
NXP USA Inc. - SPAKXCL307VL160 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Details	
Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	160MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	576kB
Voltage - I/O	3.30V
Voltage - Core	1.80V
Operating Temperature	-40°C ~ 100°C
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spakxcl307vl160

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			DSF	256303		During Reset MODA	After Reset IRQA	
			Power Inputs:	Interrupt/		MODB	IRQB	
	V _{CCP}		PLL	Mode Control	◄	MODC	IRQC	
	V _{CCQ}	4	Internal Logic			MODD	IRQD	
	V _{CCA}	4	Address Bus			RESET	RESET	
	V _{CCD}	$\frac{4}{2}$	Data Bus			Non-Multiplexed	Multiplexed	Port B
	V _{CCC}	→	Bus Control		0	Bus	Bus	GPIO
	V _{CCH}	2	HI08 ESSI/SCI/Timer		↔	H[0–7]	HAD[0-7]	PB[0-7]
	V _{CCS}			Host	—	HA0	HAS/HAS	PB8
				Interface		HA1 HA2	HA8	PB9
			Grounds ⁴ :	(HI08) Port ¹		HAZ HCS/HCS	HA9 HA10	PB10 PB13
	GND _P GND _{P1}	\rightarrow	PLL PLL	()		Single DS	Double DS	1010
	GND _{P1} GND _Q	4	Internal Logic			HRŴ	HRD/HRD	PB11
	GNDA	\rightarrow	Address Bus		◄	HDS/HDS	HWR/HWR	PB12
	GND _D	$\frac{4}{2}$	Data Bus			Single HR		
	GND _C	∠ →	Bus Control			HREQ/HREQ HACK/HACK	HTRQ/HTRQ HRRQ/HRRQ	PB14
	GND _H	2	HI08			HACKHACK		FBIS
	GND _S		ESSI/SCI/Timer		2		Port C GPIO	
				Enhanced	<->	SC0[0-2]	PC[0-2]	
	EXTAL XTAL		Clock	Synchronous Serial Interface Port 0	\leftarrow	SCK0	PC3	
	ATAL			(ESSI0) ²		SRD0 STD0	PC4 PC5	
				(20010)		0100	105	
	CLKOUT PCAP		PLL				Port D GPIO	
During	After	-		Enhanced	\checkmark	SC1[0-2]	PD[0-2]	
Reset	Reset			Synchronous Serial	\leftarrow	SCK1	PD3	
PINIT	NMI			Interface Port 1		SRD1	PD4	
			Port A	(ESSI1) ²		STD1	PD5	
		18	External					
	A[0–17]		Address Bus	Serial		RXD	Port E GPIO PE0	
	D/0 001	24	External	Communications Interface (SCI) Port ²		TXD	PE1	
	D[0-23]	\leftrightarrow	Data Bus	Interface (SCI) Port-	\checkmark	SCLK	PE2	
	AA0/RAS0-							
	AA3/RAS3	4	External				Timer GPIO	
	RD	←	Bus		\checkmark	TIO0	TIO0	
	WR	-	Control	Timers ³	\leftarrow	TIO1	TIO1	
	TA BR					TIO2	TIO2	
	BG				◄	ТСК		
	BB	\checkmark		OnCE/	◄	TDI		
	CAS	←		JTAG Port		TDO		
	BCLK				\mathbf{k}	TMS TRST		
	BCLK				<►	DE		

- Notes: 1. The HI08 port supports a non-multiplexed or a multiplexed bus, single or double Data Strobe (DS), and single or double Host Request (HR) configurations. Since each of these modes is configured independently, any combination of these modes is possible. These HI08 signals can also be configured alternatively as GPIO signals (PB[0–15]). Signals with dual designations (for example, HAS/HAS) have configurable polarity.
 - The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC[0-5]), Port D GPIO signals (PD[0-5]), and Port E GPIO signals (PE[0-2]), respectively.

3. TIO[0-2] can be configured as GPIO signals.

4. Ground connections shown in this figure are for the TQFP package. In the MAP-BGA package, in addition to the GND_P and GND_{P1} connections, there are 64 GND connections to a common internal package ground plane.

Figure 1-1. Signals Identified by Functional Group

2.6.2 External Clock Operation

The DSP56303 system clock is derived from the on-chip oscillator or is externally supplied. To use the on-chip oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL; examples are shown in **Figure 2-1**.

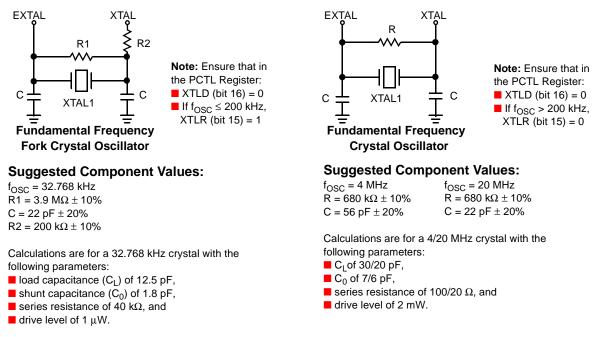


Figure 2-1. Crystal Oscillator Circuits

If an externally-supplied square wave voltage source is used, disable the internal oscillator circuit during bootup by setting XTLD (PCTL Register bit 16 = 1—see the *DSP56303 User's Manual*). The external square wave source connects to EXTAL; XTAL is not physically connected to the board or socket. **Figure 2-2** shows the relationship between the EXTAL input and the internal clock and CLKOUT.

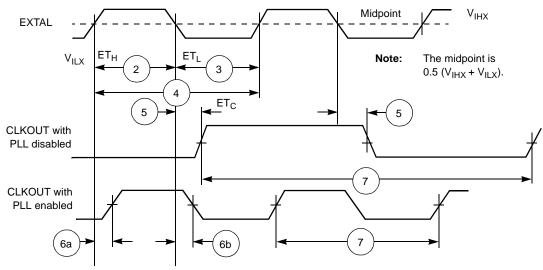
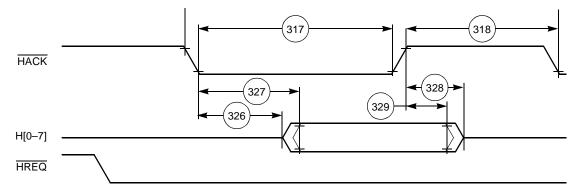


Figure 2-2. External Clock Timing

	Oh arrantariatia	0 milest		100	100 MHz		
No.	Characteristics	Symbol	Expression ¹	Min	Max	Unit	
111	WR deassertion to data high impedance	_	$0.25 \times T_{C} + 0.2$	—	2.7	ns	
			[1 ≤ WS ≤ 3] 1.25 × TC + 0.2	_	12.7	ns	
			[4 ≤ WS ≤ 7] 2.25 × T _C + 0.2 [WS > 8]	_	22.7	ns	
112	Previous $\overline{\text{RD}}$ deassertion to data active (write)	_	$1.25 \times T_{C} - 4.0$	8.5	_	ns	
			$[1 \le WS \le 3]$ 2.25 × T _C - 4.0 $[4 \le WS \le 7]$	18.5	_	ns	
			$3.25 \times T_{C} - 4.0$ [WS > 8]	28.5	—	ns	
113	RD deassertion time		0.75 × T _C − 4.0 [1 ≤ WS ≤ 3]	3.5	—	ns	
			$[1 \le WS \le 3]$ 1.75 × T _C – 4.0 $[4 \le WS \le 7]$	13.5	_	ns	
			$2.75 \times T_{C} - 4.0$ [WS ≥ 8]	23.5	_	ns	
114	WR deassertion time	_	$0.5 \times T_{C} - 4.0$ [WS = 1]	1.0	—	ns	
			$T_{C} - 4.0$ [2 ≤ WS ≤ 3]	6.0	—	ns	
			$[2 \le WS \le 3]$ 2.5 × T _C - 4.0 $[4 \le WS \le 7]$	21.0	_	ns	
			$[4 \le 0.3 \le 7]$ 3.5 × T _C - 4.0 [WS ≥ 8]	31.0	_	ns	
115	Address valid to RD assertion	—	$0.5 imes T_C - 4.0$	1.0	—	ns	
116	RD assertion pulse width	_	(WS + 0.25) \times T _C –4.0	8.5	—	ns	
117	RD deassertion to address not valid	—	$0.25 \times T_{C} - 2.0$ [1 ≤ WS ≤ 3]	0.5	—	ns	
			$[1 \le WS \le 0]$ 1.25 × T _C - 2.0 $[4 \le WS \le 7]$	10.5	—	ns	
			$[4 \le 0.3 \le 7]$ 2.25 × T _C - 2.0 [WS ≥ 8]	20.5	_	ns	
118	TA setup before RD or WR deassertion ⁴	_	$0.25 \times T_{C} + 2.0$	4.5	_	ns	
119	\overline{TA} hold after \overline{RD} or \overline{WR} deassertion		_	0	_	ns	
 WS is the number of wait states specified in the BCR. An expression is used to compute the number listed as the minimum or maximum value, as appropriate. Timings 100, 107 are guaranteed by design, not tested. All timings for 100 MHz are measured from 0.5 × Vcc to 0.5 × Vcc. Timing 118 is relative to the deassertion edge of RD or WR even if TA remains asserted. 							
	4. Timing 118 is relative to the deassertion 5. $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_J = -40^{\circ}\text{C}$ to +10	•		asserie	J.		


Table 2-8. SRAM Read and Write Accesses (Continued)

Na	Characteristics	Symbol	Expression ³	100	MHz	Unit
No.	Characteristics	Symbol	Expression ³	Min	Мах	
157	Random read or write cycle time	t _{RC}	$16 imes T_C$	160.0	—	ns
158	RAS assertion to data valid (read)	t _{RAC}	$8.25 imes T_C - 5.7$	_	76.8	ns
159	CAS assertion to data valid (read)	t _{CAC}	$4.75 imes T_{C} - 5.7$	—	41.8	ns
160	Column address valid to data valid (read)	t _{AA}	$5.5 imes T_{C}$ – 5.7	—	49.3	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}	0.0	0.0	_	ns
162	RAS deassertion to RAS assertion	t _{RP}	$6.25 imes T_C - 4.0$	58.5	-	ns
163	RAS assertion pulse width	t _{RAS}	$9.75 imes T_C - 4.0$	93.5		ns
164	CAS assertion to RAS deassertion	t _{RSH}	$6.25 imes T_C - 4.0$	58.5		ns
165	RAS assertion to CAS deassertion	t _{CSH}	$8.25 imes T_{C} - 4.0$	78.5	_	ns
166	CAS assertion pulse width	t _{CAS}	$4.75 imes T_C - 4.0$	43.5		ns
167	RAS assertion to CAS assertion	t _{RCD}	$3.5 imes T_C \pm 2$	33.0	37.0	ns
168	RAS assertion to column address valid	t _{RAD}	$2.75 imes T_{C} \pm 2$	25.5	29.5	ns
169	CAS deassertion to RAS assertion	t _{CRP}	$7.75 imes T_{C} - 4.0$	73.5		ns
170	CAS deassertion pulse width	t _{CP}	$6.25 imes T_{C} - 6.0$	56.5		ns
171	Row address valid to RAS assertion	t _{ASR}	$6.25 imes T_{C} - 4.0$	58.5	_	ns
172	RAS assertion to row address not valid	t _{RAH}	$2.75 imes T_C - 4.0$	23.5		ns
173	Column address valid to CAS assertion	t _{ASC}	$0.75 imes T_C - 4.0$	3.5		ns
174	CAS assertion to column address not valid	t _{CAH}	$6.25 imes T_{C} - 4.0$	58.5	_	ns
175	RAS assertion to column address not valid	t _{AR}	$9.75 imes T_C - 4.0$	93.5		ns
176	Column address valid to RAS deassertion	t _{RAL}	$7 imes T_C - 4.0$	66.0		ns
177	WR deassertion to CAS assertion	t _{RCS}	$5 imes T_{C} - 3.8$	46.2	_	ns
178	CAS deassertion to WR ⁴ assertion	t _{RCH}	$1.75 imes T_{C} - 3.7$	13.8		ns
179	\overline{RAS} deassertion to \overline{WR}^4 assertion	t _{RRH}	$0.25 imes T_{C} - 2.0$	0.5		ns
180	CAS assertion to WR deassertion	t _{WCH}	$6 imes T_C - 4.2$	55.8	_	ns
181	RAS assertion to WR deassertion	t _{WCR}	$9.5 imes T_C - 4.2$	90.8		ns
182	WR assertion pulse width	t _{WP}	15.5 × T _C – 4.5	150.5		ns
183	WR assertion to RAS deassertion	t _{RWL}	$15.75 imes T_{C} - 4.3$	153.2	_	ns
184	WR assertion to CAS deassertion	t _{CWL}	$14.25 imes T_{C} - 4.3$	138.2		ns
185	Data valid to CAS assertion (write)	t _{DS}	$8.75 imes T_C - 4.0$	83.5		ns
186	CAS assertion to data not valid (write)	t _{DH}	$6.25 imes T_{C} - 4.0$	58.5	_	ns
187	RAS assertion to data not valid (write)	t _{DHR}	9.75 × T _C – 4.0	93.5		ns
188	WR assertion to CAS assertion	t _{WCS}	$9.5 imes T_C - 4.3$	90.7	_	ns
189	CAS assertion to RAS assertion (refresh)	t _{CSR}	$1.5 imes T_C - 4.0$	11.0	_	ns
190	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$4.75 \times T_C - 4.0$	43.5		ns
191	RD assertion to RAS deassertion	t _{ROH}	$15.5 imes T_C - 4.0$	151.0	_	ns
192	RD assertion to data valid	t _{GA}	$14 imes T_C - 5.7$	_	134.3	ns
193	RD deassertion to data not valid ⁵	t _{GZ}		0.0	—	ns
194	WR assertion to data active		$0.75 imes T_{C} - 1.5$	6.0	—	ns
195	WR deassertion to data high impedance		$0.25 \times T_{C}$	—	2.5	ns

 Table 2-12.
 DRAM Out-of-Page and Refresh Timings, Fifteen Wait States^{1,2}


		Characteristic ¹⁰	Francisco	100 MHz		
No.			Expression	Min	Max	Unit
338		rom read data strobe deassertion to host request assertion st Data Register" read ^{5, 7, 8}	T _C + 5.3	15.3	—	ns
339		rom write data strobe deassertion to host request assertion st Data Register" write ^{6, 7, 8}	1.5 × T _C + 5.3	20.3	—	ns
340		rom data strobe assertion to host request deassertion for ata Register" read or write (HROD=0) ^{4, 7, 8}		-	19.3	ns
341	"Last D	rom data strobe assertion to host request deassertion for ata Register" read or write (HROD=1, open drain host $t)^{4, 7, 8, 9}$		_	300.0	ns
Notes	 request)^{4, 7, 8, 9} Detes: 1. See the Programmer's Model section in the chapter on the HI08 in the <i>DSP56303User's Manual</i>. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable. 3. This timing is applicable only if two consecutive reads from one of these registers are executed. 4. The data strobe is Host Read (HRD) or Host Write (HWR) in the Dual Data Strobe mode and Hos Data Strobe (HDS) in the Single Data Strobe mode. 5. The read data strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe n 6. The write data strobe is HRQ in the Dual Data Strobe mode and HDS in the Single Data Strobe n 7. The host request is HREQ in the Single Host Request mode and HDS in the Single Data Strobe n 8. The "Last Data Register" is the register at address \$7, which is the last location to be read or writte data transfers. This is RXL/TXL in the Big Endian mode (HLEND = 0; HLEND is the Interface Con Register bit 7—ICR[7]), or RXH/TXH in the Little Endian mode (HLEND = 1). 9. In this calculation, the host request signal is pulled up by a 4.7 kΩ resistor in the Open-drain mod 10. V_{CC} = 3.3 V ± 0.3 V; T_J = -40°C to +100 °C, C_L = 50 pF 11. This timing is applicable only if a read from the "Last Data Register" is followed by a read from the RXL, RXM, or RXH registers without first polling RXDF or HREQ bits, or waiting for the assertion or HREQ signal. 					

 Table 2-16.
 Host Interface Timings^{1,2,12} (Continued)

Note: The IVR is only read by an MC680xx host processor using non-multiplexed mode.

Figure 2-27. Host Interrupt Vector Register (IVR) Read Timing Diagram

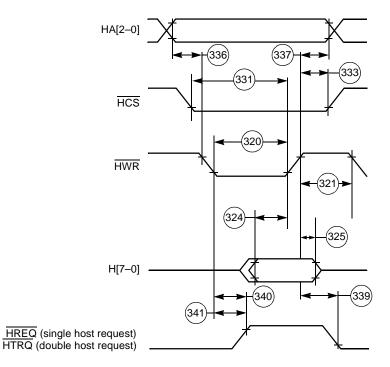


Figure 2-31. Write Timing Diagram, Non-Multiplexed Bus, Double Data Strobe

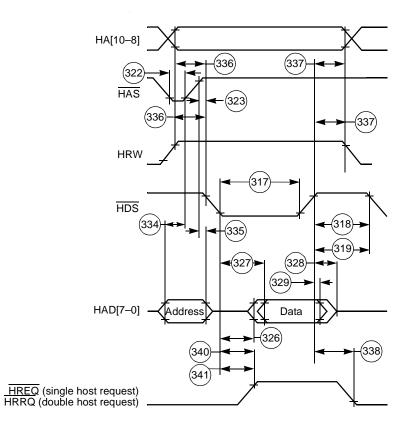


Figure 2-32. Read Timing Diagram, Multiplexed Bus, Single Data Strobe

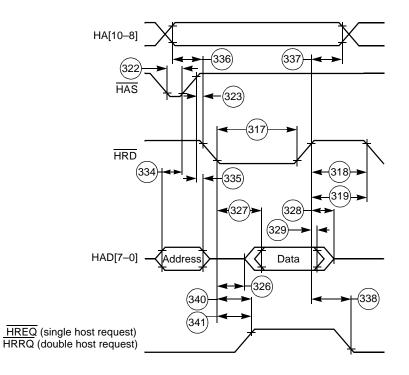


Figure 2-33. Read Timing Diagram, Multiplexed Bus, Double Data Strobe

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	SRD1 or PD4	26	GND _S	51	AA2/RAS2
2	STD1 or PD5	27	TIO2	52	CAS
3	SC02 or PC2	28	TIO1	53	XTAL
4	SC01 or PC1	29	TIO0	54	GND _Q
5	DE	30	HCS/HCS, HA10, or PB13	55	EXTAL
6	PINIT/NMI	31	HA2, HA9, or PB10	56	V _{CCQ}
7	SRD0 or PC4	32	HA1, HA8, or PB9	57	V _{CCC}
8	V _{CCS}	33	HA0, HAS/HAS, or PB8	58	GND _C
9	GND _S	34	H7, HAD7, or PB7	59	CLKOUT
10	STD0 or PC5	35	H6, HAD6, or PB6	60	BCLK
11	SC10 or PD0	36	H5, HAD5, or PB5	61	BCLK
12	SC00 or PC0	37	H4, HAD4, or PB4	62	TA
13	RXD or PE0	38	V _{CCH}	63	BR
14	TXD or PE1	39	GND _H	64	BB
15	SCLK or PE2	40	H3, HAD3, or PB3	65	V _{CCC}
16	SCK1 or PD3	41	H2, HAD2, or PB2	66	GND _C
17	SCK0 or PC3	42	H1, HAD1, or PB1	67	WR
18	V _{CCQ}	43	H0, HAD0, or PB0	68	RD
19	GND _Q	44	RESET	69	AA1/RAS1
20	Not Connected (NC), reserved	45	V _{CCP}	70	AA0/RAS0
21	HDS/HDS, HWR/HWR, or PB12	46	PCAP	71	BG
22	HRW, HRD/HRD, or PB11	47	GND _P	72	A0
23	HACK/HACK, HRRQ/HRRQ, or PB15	48	GND _{P1}	73	A1
24	HREQ/HREQ, HTRQ/HTRQ, or PB14	49	Not Connected (NC), reserved	74	V _{CCA}
25	V _{CCS}	50	AA3/RAS3	75	GND _A

 Table 3-1.
 DSP56303 TQFP Signal Identification by Pin Number

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
H1	42	HRD/HRD	22	PB2	41
H2	41	HREQ/HREQ	24	PB3	40
H3	40	HRRQ/HRRQ	23	PB4	37
H4	37	HRW	22	PB5	36
H5	36	HTRQ/HTRQ	24	PB6	35
H6	35	HWR/HWR	21	PB7	34
H7	34	IRQA	137	PB8	33
HAO	33	IRQB	136	PB9	32
HA1	32	ĪRQC	135	PC0	12
HA10	30	IRQD	134	PC1	4
HA2	31	MODA	137	PC2	3
HA8	32	MODB	136	PC3	17
HA9	31	MODC	135	PC4	7
HACK/HACK	23	MODD	134	PC5	10
HAD0	43	NC	20	PCAP	46
HAD1	42	NMI	6	PD0	11
HAD2	41	NC	49	PD1	144
HAD3	40	PB0	43	PD2	143
HAD4	37	PB1	42	PD3	16
HAD5	36	PB10	31	PD4	1
HAD6	35	PB11	22	PD5	2
HAD7	34	PB12	21	PE0	13
HAS/HAS	33	PB13	30	PE1	14
HCS/HCS	30	PB14	24	PE2	15
HDS/HDS	21	PB15	23	PINIT	6

 Table 3-2.
 DSP56303 TQFP Signal Identification by Name (Continued)

3.3 TQFP Package Mechanical Drawing

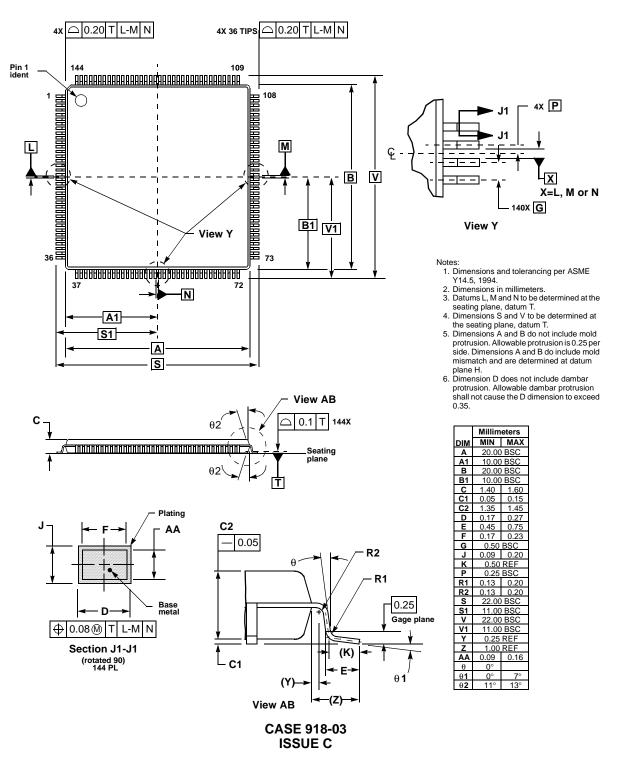
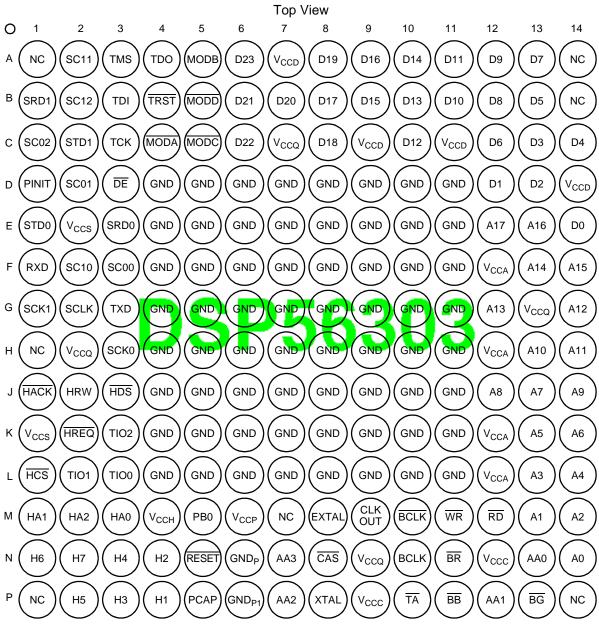
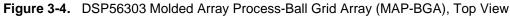




Figure 3-3. DSP56303 Mechanical Information, 144-pin TQFP Package

3.4 MAP-BGA Package Description

Top and bottom views of the MAP-BGA package are shown in **Figure 3-4** and **Figure 3-5** with their pin-outs.

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	N14	BG	P13	D7	A13
A1	M13	BR	N11	D8	B12
A10	H13	CAS	N8	D9	A12
A11	H14	CLKOUT	M9	DE	D3
A12	G14	D0	E14	EXTAL	M8
A13	G12	D1	D12	GND	D4
A14	F13	D10	B11	GND	D5
A15	F14	D11	A11	GND	D6
A16	E13	D12	C10	GND	D7
A17	E12	D13	B10	GND	D8
A2	M14	D14	A10	GND	D9
A3	L13	D15	B9	GND	D10
A4	L14	D16	A9	GND	D11
A5	K13	D17	B8	GND	E4
A6	K14	D18	C8	GND	E5
A7	J13	D19	A8	GND	E6
A8	J12	D2	D13	GND	E7
A9	J14	D20	B7	GND	E8
AA0	N13	D21	B6	GND	E9
AA1	P12	D22	C6	GND	E10
AA2	P7	D23	A6	GND	E11
AA3	N7	D3	C13	GND	F4
BB	P11	D4	C14	GND	F5
BCLK	M10	D5	B13	GND	F6
BCLK	N10	D6	C12	GND	F7

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
HRW	J2	PB14	K2	PE2	G2
HTRQ/HTRQ	K2	PB15	J1	PINIT	D1
HWR/HWR	J3	PB2	N4	RASO	N13
IRQA	C4	PB3	P3	RAS1	P12
IRQB	A5	PB4	N3	RAS2	P7
IRQC	C5	PB5	P2	RAS3	N7
IRQD	B5	PB6	N1	RD	M12
MODA	C4	PB7	N2	RESET	N5
MODB	A5	PB8	М3	RXD	F1
MODC	C5	PB9	M1	SC00	F3
MODD	B5	PC0	F3	SC01	D2
NC	A1	PC1	D2	SC02	C1
NC	A14	PC2	C1	SC10	F2
NC	B14	PC3	H3	SC11	A2
NC	H1	PC4	E3	SC12	B2
NC	M7	PC5	E1	SCK0	H3
NC	P1	PCAP	P5	SCK1	G1
NC	P14	PD0	F2	SCLK	G2
NMI	D1	PD1	A2	SRD0	E3
PB0	M5	PD2	B2	SRD1	B1
PB1	P4	PD3	G1	STD0	E1
PB10	M2	PD4	B1	STD1	C2
PB11	J2	PD5	C2	TA	P10
PB12	J3	PE0	F1	ТСК	C3
PB13	L1	PE1	G3	TDI	B3

Table 3-4. DSP56303 MAP-BGA Signal Identification by Name (Continued)

A complicating factor is the existence of three common ways to determine the junction-to-case thermal resistance in plastic packages.

- To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink.
- To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to the point at which the leads attach to the case.
- If the temperature of the package case (T_T) is determined by a thermocouple, thermal resistance is computed from the value obtained by the equation $(T_J T_T)/P_D$.

As noted earlier, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable to determine the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, the use of the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will yield an estimate of a junction temperature slightly higher than actual temperature. Hence, the new thermal metric, thermal characterization parameter or Ψ_{JT} , has been defined to be $(T_J - T_T)/P_D$. This value gives a better estimate of the junction temperature in natural convection when the surface temperature of the package is used. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.

4.2 Electrical Design Considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}).

Use the following list of recommendations to ensure correct DSP operation.

- Provide a low-impedance path from the board power supply to each V_{CC} pin on the DSP and from the board ground to each GND pin.
- Use at least six 0.01–0.1 μ F bypass capacitors positioned as close as possible to the four sides of the package to connect the V_{CC} power source to GND.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{CC} and GND pins are less than 0.5 inch per capacitor lead.
- Use at least a four-layer PCB with two inner layers for V_{CC} and GND.
- Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB, IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 6 inches are recommended.
- Consider all device loads as well as parasitic capacitance due to PCB traces when you calculate capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{CC} and GND circuits.
- All inputs must be terminated (that is, not allowed to float) by CMOS levels except for the three pins with internal pull-up resistors (TRST, TMS, DE).
- Take special care to minimize noise levels on the V_{CCP}, GND_P, and GND_{P1} pins.
- The following pins must be asserted after power-up: **RESET** and **TRST**.
- If multiple DSP devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices.
- **RESET** must be asserted when the chip is powered up. A stable EXTAL signal should be supplied before deassertion of **RESET**.
- At power-up, ensure that the voltage difference between the 5 V tolerant pins and the chip V_{CC} never exceeds 3.5 V.

; sbr	clr move move bset dor mac add mac mac move	<pre>b #\$0,x0 #\$0,x1 #\$0,y0 #\$0,y1 #4,omr ; ebd #60,_end x0,y0,ax:(r0)+,x1 x1,y1,ax:(r0)+,x0 a,b x0,y0,ax:(r0)+,x1 x1,y1,a b1,x:\$ff</pre>	y:(r4)+,y1 y:(r4)+,y0 y:(r4)+,y0
_end	bra nop nop nop	sbr	
PROG_E	nop IND		
	nop nop		
XDAT_S	TART dc dc dc dc dc dc dc dc dc dc dc dc dc	x:0 \$262EB9 \$86F2FE \$e56A5F \$616CAC \$8FD75 \$9210A \$A06D7B \$CEA798 \$BFD75 \$9210A \$A0607B \$CEA798 \$8DFBF1 \$A0603D6 \$6C6657 \$c2A544 \$A3662D \$A4E762 \$A4E762 \$84F0F3 \$e6F1B0 \$B3829 \$8BF7AE \$63394F \$eF78DC \$242DE5 \$A3E0BA \$eBA86B \$8726C8 \$cA361 \$2F6e866 \$A57347 \$4BE774 \$8F349D \$A1ED12 \$4BF74 \$8F349D \$A1ED12 \$4BFCE3 \$eA26e0 \$cD7D99 \$4BA85E \$27A43F \$A8B10C \$D3A55 \$25EC6A \$22A255B \$A5F1F8 \$2426D1 \$AE6536 \$CBBC37 \$6235A4 \$37F0D \$63BEC2 \$A5E4D3 \$8CE810 \$3FF09 \$60E50E \$CFFB2F	
	dc dc dc	\$40753C \$8262C5 \$CA641A	

dc dc dc dc dc dc dc dc dc dc dc dc dc d	\$EB3B4B \$2DA928 \$AB6641 \$28A7E6 \$4E2127 \$482FD4 \$7257D \$E53C72 \$1A8C3 \$E27540
YDAT_START ; org dc	y:0 \$586DA
_	y:0 \$586DA \$C3F70B \$6A39E8 \$81E801 \$C666A6 \$46F8E7 \$AAEC94 \$24233D \$802732 \$223C83 \$A43E00 \$C2B639 \$85A47E \$ABFDDF \$F3A2C \$2D7CF5 \$E16A8A \$ECB8FB \$4BF18 \$43F371 \$83A556 \$E1E9D7 \$ACA2C4 \$8135AD \$2CE0E2 \$8F2C730 \$432755 \$432605 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$432567 \$453567 \$455567 \$455567 \$455567 \$455567 \$455567 \$455567 \$455567 \$455567 \$455567 \$455567 \$45567 \$45567 \$45567 \$45567 \$45567 \$45567 \$45567 \$45567 \$45567 \$45567 \$45567
dc	\$8230DB
dc	\$A3B778
dc	\$2BFE51
dc	\$E0A6B6
dc	\$68FFB7
dc	\$28F324
dc	\$8F2E8D
dc	\$667842
dc	\$83E053
dc	\$A1FD90
dc	\$6B2689
dc	\$85B68E
dc	\$622EAF
dc	\$6162BC
dc	\$E4A245
YDAT_END	

```
EQUATES for DSP56303 I/O registers and ports
 ;
 ;
             Last update: June 11 1995
 ;
 132,55,0,0,0
                page
                opt
                               mex
              ident 1,0
 ioequ
 ;-----
                 EQUATES for I/O Port Programming
 ;
 Register Addresses
 ;
M_HDR EQU $FFFFC9 ; Host port GPIO data Register
M_HDDR EQU $FFFFC8 ; Host port GPIO direction Register
M_PCRC EQU $FFFFBF ; Port C Control Register
M_PCRC EQU $FFFFBE ; Port C Direction Register
M_PCRD EQU $FFFFAF ; Port C GPIO Data Register
M_PRRD EQU $FFFFAF ; Port D Control register
M_PRRD EQU $FFFFAF ; Port D Direction Data Register
M_PDRD EQU $FFFFAP ; Port D Direction Data Register
M_PDRD EQU $FFFFAP ; Port D Direction Data Register
M_PCRD EQU $FFFFAF , Port D Control register

M_PRRD EQU $FFFFAE ; Port D Direction Data Register

M_PCRE EQU $FFFFAD ; Port E Control register

M_PRRE EQU $FFFF9E ; Port E Direction Register

M_PDRE EQU $FFFF9D ; Port E Data Register

M_OGDB EQU $FFFFFC ; OnCE GDB Register
 ;-----
                 EQUATES for Host Interface
 ;-----
 ;
                Register Addresses
M_HCR EQU $FFFFC2 ; Host Control Register
M_HSR EQU $FFFFC3 ; Host Status Register
M_HPCR EQU $FFFFC4 ; Host Polarity Control Register
M_HBAR EQU $FFFFC5 ; Host Base Address Register
M_HRX EQU $FFFFC6 ; Host Receive Register
M_HTX EQU $FFFFC7 ; Host Transmit Register
                HCR bits definition

      M_HRIE EQU $0
      ; Host Receive interrupts Enable

      M_HTIE EQU $1
      ; Host Transmit Interrupt Enable

      M_HCIE EQU $2
      ; Host Command Interrupt Enable

 M_HCIE EQU $2
                                                   ; Host Flag 2
M_HF2 EQU $3
                                                    ; Host Flag 3
M HF3 EOU $4
                HSR bits definition
M_HRDF EQU $0 ; Host Receive Data Full
M_HTDE EQU $1 ; Host Receive Data Empty
M_HIDE EQU $2
M_HCP EQU $2
M_HF0 EQU $3
                                                  ; Host Command Pending
                                                   ; Host Flag 0
; Host Flag 1
M_HF1 EQU $4
; HPCR bits definition
M_HGEN EQU $0 ; Host Port GPIO Enable
M_HA8EN EQU $1 ; Host Address 8 Enable
M_HA9EN EQU $2 ; Host Address 9 Enable
M_HCSEN EQU $3 ; Host Chip Select Enable
M_HREN EQU $4 ; Host Request Enable
M_HAEN EQU $5 ; Host Acknowledge Enable
M_HEN EQU $6 ; Host Enable
M_HOD EQU $6 ; Host Enable
M_HOD EQU $8 ; Host Request Open Drain mode
M_HDSP EQU $9 ; Host Data Strobe Polarity
M_HASP EQU $A ; Host Address Strobe Polarity
M_HMUX EQU $B ; Host Multiplexed bus select
M_HCSP EQU $C ; Host Chip Select Polarity
M_HRP EQU $E ; Host Request Polarity
M_HAP EQU $F ; Host Acknowledge Polarity
                HPCR bits definition
```

```
$FFFFB6
$FFFFB7
$FFFF50
                   $FFFFB6; EFCOP Data Base Address$FFFFB7; EFCOP Coefficient Base Address$FFFFB8; EFCOP Decimation/Channel Register
M FDBA
          EQU
M_FCBA
          EQU
M FDCH
          EOU
;------
         EQUATES for Phase Locked Loop (PLL)
;------
;
         Register Addresses Of PLL
M_PCTL EQU $FFFFFD
                             ; PLL Control Register
         PLL Control Register
;
M_MF EQU $FFF : Multiplication Factor Bits Mask (MF0-MF11)
M_DF EQU $7000 ; Division Factor Bits Mask (DF0-DF2)
M_XTLR EQU 15 ; XTAL Range select bit
M_XTLD EQU 16 ; XTAL Disable Bit
M_PSTP EQU 17 ; STOP Processing State Bit
M_PEN EQU 18 ; PLL Enable Bit
M_PCOD EQU 19 ; PLL Clock Output Disable Bit
M_PD EQU $F00000; PreDivider Factor Bits Mask (PD0-PD3)
;-----
         EQUATES for BIU
;
;
         Register Addresses Of BIU
M_BCR EQU $FFFFFB; Bus Control Register
M_DCR EQU $FFFFFA; DRAM Control Register
M_AAR0 EQU $FFFFF9; Address Attribute Register 0
M_AAR1 EQU $FFFFF8; Address Attribute Register 1
M_AAR2 EQU $FFFFF7; Address Attribute Register 2
M_AAR3 EQU $FFFFF6; Address Attribute Register 3
M_IDR EQU $FFFFF5 ; ID Register
         Bus Control Register
M_BA0W EQU $1F ; Area 0 Wait Control Mask (BA0W0-BA0W4)
M_BA1W EQU $3E0; Area 1 Wait Control Mask (BA1W0-BA14)
M_BA2W EQU $1000; Area 2 Wait Control Mask (BA2W0-BA2W2)
M_BA3W EQU $E000; Area 3 Wait Control Mask (BA3W0-BA3W3)
M_BDFW EQU $1F0000 ; Default Area Wait Control Mask (BDFW0-BDFW4)
M_BBS EQU 21 ; Bus State
M_BLH EQU 22 ; Bus Lock Hold
M BRH EOU 23
                ; Bus Request Hold
;
        DRAM Control Register
M_BCW EQU $3 ; In Page Wait States Bits Mask (BCW0-BCW1)
M_BRW EQU $C ; Out Of Page Wait States Bits Mask (BRW0-BRW1)
M_BPS EQU $300 ; DRAM Page Size Bits Mask (BPS0-BPS1)
M_BPLE EQU 11 ; Page Logic Enable
M_BME EQU 12 ; Mastership Enable
M_BRE EQU 13 ; Refresh Enable
M_BSTR EQU 14 ; Software Triggered Refresh
M_BRF EQU $7F8000; Refresh Rate Bits Mask (BRF0-BRF7)
M_BRP EQU 23 ; Refresh prescaler
         Address Attribute Registers
M_BAT EQU $3
                ; Ext. Access Type and Pin Def. Bits Mask (BAT0-BAT1)
                ; Address Attribute Pin Polarity
M_BAAP EQU 2
                ; Program Space Enable
; X Data Space Enable
; Y Data Space Enable
M_BPEN EQU 3
M_BXEN EQU 4
M_BYEN EQU 5
M_BAM EQU 6 ; Address Muxing
M_BPAC EQU 7 ; Packing Enable
M_BNC EQU $F00 ; Number of Address Bits to Compare Mask (BNC0-BNC3)
M_BAC EQU $FFF000; Address to Compare Bits Mask (BAC0-BAC11)
```

interrupt signals 1-8 JTAG signals 1-18 mode control 1-8 OnCE signals 1-18 PLL signals 1-4 Reset timing 2-7, 2-9 synchronous 2-10 ROM, bootstrap iii

S

Serial Communication Interface (SCI) iii, 1-1, 1-2, 1-16 Asynchronous mode timing 2-38 Synchronous mode timing 2-38 signal groupings 1-1 signals 1-1 functional grouping 1-2 Single Data Strobe 1-2 SRAM read access 2-15 support iv write access 2-15 Stop mode iv Stop state recovery from 2-12 Stop timing 2-7 supply voltage 2-2 Switch mode iii synchronous bus timings SRAM 2 wait states 2-26 SRAM 1 wait state (BCR controlled) 2-26 synchronous interrupt from Wait state timing 2-11 synchronous Reset timing 2-10

Т

target applications iv Test Access Port (TAP) iii timing diagram 2-46 Test Clock (TCLK) input timing diagram 2-45 thermal design considerations 4-1 Timer event input restrictions 2-43 Timers 1-1, 1-2, 1-17 interrupt generation 2-43 **TQFP 3-1** mechanical drawing 3-9 pin list by name 3-6 pin list by number 3-4 pin-out drawing (bottom) 3-3 pin-out drawing (top) 3-2

W

Wait mode iv World Wide Web iv

Χ

X-data RAM iii

Y

Y-data RAM iii