
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

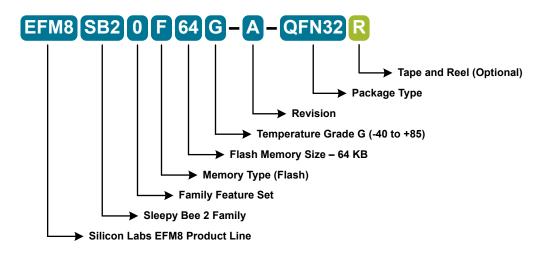
Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8sb20f16g-b-qfn24

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List


The EFM8SB2 highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - · 70% of instructions execute in 1-2 clock cycles
 - 25 MHz maximum operating frequency
- Memory:
 - Up to 64 kB flash memory, in-system re-programmable from firmware.
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- · Power:
 - · Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 24 total multifunction I/O pins:
 - All pins 5 V tolerant under bias
 - Flexible peripheral crossbar for peripheral routing
 - · 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 20 MHz low power oscillator with ±10% accuracy
 - Internal 24.5 MHz precision oscillator with ±2% accuracy
 - External RTC 32 kHz crystal
 - · External crystal, RC, C, and CMOS clock options

- Timers/Counters and PWM:
 - 32-bit Real Time Clock (RTC)
 - 6-channel programmable counter array (PCA) supporting PWM, capture/compare, and frequency output modes with watchdog timer function
 - 4 x 16-bit general-purpose timers
- Communications and Digital Peripherals:
 - UART
 - 2 x SPI™ Master / Slave
 - SMBus™/I2C™ Master / Slave
 - External Memory Interface (EMIF)
 - 16-bit/32-bit CRC unit, supporting automatic CRC of flash at 1024-byte boundaries
- Analog:
 - Programmable current reference (IREF0)
 - 10-Bit Analog-to-Digital Converter (ADC0)
 - 2 x Low-current analog comparators
- On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - Four hardware breakpoints, single-stepping
- Pre-loaded UART bootloader
- Temperature range -40 to 85 °C
- Single power supply 1.8 to 3.6 V
- · QFP32, QFN32, and QFN24 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8SB2 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Each device is specified for 1.8 to 3.6 V operation and is available in 24-pin QFN, 32-pin QFN, or 32-pin QFP pack-ages. All package options are lead-free and RoHS compliant.

2. Ordering Information

Figure 2.1. EFM8SB2 Part Numbering

All EFM8SB2 family members have the following features:

- CIP-51 Core running up to 25 MHz
- Three Internal Oscillators (24.5 MHz, 20 MHz, and 16 kHz)
- SMBus / I2C
- 2 x SPI
- UART
- · 6-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 4 16-bit Timers
- · 2 Analog Comparators
- 6-bit programmable current reference
- · 10-bit Analog-to-Digital Converter with integrated multiplexer, voltage reference, and temperature sensor
- Low-current 32 kHz oscillator and Real Time Clock
- 16-bit CRC Unit
- · Pre-loaded UART bootloader

In addition to these features, each part number in the EFM8SB2 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC Channels	Comparator Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8SB20F64G-B-QFN32	64	4352	24	23	12	Yes	-40 to +85 C	QFN32
EFM8SB20F64G-B-QFP32	64	4352	24	23	12	Yes	-40 to +85 C	QFP32
EFM8SB20F64G-B-QFN24	64	4352	16	15	8	Yes	-40 to +85 C	QFN24
EFM8SB20F32G-B-QFN32	32	4352	24	23	12	Yes	-40 to +85 C	QFN32
EFM8SB20F32G-B-QFP32	32	4352	24	23	12	Yes	-40 to +85 C	QFP32
EFM8SB20F32G-B-QFN24	32	4352	16	15	8	Yes	-40 to +85 C	QFN24

EFM8SB2 Data Sheet Ordering Information

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC Channels	Comparator Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8SB20F16G-B-QFN24	16	4352	16	15	8	Yes	-40 to +85 C	QFN24

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	_	—
Idle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and digital peripherals halted Internal oscillators disabled Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 or LPOSC0 Set SUSPEND bit in PMU0CF 	 RTC0 Alarm Event RTC0 Fail Event Port Match Event Comparator 0 Rising Edge
Stop	 All internal power nets shut down Pins retain state Exit on any reset source 	Set STOP bit in PCON0	Any reset source
Sleep	 Most internal power nets shut down Select circuits remain powered Pins retain state All RAM and SFRs retain state Code resumes execution on wake event 	 Disable unused ana- log peripherals Set SLEEP bit in PMU0CF 	 RTC0 Alarm Event RTC0 Fail Event Port Match Event Comparator 0 Rising Edge

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.6 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pin P2.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P2.7.

- Up to 24 multi-functions I/O pins, supporting digital and analog functions.
- Flexible priority crossbar decoder for digital peripheral assignment.
- Two drive strength settings for each pin.
- · Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- · Up to 16 direct-pin interrupt sources with shared interrupt vector (Port Match).

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 20 MHz low power oscillator divided by 8.

- · Provides clock to core and peripherals.
- 20 MHz low power oscillator (LPOSC0), accurate to +/- 10% over supply and temperature corners.
- 24.5 MHz internal oscillator (HFOSC0), accurate to +/- 2% over supply and temperature corners.
- External RTC 32 kHz crystal.
- · External RC, C, CMOS, and high-frequency crystal clock options (EXTCLK).
- Clock divider with eight settings for flexible clock scaling: Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.

External Memory Interface (EMIF0)

The External Memory Interface (EMIF) enables access of off-chip memories and memory-mapped devices connected to the GPIO ports. The external memory space may be accessed using the external move instruction (MOVX) with the target address specified in either 8-bit or 16-bit formats.

- Supports multiplexed memory access.
- Four external memory modes:
 - Internal only.
 - Split mode without bank select.
 - Split mode with bank select.
 - External only
- Configurable ALE (address latch enable) timing.
- · Configurable address setup and hold times.
- · Configurable write and read pulse widths.

16/32-bit CRC (CRC0)

The cyclic redundancy check (CRC) module performs a CRC using a 16-bit or 32-bit polynomial. CRC0 accepts a stream of 8-bit data and posts the result to an internal register. In addition to using the CRC block for data manipulation, hardware can automatically CRC the flash contents of the device.

The CRC module is designed to provide hardware calculations for flash memory verification and communications protocols. The CRC module includes the following features:

- · Support for CCITT-16 polynomial (0x1021).
- Support for CRC-32 polynomial (0x04C11DB7).
- Byte-level bit reversal.
- · Automatic CRC of flash contents on one or more 1024-byte blocks.
- Initial seed selection of 0x0000/0x00000000 or 0xFFFF/0xFFFFFFF.

3.7 Analog

Programmable Current Reference (IREF0)

The programmable current reference (IREF0) module enables current source or sink with two output current settings: Low Power Mode and High Current Mode. The maximum current output in Low Power Mode is 63 μ A (1 μ A steps) and the maximum current output in High Current Mode is 504 μ A (8 μ A steps).

The IREF module includes the following features:

- · Capable of sourcing or sinking current in programmable steps.
- Two operational modes: Low Power Mode and High Current Mode.

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 12, unless stated otherwise.

Table 4.1. Recommended Operating Conditions

4.1.1 Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		1.8	2.4	3.6	V
Minimum RAM Data Retention	V _{RAM}	Not in Sleep Mode	_	1.4	_	V
Voltage on VDD ¹		Sleep Mode	_	0.3	0.5	V
System Clock Frequency	f _{SYSCLK}		0	—	25	MHz
Operating Ambient Temperature	T _A		-40	—	85	°C
Note:	1		1	1		

1. All voltages with respect to GND.

Parameter	Symbol	Conditions	Min	Тур	Мах	Units
Comparator 0 (CMP0) Supply Cur-	I _{CMP}	CPMD = 11	—	0.4	_	μA
rent		CPMD = 10	_	2.6	_	μA
		CPMD = 01	_	8.8	_	μA
		CPMD = 00	_	23		μA
Internal Fast-settling 1.65V ADC0 Reference, Always-on ⁸	I _{VREFFS}		-	200	_	μA
On-chip Precision Reference	I _{VREFP}		—	15	_	μA
Temp sensor Supply Current	I _{TSENSE}		_	35	_	μA
Programmable Current Reference (IREF0) Supply Current ⁹	I _{IREF}	Current Source, Either Power Mode, Any Output Code	_	10		μA
		Low Power Mode, Current Sink	_	1	_	μA
		IREF0DAT = 000001				
		Low Power Mode, Current Sink	_	11	_	μA
		IREF0DAT = 111111				
		High Current Mode, Current Sink	_	12		μA
		IREF0DAT = 000001				
		High Current Mode, Current Sink	_	81	_	μA
		IREF0DAT = 111111				

Note:

- 1. Based on device characterization data; Not production tested.
- 2. SYSCLK must be at least 32 kHz to enable debugging.
- 3. Digital Supply Current depends upon the particular code being executed. The values in this table are obtained with the CPU executing an "simp \$" loop, which is the compiled form of a while(1) loop in C. One iteration requires 3 CPU clock cycles, and the flash memory is read on each cycle. The supply current will vary slightly based on the physical location of the simp instruction and the number of flash address lines that toggle as a result. In the worst case, current can increase by up to 30% if the simp loop straddles a 128-byte flash address boundary (e.g., 0x007F to 0x0080). Real-world code with larger loops and longer linear sequences will have few transitions across the 128-byte address boundaries.
- Includes supply current from regulator and oscillator source (24.5 MHz high-frequency oscillator, 20 MHz low-power oscillator, or 32.768 kHz RTC oscillator).
- 5. IDD can be estimated for frequencies < 10 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range, then adding an offset of 90 μ A. When using these numbers to estimate I_{DD} for > 10 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 20 MHz, I_{DD} = 4.1 mA (25 MHz 20 MHz) x 0.120 mA/MHz = 3.5 mA assuming the same oscillator setting.
- 6. Idle IDD can be estimated by taking the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 5 MHz, Idle I_{DD} = 2.5 mA (25 MHz 5 MHz) x 0.095 mA/MHz = 0.6 mA.
- 7. ADC0 always-on power excludes internal reference supply current.
- 8. The internal reference is enabled as-needed when operating the ADC in burst mode to save power.
- 9. IREF0 supply current only. Does not include current sourced or sunk from IREF0 output pin.

4.1.10 Voltage References

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Internal Fast Settling Reference			1			
Output Voltage	V _{REFFS}		1.60	1.65	1.70	V
Temperature Coefficient	TC _{REFFS}		_	50	_	ppm/°C
Turn-on Time	t _{VREFFS}		—		1.5	μs
Power Supply Rejection	PSRR _{REF} FS		—	400		ppm/V
On-chip Precision Reference			1		1	1
Output Voltage	V _{REFP}		1.645	1.68	1.715	V
Turn-on Time, settling to 0.5 LSB	t _{VREFP}	4.7 μF tantalum + 0.1 μF ceramic bypass on VREF pin	_	15		ms
		0.1 µF ceramic bypass on VREF pin	_	300		μs
		No bypass on VREF pin	_	25	_	μs
Load Regulation	LR _{VREFP}	Load = 0 to 200 µA to GND	—	400	_	μV / μΑ
Short-circuit current	ISC _{VREFP}		_	3.5		mA
Power Supply Rejection	PSRR _{VRE} FP		_	140		ppm/V
External Reference	1	1	1	1	1	
Input Voltage	V _{EXTREF}		1		V _{DD}	V
Input Current	I _{EXTREF}	Sample Rate = 300 ksps; VREF = 3.0 V	_	5.25		μA

Table 4.10. Voltage References

4.1.11 Temperature Sensor

Table 4.11. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Offset	V _{OFF}	T _A = 0 °C		940	—	mV
Offset Error ¹	E _{OFF}	T _A = 0 °C	_	18	_	mV
Slope	М		_	3.40	_	mV/°C
Slope Error ¹	E _M		_	40	—	µV/°C
Linearity			_	±1	_	°C
Turn-on Time	t _{PWR}		_	1.8	—	μs
Note: 1. Represents one star	dard doviation from th		I	1	1	1

ents one standard deviation from the mean.

4.1.12 Comparators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CPMD = 00	t _{RESP0}	+100 mV Differential	—	130	_	ns
(Highest Speed)		-100 mV Differential	_	200	_	ns
Response Time, CPMD = 11 (Low-	t _{RESP3}	+100 mV Differential	_	1.75	_	μs
est Power)		-100 mV Differential	_	6.2	_	μs
Positive Hysterisis	HYS _{CP+}	CPHYP = 00	_	0.4	_	mV
Mode 0 (CPMD = 00)		CPHYP = 01	_	8	_	mV
		CPHYP = 10	_	16	_	mV
		CPHYP = 11	_	32	_	mV
Negative Hysterisis	HYS _{CP-}	CPHYN = 00	_	-0.4	_	mV
Mode 0 (CPMD = 00)		CPHYN = 01	_	-8	_	mV
		CPHYN = 10		-16	_	mV
		CPHYN = 11	_	-32	_	mV
Positive Hysterisis	HYS _{CP+}	CPHYP = 00	_	0.5	_	mV
Mode 1 (CPMD = 01)		CPHYP = 01	_	6	_	mV
		CPHYP = 10	_	12	_	mV
		CPHYP = 11	_	24	_	mV
Negative Hysterisis	HYS _{CP-}	CPHYN = 00	_	-0.5	_	mV
Mode 1 (CPMD = 01)		CPHYN = 01	_	-6	_	mV
		CPHYN = 10		–12	_	mV
		CPHYN = 11		-24	_	mV
Positive Hysterisis	HYS _{CP+}	CPHYP = 00		0.7	_	mV
Mode 2 (CPMD = 10)		CPHYP = 01		4.5	_	mV
		CPHYP = 10		9	_	mV
		CPHYP = 11		18	_	mV
Negative Hysterisis	HYS _{CP-}	CPHYN = 00		-0.6	_	mV
Mode 2 (CPMD = 10)		CPHYN = 01	_	-4.5	_	mV
		CPHYN = 10		-9	_	mV
		CPHYN = 11		-18	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	1.5	_	mV
Mode 3 (CPMD = 11)		CPHYP = 01		4	_	mV
		CPHYP = 10		8	_	mV
		CPHYP = 11		16	_	mV

Table 4.12. Comparators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-1.5	_	mV
Mode 3 (CPMD = 11)		CPHYN = 01	—	-4	_	mV
		CPHYN = 10	—	-8	_	mV
		CPHYN = 11	_	-16	_	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	—	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}		—	12	-	pF
Common-Mode Rejection Ratio	CMRR _{CP}		—	70	-	dB
Power Supply Rejection Ratio	PSRR _{CP}		—	72	-	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	-	μV/°C

4.1.13 Programmable Current Reference (IREF0)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Static Performance						
Resolution	N _{bits}			6		bits
Output Compliance Range	V _{IOUT}	Low Power Mode, Source	0	_	V _{DD} – 0.4	V
		High Current Mode, Source	0	_	V _{DD} – 0.8	V
		Low Power Mode, Sink	0.3	_	V _{DD}	V
		High Current Mode, Sink	0.8	_	V _{DD}	V
Integral Nonlinearity	INL			<±0.2	±1.0	LSB
Differential Nonlinearity	DNL			<±0.2	±1.0	LSB
Offset Error	E _{OFF}		_	<±0.1	±0.5	LSB
Full Scale Error	E _{FS}	Low Power Mode, Source		_	±5	%
		High Current Mode, Source	_	_	±6	%
		Low Power Mode, Sink	_	_	±8	%
		High Current Mode, Sink	_	_	±8	%
Absolute Current Error	E _{ABS}	Low Power Mode Sourcing 20 µA	_	<±1	±3	%
Dynamic Performance						
Output Settling Time to 1/2 LSB	t _{SETTLE}			300	—	ns
Startup Time	t _{PWR}			1	_	μs

6. Pin Definitions

6.1 EFM8SB2x-QFN32 Pin Definitions

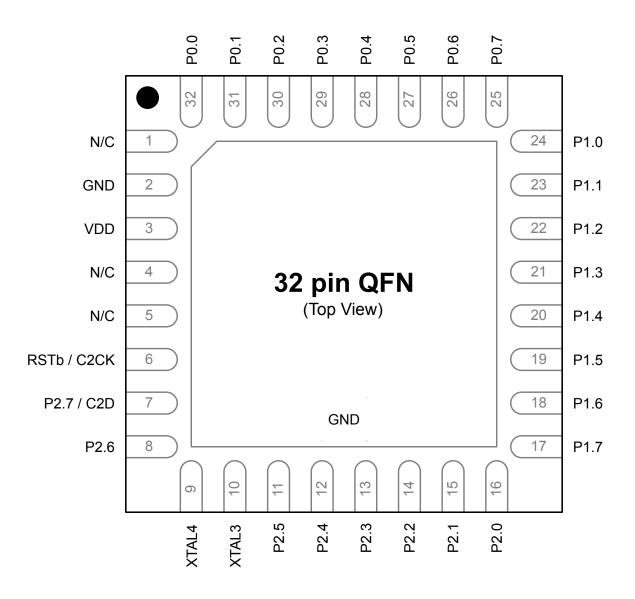


Figure 6.1. EFM8SB2x-QFN32 Pinout

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	N/C	No Connection			
2	GND	Ground			
3	VDD	Supply Power Input			
4	N/C	No Connection			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
19	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				EMIF_AD5	CMP0N.6
					CMP1N.6
20	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
				EMIF_AD4	CMP0P.6
					CMP1P.6
21	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
				SPI1_NSS	CMP0N.5
				EMIF_AD3	CMP1N.5
22	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				SPI1_MOSI	CMP0P.5
				EMIF_AD2	CMP1P.5
23	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				SPI1_MISO	CMP0N.4
				EMIF_AD1	CMP1N.4
24	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
				SPI1_SCK	CMP0P.4
				EMIF_AD0	CMP1P.4
25	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	IREF0
				INT1.7	CMP0N.3
					CMP1N.3
26	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.3
				INT0.6	CMP1P.3
				INT1.6	
27	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0N.2
				INT1.5	CMP1N.2
28	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.2
				INT1.4	CMP1P.2
29	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	XTAL2
				INT0.3	CMP0N.1
				INT1.3	CMP1N.1

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
6	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
7	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
8	XTAL4	RTC Crystal			XTAL4
9	XTAL3	RTC Crystal			XTAL3
10	P1.6	Multifunction I/O	Yes		ADC0.14
					CMP0P.7
					CMP1P.7
11	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
					CMP0N.6
					CMP1N.6
12	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CMP0P.6
					CMP1P.6
13	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
				SPI1_NSS	CMP0N.5
					CMP1N.5
14	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				SPI1_MOSI	CMP0P.5
					CMP1P.5
15	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				SPI1_MISO	CMP0N.4
					CMP1N.4
16	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
				SPI1_SCK	CMP0P.4
					CMP1P.4
17	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	IREF0
				INT1.7	CMP0N.3
					CMP1N.3
18	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.3
				INT0.6	CMP1P.3
				INT1.6	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
21	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
				SPI1_NSS	CMP0N.5
				EMIF_AD3	CMP1N.5
22	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				SPI1_MOSI	CMP0P.5
				EMIF_AD2	CMP1P.5
23	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				SPI1_MISO	CMP0N.4
				EMIF_AD1	CMP1N.4
24	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
				SPI1_SCK	CMP0P.4
				EMIF_AD0	CMP1P.4
25	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	IREF0
				INT1.7	CMP0N.3
					CMP1N.3
26	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.3
				INT0.6	CMP1P.3
				INT1.6	
27	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0N.2
				INT1.5	CMP1N.2
28	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.2
				INT1.4	CMP1P.2
29	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	XTAL2
				INT0.3	CMP0N.1
				INT1.3	CMP1N.1
30	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				INT0.2	CMP0P.1
				INT1.2	CMP1P.1
					XTAL1

7. QFN32 Package Specifications

7.1 QFN32 Package Dimensions

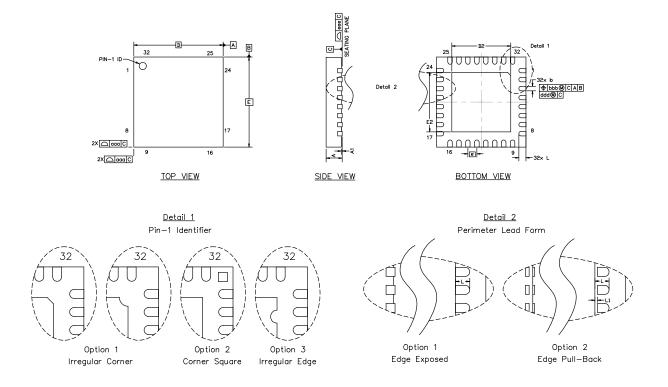


Figure 7.1. QFN32 Package Drawing

Table 7.1. QFN32 Package Dimensions

Dimension	Min	Тур	Мах						
A	0.80	0.90	1.00						
A1	0.00	0.02	0.05						
b	0.18	0.25	0.30						
D									
D2	3.20	3.30	3.40						
е		0.50 BSC							
E		5.00 BSC							
E2	3.20	3.30	3.40						
L	0.30	0.40	0.50						
L1	0.00	—	0.15						
ааа	—	_	0.15						

Dimension	Min	Тур	Мах
bbb	—	_	0.10
ddd	_	_	0.05
eee	_		0.08
Z	_	0.24	_
Y	—	0.18	_

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220, variation WGGD except for custom features D2, E2, Z, Y, and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

9. QFP32 Package Specifications

9.1 QFP32 Package Dimensions

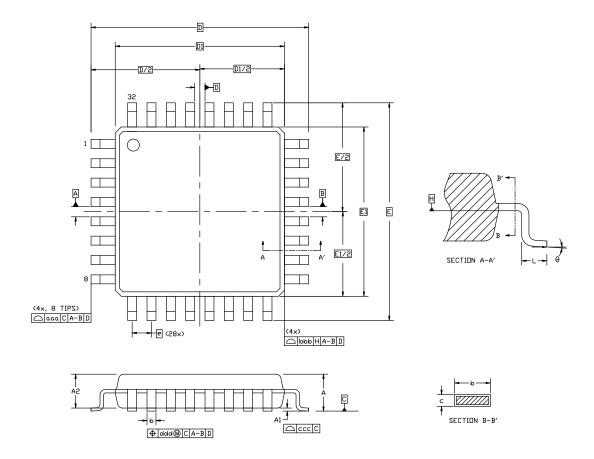


Figure 9.1. QFP32 Package Drawing

Table 9.1. QFP32 Package Dimensions

Dimension	Min	Тур	Мах						
A	_	_	1.60						
A1	0.05	—	0.15						
A2	1.35	1.40	1.45						
b	0.30	0.37	0.45						
D	9.00 BSC								
D1		7.00 BSC							
е		0.80 BSC							
E		9.00 BSC							
E1		7.00 BSC							
L	0.45	0.60	0.75						
ааа		0.20							

9.2 QFP32 PCB Land Pattern

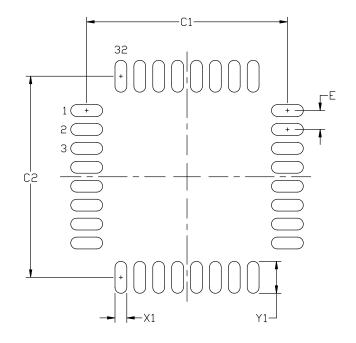


Figure 9.2. QFP32 PCB Land Pattern Drawing

Table 9.2.	QFP32 PCB La	and Pattern	Dimensions
------------	--------------	-------------	------------

Dimension	Min	Мах					
C1	8.40	8.50					
C2	8.40	8.50					
E	0.80 BSC						
X1	0.40	0.50					
Y1	1.25	1.35					

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

9.3 QFP32 Package Marking

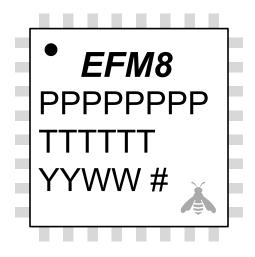


Figure 9.3. QFP32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

	6.2 EFM8SB2x-QFN24 Pin Definitions														.32
	6.3 EFM8SB2x-QFP32 Pin Definitions														
7.	QFN32 Package Specifications.														39
	7.1 QFN32 Package Dimensions.														.39
	7.2 QFN32 PCB Land Pattern														.41
	7.3 QFN32 Package Marking														.42
8.	QFN24 Package Specifications														43
	8.1 QFN24 Package Dimensions.														.43
	8.2 QFN24 PCB Land Pattern														.45
	8.3 QFN24 Package Marking													•	.46
9.	QFP32 Package Specifications.														47
	9.1 QFP32 Package Dimensions														.47
	9.2 QFP32 PCB Land Pattern														.49
	9.3 QFP32 Package Marking														.50
10	Revision History			•					•	•				•	51
	10.1 Revision 1.2														.51
	10.2 Revision 1.1														.51
Та	ble of Contents	•				•		•	•	•			•	•	52