timings • For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and c delay is required and recovery is minimal (Operating Mode Regist • For PLL disable, using external clock (PCTL Bit 16 = 1), no stabi PCTL Bit 17 and Operating Mode Register Bit 6 settings. • For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during a PLL lock procedure duration, PLL Lock Cycles (PLC), may be in th with the stop delay counter, and stop recovery ends when the last count or PLL lock procedure completion. • PLC value for PLL disable is 0. • The maximum value for ET _C is 4096 (maximum MF) divided by t MHz = 62 µs). During the stabilization period, T _C , T _H , and T _L is no Periodically sampled and not 100 percent tested. Value depends on clock source: • For an external clock generator, RESET duration is measured w active and valid.	are defined as level-sensitive, tim s, the deasserted Edge-triggered rel-sensitive mode. PCTL) Bit 16 = 0) and oscillator di or is stable before programs are et ay. While Operating Mode Registe for that case. oscillator enabled during Stop (PC er Bit 6 setting is ignored). lization delay is required and reco Stop. Recovering from Stop requin he range of 0 to 1000 cycles. This of these two events occurs. The the desired internal frequency (that t constant, and their width may value hile RESET is asserted, V _{CC} is value	ings 19 thr mode is re sabled dur xecuted. Ro er Bit 6 = 1 TL Bit 17=' very time is res the PLL procedure stop delay t is, for 66 ry, so timir	ough 21 ap commende ing Stop (P esetting the can be set. 1), no stabil s defined b . to get lock occurs in p counter cor MHz it is 40 ing may vary	pply to ed when CTL Bit e Stop , it is not lization y the ced. The parallel mpletes 096/66 y as well. put is
		 For an internal oscillator, RESET duration is measured while RE the crystal oscillator stabilization time after power-up. This numbe components connected to the oscillator and reflects worst case co. When the V_{CC} is valid, but the other "required RESET duration" device circuitry is in an uninitialized state that can result in signific this state to the shortest possible duration. 	SET is asserted and V _{CC} is valid. r is affected both by the specificat onditions. conditions (as specified above) ha ant power consumption and heat-	The specif ions of the ave not bee up. Design	ied timing r crystal and n yet met, f s should m	eflects I other the inimize
	5.	If PLL does not lose lock.				
	6.	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{J} = -40^{\circ}\text{C} \text{ to } +100^{\circ}\text{C}, C_{L} = 50 \text{ pF}.$	- \			
	7.	WS = number of wait states (measured in clock cycles, number of	I _С).			
	δ.	Use the expression to compute a maximum value.				

Table 2-7.	Reset, Stop,	Mode Select,	and Interrupt	Timing ⁶	(Continued)
------------	--------------	--------------	---------------	---------------------	-------------

Figure 2-3. Reset Timing

2.6.6 Host Interface Timing

NI	Okana staristis10	F ormation	100 MHz		1.1
NO.	Characteristic	Expression	Min	Max	Unit
317	Read data strobe assertion width ⁵ HACK assertion width	T _C + 9.9	19.9		ns
318	Read data strobe deassertion width ⁵ HACK deassertion width		9.9		ns
319	Read data strobe deassertion width ⁵ after "Last Data Register" reads ^{8,11} , or between two consecutive CVR, ICR, or ISR reads ³ HACK deassertion width after "Last Data Register" reads ^{8,11}	2.5 × T _C + 6.6	31.6	_	ns
320	Write data strobe assertion width ⁶		13.2	_	ns
321	Write data strobe deassertion width ⁸ HACK write deassertion width • after ICR, CVR and "Last Data Register" writes	2.5 × T _C + 6.6	31.8		ns
	 after IVR writes, or after TXH:TXM:TXL writes (with HLEND= 0), or after TXL:TXM:TXH writes (with HLEND = 1) 		16.5	—	ns
322	HAS assertion width		9.9	_	ns
323	HAS deassertion to data strobe assertion ⁴		0.0	_	ns
324	Host data input setup time before write data strobe deassertion ⁶		9.9		ns
325	Host data input hold time after write data strobe deassertion ⁶		3.3		ns
326	Read data strobe assertion to output data active from high impedance ⁵ HACK assertion to output data active from high impedance		3.3	_	ns
327	Read data strobe assertion to output data valid ⁵ HACK assertion to output data valid		_	24.5	ns
328	Read data strobe deassertion to output data high impedance ⁵ HACK deassertion to output data high impedance		_	9.9	ns
329	Output data hold time after read data strobe deassertion ⁵ Output data hold time after HACK deassertion		3.3	_	ns
330	HCS assertion to read data strobe deassertion ⁵	T _C + 9.9	19.9		ns
331	HCS assertion to write data strobe deassertion ⁶		9.9		ns
332	HCS assertion to output data valid		—	19.3	ns
333	HCS hold time after data strobe deassertion ⁴		0.0		ns
334	Address (HAD[0–7]) setup time before HAS deassertion (HMUX=1)		4.6		ns
335	Address (HAD[0–7]) hold time after HAS deassertion (HMUX=1)		3.3	_	ns
336	HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/W setup time before data strobe assertion ⁴ • Read • Write		0 4.6	_	ns ns
337	HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/ \overline{W} hold time after data strobe deassertion ⁴		3.3		ns

 Table 2-16.
 Host Interface Timings^{1,2,12}

2.6.8 ESSI0/ESSI1 Timing

No	Characteristics ^{4, 5, 7}	Symbol	Expression ⁹	100 MHz		Cond-	Unit
NO.				Min	Max	ition ⁵	Unit
430	Clock cycle ¹	tssicc	$3 \times T_C$ $4 \times T_C$	30.0 40.0		x ck i ck	ns
431	Clock high period • For internal clock • For external clock		2 × T _C - 10.0 1.5 × T _C	10.0 15.0			ns ns
432	Clock low period • For internal clock • For external clock		$\begin{array}{c} 2 \times T_{C} - 10.0 \\ 1.5 \times T_{C} \end{array}$	10.0 15.0			ns ns
433	RXC rising edge to FSR out (bit-length) high				37.0 22.0	x ck i ck a	ns
434	RXC rising edge to FSR out (bit-length) low				37.0 22.0	x ck i ck a	ns
435	RXC rising edge to FSR out (word-length-relative) high ²				39.0 37.0	x ck i ck a	ns
436	RXC rising edge to FSR out (word-length-relative) ${\rm low}^2$				39.0 37.0	x ck i ck a	ns
437	RXC rising edge to FSR out (word-length) high				36.0 21.0	x ck i ck a	ns
438	RXC rising edge to FSR out (word-length) low				37.0 22.0	x ck i ck a	ns
439	Data in setup time before RXC (SCK in Synchronous mode) falling edge			10.0 19.0		x ck i ck	ns
440	Data in hold time after RXC falling edge			5.0 3.0		x ck i ck	ns
441	FSR input (bl, wr) high before RXC falling edge ²			1.0 23.0		x ck i ck a	ns
442	FSR input (wl) high before RXC falling edge			3.5 23.0		x ck i ck a	ns
443	FSR input hold time after RXC falling edge			3.0 0.0		x ck i ck a	ns
444	Flags input setup before RXC falling edge			5.5 19.0		x ck i ck s	ns
445	Flags input hold time after RXC falling edge			6.0 0.0		x ck i ck s	ns
446	TXC rising edge to FST out (bit-length) high			_	29.0 15.0	x ck i ck	ns
447	TXC rising edge to FST out (bit-length) low			_	31.0 17.0	x ck i ck	ns
448	TXC rising edge to FST out (word-length-relative) high ²			_	31.0 17.0	x ck i ck	ns
449	TXC rising edge to FST out (word-length-relative) low ²			_	33.0 19.0	x ck i ck	ns

Table 2-18. ESSI Timings

Note: frame. In Normal mode, the output flag state is asserted for the entire frame period.

Figure 2-38. ESSI Transmitter Timing

2.6.10 GPIO Timing

Table 2-20.	GPIO	Timing
-------------	------	--------

No.	Characteristics	Expression	100 MHz		Unit
	Gharacteristics	Expression	Min	Max	
490	CLKOUT edge to GPIO out valid (GPIO out delay time)		—	8.5	ns
491	CLKOUT edge to GPIO out not valid (GPIO out hold time)		0.0		ns
492	GPIO In valid to CLKOUT edge (GPIO in set-up time)		8.5	—	ns
493	CLKOUT edge to GPIO in not valid (GPIO in hold time)		0.0	—	ns
494	Fetch to CLKOUT edge before GPIO change	Minimum: $6.75 \times T_{C}$	67.5	—	ns
Note:	V_{CC} = 3.3 V ± 0.3 V; T _J = -40°C to +100 °C, C _L = 50 pF				

Fetch the instruction MOVE X0, X:(R0); X0 contains the new value of GPIO and R0 contains the address of the GPIO data register.

Figure 2-43. GPIO Timing

2.6.11 JTAG Timing

Na	Characteristics	All freq	1114	
NO.	Characteristics	Min	Max	Unit
500	TCK frequency of operation	0.0	22.0	MHz
501	TCK cycle time in Crystal mode	45.0	_	ns
502	TCK clock pulse width measured at 1.5 V	20.0	_	ns
503	TCK rise and fall times	0.0	3.0	ns
504	Boundary scan input data setup time	5.0	_	ns
505	Boundary scan input data hold time	24.0	_	ns
506	TCK low to output data valid	0.0	40.0	ns
507	TCK low to output high impedance	0.0	40.0	ns
508	TMS, TDI data setup time	5.0	_	ns
509	TMS, TDI data hold time	25.0	_	ns
510	TCK low to TDO data valid	0.0	44.0	ns
511	TCK low to TDO high impedance	0.0	44.0	ns
512	TRST assert time	100.0	_	ns
513	TRST setup time to TCK low	40.0		ns
Notes:	1. $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_J = -40^{\circ}\text{C}$ to +100 °C, $C_L = 50 \text{ pF}$ 2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.			

Table 2-21. JTAG Timing

Figure 2-44. Test Clock Input Timing Diagram

3.1 Pin-Out and Package Information

This section includes diagrams of the DSP56303 package pin-outs and tables showing how the signals described in **Chapter 1** are allocated for each package.

The DSP56303 is available in two package types:

- 144-pin Thin Quad Flat Pack (TQFP)
- 196-pin Molded Array Process-Ball Grid Array (MAP-BGA)

Notes: Because of size constraints in this figure, only one name is shown for multiplexed pins. Refer to **Table 3-1** and **Table 3-2** for detailed information about pin functions and signal names.

Figure 3-2. DSP56303 Thin Quad Flat Pack (TQFP), Bottom View

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
F6	GND	HЗ	SCK0 or PC3	J14	A9
F7	GND	H4	GND	K1	V _{CCS}
F8	GND	H5	GND	K2	HREQ/HREQ, HTRQ/HTRQ, or PB14
F9	GND	H6	GND	K3	TIO2
F10	GND	H7	GND	K4	GND
F11	GND	H8	GND	K5	GND
F12	V _{CCA}	H9	GND	K6	GND
F13	A14	H10	GND	K7	GND
F14	A15	H11	GND	K8	GND
G1	SCK1 or PD3	H12	V _{CCA}	K9	GND
G2	SCLK or PE2	H13	A10	K10	GND
G3	TXD or PE1	H14	A11	K11	GND
G4	GND	J1	HACK/HACK, HRRQ/HRRQ, or PB15	K12	V _{CCA}
G5	GND	J2	HRW, HRD/HRD, or PB11	K13	A5
G6	GND	J3	HDS/HDS, HWR/HWR, or PB12	K14	A6
G7	GND	J4	GND	L1	HCS/HCS, HA10, or PB13
G8	GND	J5	GND	L2	TIO1
G9	GND	J6	GND	L3	TIO0
G10	GND	J7	GND	L4	GND
G11	GND	J8	GND	L5	GND
G12	A13	J9	GND	L6	GND
G13	V _{CCQ}	J10	GND	L7	GND
G14	A12	J11	GND	L8	GND
H1	NC	J12	A8	L9	GND
H2	V _{CCQ}	J13	A7	L10	GND
L11	GND	M13	A1	P1	NC
L12	V _{CCA}	M14	A2	P2	H5, HAD5, or PB5
L13	A3	N1	H6, HAD6, or PB6	P3	H3, HAD3, or PB3

Table 3-3. DSP56303 MAP-BGA Signal Identification by Pin Number (Continued)

MAP-BGA Package Mechanical Drawing

Appendix A

Power Consumption Benchmark

The following benchmark program evaluates DSP56303 power use in a test situation. It enables the PLL, disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
; *
;* CHECKS Typical Power Consumption
                                                +
;*
                                                *
200,55,0,0,0
      page
      nolist
I_VEC EQU $000000; Interrupt vectors for program debug only
START EQU $8000; MAIN (external) program starting address
INT_PROG EQU $100 ; INTERNAL program memory starting address
INT_XDAT EQU $0; INTERNAL X-data memory starting address
INT_YDAT EQU $0; INTERNAL Y-data memory starting address
       INCLUDE "ioequ.asm"
INCLUDE "intequ.asm"
       list
       org
             P:START
;
       movep #$0243FF,x:M_BCR ;; BCR: Area 3 = 2 w.s (SRAM)
;
 Default: 2w.s (SRAM)
;
             #$0d0000,x:M_PCTL
                                  ; XTAL disable
       movep
                                  ; PLL enable
                                  ; CLKOUT disable
;
 Load the program
;
       move
              #INT_PROG,r0
              #PROG_START,r1
       move
             #(PROG_END-PROG_START), PLOAD_LOOP
       do
             p:(r1)+,x0
       move
             x0,p:(r0)+
      move
      nop
PLOAD LOOP
 Load the X-data
;
;
              #INT_XDAT,r0
      move
             #XDAT_START,r1
#(XDAT_END-XDAT_START),XLOAD_LOOP
      move
       do
      move
             p:(r1)+,x0
             x0,x:(r0)+
      move
XLOAD_LOOP
;
 Load the Y-data
;
              #INT_YDAT,r0
      move
      move
             #YDAT_START,r1
       do
             #(YDAT_END-YDAT_START),YLOAD_LOOP
      move
             p:(r1)+,x0
       move
             x0,y:(r0)+
YLOAD_LOOP
             INT_PROG
       jmp
PROG_START
      move
              #$0,r0
             #$0,r4
      move
             #$3f,m0
      move
             #$3f,m4
      move
;
       clr
             а
```

dc dc dc dc dc dc dc dc dc dc dc dc dc d	\$EB3B4B \$2DA928 \$AB6641 \$28A7E6 \$4E2127 \$482FD4 \$7257D \$E53C72 \$1A8C3 \$E27540
YDAT_START	. 0
; org dc dc dc dc dc dc dc dc dc dc dc dc dc	y:0 \$5B6DA \$CA39E8 \$81E801 \$C666A6 \$46F8E7 \$AAEC94 \$24233D \$802732 \$223C83 \$A43E00 \$C2B639 \$85A47E \$ABFDDF \$F3A2C \$2D7CF5 \$E16A8A \$ECB8FB \$4BED18 \$43F371 \$83A556 \$E1E9D7 \$ACA2C4 \$8135AD \$2CE0E2 \$8F2C73 \$432730 \$AA7F3D \$2CE0E2 \$8F2C73 \$432730 \$AA7F4D \$CE6E655 \$1AA3A \$A1B6EB \$48AC48 \$EF7AE1 \$6E306655 \$1AA3A \$A1B6EB \$48AC48 \$EF7AE1 \$6E3066 \$2F6C7 \$6064F4 \$87E41D \$CCE2692 \$2C3863 \$CC6BC60 \$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51 \$E0A6B6 \$68FFB7 \$2BF282 \$2BF251 \$E0A6B6 \$68FFB7 \$2BF28D \$667842 \$83E053 \$A1FD90 \$61262B2 \$85E68E \$622EAF \$6162BC \$E4A245
TDAT TRIND	

; control and status bits in SR M_CP EQU \$c00000; mask for CORE-DMA priority bits in SR M_CA EQU 0 ; Carry M_V EQU 1 ; Overflow M_Z EQU 2 ; Zero % Negative
% Unnormalized M_N EQU 3 M_U EQU 4 ; Extension ; Limit M_E EQU 5 M_L EQU 6 ; Limit
; Scaling Bit
; Interupt Mask Bit 0
; Interupt Mask Bit 1
; Scaling Mode Bit 0
; Scaling Mode Bit 1
; Sixteen_Bit Compatibility
; Double Precision Multiply
; DO-Loop Flag
; DO-Forever Flag
; Sixteen-Bit Arithmetic
; Instruction Cache Enable M_S EQU 7 M_IO EQU 8 M_I1 EQU 9 M_S0 EQU 10 M_S1 EQU 11 M_SC EQU 13 M DM EOU 14 M_LF EQU 15 M_FV EQU 16 M_SA EQU 17 M_CE EQU 19 M_SM EQU 20 ; Instruction Cache Enable ; Arithmetic Saturation ; Rounding Mode ; bit 0 of priority bits in SR M RM EOU 21 M CPO EOU 22 ; bit 1 of priority bits in SR M_CP1 EQU 23 ; control and status bits in OMR M_CDP EQU \$300 ; mask for CORE-DMA priority bits in OMR M_MA equ0 ; Operating Mode A M_MB equl ; Operating Mode B M_MB equi ; Operating Mode B M_MC equ2 ; Operating Mode D M_MD equ3 ; Operating Mode D M_EBD EQU 4 ; External Bus Disable bit in OMR M_SD EQU 6 ; Stop Delay M_MS EQU 7 ; Memory Switch bit in OMR M_CDPO EQU 8 ; bit 0 of priority bits in OMR M_CDP1 EQU 9 ; bit 1 of priority bits in OMR M_DEN _ FOU 10 ; Durat Enable M_BEN EQU 10 ; Burst Enable M_TAS EQU 11 ; TA Synchronize Select M_BRT EQU 12 ; Bus Release Timing M_ATE EQU 15 ; Address Tracing Enable bit in OMR. M_XYS EQU 16 ; Stack Extension space select bit in OMR. M_EUN EQU 17 ; Extensed stack UNderflow flag in OMR. ; Extended stack OVerflow flag in OMR. ; Extended WRaP flag in OMR. M_EOV EQU 18 M_WRP EQU 19 M_SEN EQU 20 ; Stack Extension Enable bit in OMR.

```
EQUATES for DSP56303 interrupts
   Last update: June 11 1995
132,55,0,0,0
    page
    opt
         mex
intequ ident
         1,0
    if
         @DEF(I_VEC)
    ;leave user definition as is.
    else
I_VEC EQU $0
    endif
:----
       _____
               _____
; Non-Maskable interrupts
               _____
I_RESET EQU I_VEC+$00 ; Hardware RESET
I_STACK EQU I_VEC+$02 ; Stack Error
I_ILL EQU I_VEC+$04 ; Illegal Instruction
I_DBG EQU I_VEC+$06 ; Debug Request
```

interrupt signals 1-8 JTAG signals 1-18 mode control 1-8 OnCE signals 1-18 PLL signals 1-4 Reset timing 2-7, 2-9 synchronous 2-10 ROM, bootstrap iii

S

Serial Communication Interface (SCI) iii, 1-1, 1-2, 1-16 Asynchronous mode timing 2-38 Synchronous mode timing 2-38 signal groupings 1-1 signals 1-1 functional grouping 1-2 Single Data Strobe 1-2 SRAM read access 2-15 support iv write access 2-15 Stop mode iv Stop state recovery from 2-12 Stop timing 2-7 supply voltage 2-2 Switch mode iii synchronous bus timings SRAM 2 wait states 2-26 SRAM 1 wait state (BCR controlled) 2-26 synchronous interrupt from Wait state timing 2-11 synchronous Reset timing 2-10

Т

target applications iv Test Access Port (TAP) iii timing diagram 2-46 Test Clock (TCLK) input timing diagram 2-45 thermal design considerations 4-1 Timer event input restrictions 2-43 Timers 1-1, 1-2, 1-17 interrupt generation 2-43 **TQFP 3-1** mechanical drawing 3-9 pin list by name 3-6 pin list by number 3-4 pin-out drawing (bottom) 3-3 pin-out drawing (top) 3-2

W

Wait mode iv World Wide Web iv

Χ

X-data RAM iii

Y

Y-data RAM iii