

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 23x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8sb20f32g-b-qfn32

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM8SB2 highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - · 70% of instructions execute in 1-2 clock cycles
 - 25 MHz maximum operating frequency
- Memory:
 - Up to 64 kB flash memory, in-system re-programmable from firmware.
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- · Power:
 - · Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 24 total multifunction I/O pins:
 - All pins 5 V tolerant under bias
 - Flexible peripheral crossbar for peripheral routing
 - · 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 20 MHz low power oscillator with ±10% accuracy
 - Internal 24.5 MHz precision oscillator with ±2% accuracy
 - External RTC 32 kHz crystal
 - · External crystal, RC, C, and CMOS clock options

- Timers/Counters and PWM:
 - 32-bit Real Time Clock (RTC)
 - 6-channel programmable counter array (PCA) supporting PWM, capture/compare, and frequency output modes with watchdog timer function
 - 4 x 16-bit general-purpose timers
- Communications and Digital Peripherals:
 - UART
 - 2 x SPI™ Master / Slave
 - SMBus™/I2C™ Master / Slave
 - External Memory Interface (EMIF)
 - 16-bit/32-bit CRC unit, supporting automatic CRC of flash at 1024-byte boundaries
- Analog:
 - Programmable current reference (IREF0)
 - 10-Bit Analog-to-Digital Converter (ADC0)
 - 2 x Low-current analog comparators
- On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - Four hardware breakpoints, single-stepping
- Pre-loaded UART bootloader
- Temperature range -40 to 85 °C
- Single power supply 1.8 to 3.6 V
- · QFP32, QFN32, and QFN24 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8SB2 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Each device is specified for 1.8 to 3.6 V operation and is available in 24-pin QFN, 32-pin QFN, or 32-pin QFP pack-ages. All package options are lead-free and RoHS compliant.

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) integrated within the PCA0 peripheral. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software. The state of the RSTb pin is unaffected by this reset.

The Watchdog Timer integrated in the PCA0 peripheral has the following features:

- Programmable timeout interval
- Runs from the selected PCA clock source
- · Automatically enabled after any system reset

3.6 Communications and Other Digital Peripherals

Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART module provides the following features:

- Asynchronous transmissions and receptions.
- Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive).
- 8- or 9-bit data.
- · Automatic start and stop generation.
- Single-byte FIFO on transmit and receive.

Serial Peripheral Interface (SPI0 and SPI1)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

The SPI module includes the following features:

- Supports 3- or 4-wire operation in master or slave modes.
- Supports external clock frequencies up to SYSCLK / 2 in master mode and SYSCLK / 10 in slave mode.
- Support for four clock phase and polarity options.
- 8-bit dedicated clock clock rate generator.
- Support for multiple masters on the same data lines.

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds.
- · Support for master, slave, and multi-master modes.
- · Hardware synchronization and arbitration for multi-master mode.
- · Clock low extending (clock stretching) to interface with faster masters.
- · Hardware support for 7-bit slave and general call address recognition.
- Firmware support for 10-bit slave address decoding.
- · Ability to inhibit all slave states.
- Programmable data setup/hold times.

3.8 Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- · Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- · External port pins are forced to a known state.
- · Interrupts and timers are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost. The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For Supply Monitor and power-on resets, the RSTb pin is driven low until the device exits the reset state. On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal oscillator. The Watchdog Timer is enabled, and program execution begins at location 0x0000.

Reset sources on the device include the following:

- Power-on reset
- External reset pin
- · Comparator reset
- · Software-triggered reset
- · Supply monitor reset (monitors VDD supply)
- · Watchdog timer reset
- · Missing clock detector reset
- · Flash error reset
- · RTC0 alarm or oscillator failure

3.9 Debugging

The EFM8SB2 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

4.1.2 Power Consumption

Table 4.2.	Power	Consumption
------------	-------	-------------

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Digital Supply Current						
Normal Mode supply current - Full speed with code executing from	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	_	4.1	5.0	mA
flash ^{3 , 4 , 5}		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz	_	3.5		mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	_	90		μA
Normal Mode supply current fre- quency sensitivity ^{1, 3, 5}	IDDFREQ	V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} < 14 MHz	—	226		µA/MHz
		V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} > 14 MHz	_	120		µA/MHz
Idle Mode supply current - Core halted with peripherals running ⁴ , ⁶	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	_	2.5	3.0	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz	_	1.8		mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	_	84		μA
Idle Mode Supply Current Frequen- cy Sensitivity ^{1,6}	IDDFREQ	V _{DD} = 1.8–3.6 V, T = 25 °C		95		µA/MHz
Suspend Mode Supply Current	I _{DD}	V _{DD} = 1.8–3.6 V	_	77	_	μA
Sleep Mode Supply Current with	I _{DD}	1.8 V, T = 25 °C	_	0.60		μA
RTC running from 32.768 kHz crystal		3.6 V, T = 25 °C		0.85		μA
		1.8 V, T = 85 °C		1.30		μA
		3.6 V, T = 85 °C	_	1.90		μA
Sleep Mode Supply Current (RTC	I _{DD}	1.8 V, T = 25 °C		0.05		μA
off)		3.6 V, T = 25 °C	_	0.12	_	μA
		1.8 V, T = 85 °C		0.75		μA
		3.6 V, T = 85 °C		1.20		μA
V _{DD} Monitor Supply Current	I _{VMON}		_	7	_	μA
Oscillator Supply Current	I _{HFOSC0}	25 °C	_	300		μA
ADC0 Always-on Power Supply	I _{ADC}	300 ksps	_	800	_	μA
Current ⁷		V _{DD} = 3.0 V				
		Tracking		680	_	μA
		V _{DD} = 3.0 V				

Parameter	Symbol	Conditions	Min	Тур	Мах	Units
Comparator 0 (CMP0) Supply Cur-	I _{CMP}	CPMD = 11	—	0.4	_	μA
rent		CPMD = 10	—	2.6	_	μA
		CPMD = 01	_	8.8	_	μA
		CPMD = 00	_	23		μA
Internal Fast-settling 1.65V ADC0 Reference, Always-on ⁸	I _{VREFFS}		-	200	_	μA
On-chip Precision Reference	I _{VREFP}		—	15	_	μA
Temp sensor Supply Current	I _{TSENSE}		_	35	_	μA
Programmable Current Reference (IREF0) Supply Current ⁹	I _{IREF}	Current Source, Either Power Mode, Any Output Code	_	10		μA
		Low Power Mode, Current Sink	_	1	_	μA
		IREF0DAT = 000001				
		Low Power Mode, Current Sink	_	11	_	μA
		IREF0DAT = 111111				
		High Current Mode, Current Sink	_	12		μA
		IREF0DAT = 000001				
		High Current Mode, Current Sink	_	81	_	μA
		IREF0DAT = 111111				

Note:

- 1. Based on device characterization data; Not production tested.
- 2. SYSCLK must be at least 32 kHz to enable debugging.
- 3. Digital Supply Current depends upon the particular code being executed. The values in this table are obtained with the CPU executing an "simp \$" loop, which is the compiled form of a while(1) loop in C. One iteration requires 3 CPU clock cycles, and the flash memory is read on each cycle. The supply current will vary slightly based on the physical location of the simp instruction and the number of flash address lines that toggle as a result. In the worst case, current can increase by up to 30% if the simp loop straddles a 128-byte flash address boundary (e.g., 0x007F to 0x0080). Real-world code with larger loops and longer linear sequences will have few transitions across the 128-byte address boundaries.
- Includes supply current from regulator and oscillator source (24.5 MHz high-frequency oscillator, 20 MHz low-power oscillator, or 32.768 kHz RTC oscillator).
- 5. IDD can be estimated for frequencies < 10 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range, then adding an offset of 90 μ A. When using these numbers to estimate I_{DD} for > 10 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 20 MHz, I_{DD} = 4.1 mA (25 MHz 20 MHz) x 0.120 mA/MHz = 3.5 mA assuming the same oscillator setting.
- 6. Idle IDD can be estimated by taking the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 5 MHz, Idle I_{DD} = 2.5 mA (25 MHz 5 MHz) x 0.095 mA/MHz = 0.6 mA.
- 7. ADC0 always-on power excludes internal reference supply current.
- 8. The internal reference is enabled as-needed when operating the ADC in burst mode to save power.
- 9. IREF0 supply current only. Does not include current sourced or sunk from IREF0 output pin.

4.1.3 Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
VDD Supply Monitor Threshold	V _{VDDM}	Reset Trigger	1.7	1.75	1.8	V
	Vwarn	Early Warning	1.8	1.85	1.9	V
VDD Supply Monitor Turn-On Time	t _{MON}		_	300	_	ns
Power-On Reset (POR) Monitor Threshold	V _{POR}	Initial Power-On (Rising Voltage on V_{DD})		0.75	_	V
		Falling Voltage on V _{DD}	0.7	0.8	0.9	V
		Brownout Recovery (Rising Voltage on V_{DD})	—	0.95	_	V
V _{DD} Ramp Time	t _{RMP}	Time to V _{DD} ≥ 1.8 V	_	_	3	ms
Reset Delay from POR	t _{POR}	Relative to V _{DD} > V _{POR}	3	10	31	ms
Reset Delay	t _{RST}	Time between release of reset source and code execution	_	10	_	μs
RST Low Time to Generate Reset	t _{RSTL}		15	_	_	μs
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{SYSCLK} > 1 MHz	100	650	1000	μs
Missing Clock Detector Trigger Frequency	F _{MCD}		_	7	10	kHz

Table 4.3. Reset and Supply Monitor

4.1.4 Flash Memory

Table 4.4. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Write Time ¹	t _{WRITE}	One Byte	57	64	71	μs
Erase Time ¹	t _{ERASE}	One Page	28	32	36	ms
Endurance (Write/Erase Cycles)	N _{WE}		1 k	30 k	_	Cycles

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

2. Data Retention Information is published in the Quarterly Quality and Reliability Report.

4.1.8 External Clock Input

Table 4.8.	External	Clock	Input
------------	----------	-------	-------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Input CMOS Clock	f _{CMOS}		0	—	25	MHz
Frequency (at EXTCLK pin)						
External Input CMOS Clock High Time	t _{CMOSH}		18		_	ns
External Input CMOS Clock Low Time	t _{CMOSL}		18			ns

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-1.5	_	mV
Mode 3 (CPMD = 11)		CPHYN = 01	—	-4	_	mV
		CPHYN = 10	—	-8	_	mV
		CPHYN = 11	_	-16	_	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	—	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}		—	12	-	pF
Common-Mode Rejection Ratio	CMRR _{CP}		—	70	-	dB
Power Supply Rejection Ratio	PSRR _{CP}		—	72	-	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	-	μV/°C

4.1.13 Programmable Current Reference (IREF0)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Static Performance						
Resolution	N _{bits}			6		bits
Output Compliance Range	V _{IOUT}	Low Power Mode, Source	0	_	V _{DD} – 0.4	V
		High Current Mode, Source	0	_	V _{DD} – 0.8	V
		Low Power Mode, Sink	0.3	_	V _{DD}	V
		High Current Mode, Sink	0.8	_	V _{DD}	V
Integral Nonlinearity	INL			<±0.2	±1.0	LSB
Differential Nonlinearity	DNL			<±0.2	±1.0	LSB
Offset Error	E _{OFF}		_	<±0.1	±0.5	LSB
Full Scale Error	E _{FS}	Low Power Mode, Source		_	±5	%
		High Current Mode, Source	_	_	±6	%
		Low Power Mode, Sink	_	_	±8	%
		High Current Mode, Sink	_	_	±8	%
Absolute Current Error	E _{ABS}	Low Power Mode Sourcing 20 µA	_	<±1	±3	%
Dynamic Performance						
Output Settling Time to 1/2 LSB	t _{SETTLE}			300	—	ns
Startup Time	t _{PWR}			1	_	μs

4.1.14 Port I/O

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output High Voltage (High Drive) ¹	V _{OH}	I _{OH} = –3 mA	V _{DD} – 0.7	_	—	V
Output Low Voltage (High Drive) ¹	V _{OL}	I _{OL} = 8.5 mA	_	_	0.6	V
Output High Voltage (Low Drive) ¹	V _{OH}	I _{OH} = -1 mA	V _{DD} – 0.7	_	—	V
Output Low Voltage (Low Drive) ¹	V _{OL}	I _{OL} = 1.4 mA	_	_	0.6	V
Input High Voltage	VIH	V _{DD} = 2.0 to 3.6 V	V _{DD} – 0.6	_	—	V
		V _{DD} = 1.8 to 2.0 V	0.7 x V _{DD}	_	—	V
Input Low Voltage	VIL	V _{DD} = 2.0 to 3.6 V	_	_	0.6	V
		V _{DD} = 1.8 to 2.0 V	_	_	0.3 x V _{DD}	V
Weak Pull-Up Current	I _{PU}	V _{DD} = 1.8 V	_	-4	_	μA
		V _{IN} = 0 V				
		V _{DD} = 3.6 V	-35	-20	_	μA
		V _{IN} = 0 V				
Input Leakage	I _{LK}	Weak pullup disabled or pin in ana- log mode	-1	_	1	μA

Table 4.14. Port I/O

1. See Figure 4.2 Typical V_{OH} Curves on page 24 and Figure 4.3 Typical V_{OL} Curves on page 25 for more information.

4.2 Thermal Conditions

Table 4.15. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance ¹	θ _{JA}	QFN-24 Packages	-	35	-	°C/W
		QFN-32 Packages	_	28	_	°C/W
		QFP-32 Packages	—	80	_	°C/W
Note: 1. Thermal resistance assumes a multi-layer PCB with any exposed pad soldered to a PCB pad.						

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.16 Absolute Maximum Ratings on page 23 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.16. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on V _{DD}	V _{DD}		GND-0.3	4.0	V
Voltage on I/O pins or RSTb	V _{IN}	V _{DD} > 2.2 V	GND-0.3	5.8	V
		V _{DD} <= 2.2 V	GND-0.3	V _{DD} + 3.6	V
Total Current Sunk into Supply Pin	I _{VDD}		_	400	mA
Total Current Sourced out of Ground Pin	I _{GND}		400	_	mA
Current Sourced or Sunk by Any I/O Pin or RSTb	I _{IO}		-100	100	mA
Maximum Total Current through all Port Pins	I _{IOTOT}		_	200	mA
Operating Junction Temperature	TJ		-40	105	°C
Exposure to maximum rating condition	s for extende	d periods may affect device reliability.	1		

6. Pin Definitions

6.1 EFM8SB2x-QFN32 Pin Definitions

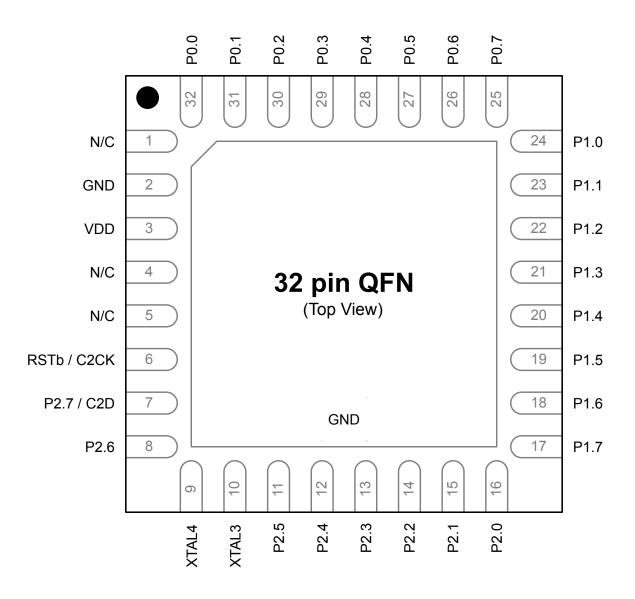


Figure 6.1. EFM8SB2x-QFN32 Pinout

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	N/C	No Connection			
2	GND	Ground			
3	VDD	Supply Power Input			
4	N/C	No Connection			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
19	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				EMIF_AD5	CMP0N.6
					CMP1N.6
20	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
				EMIF_AD4	CMP0P.6
					CMP1P.6
21	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
				SPI1_NSS	CMP0N.5
				EMIF_AD3	CMP1N.5
22	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				SPI1_MOSI	CMP0P.5
				EMIF_AD2	CMP1P.5
23	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				SPI1_MISO	CMP0N.4
				EMIF_AD1	CMP1N.4
24	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
				SPI1_SCK	CMP0P.4
				EMIF_AD0	CMP1P.4
25	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	IREF0
				INT1.7	CMP0N.3
					CMP1N.3
26	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.3
				INT0.6	CMP1P.3
				INT1.6	
27	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0N.2
				INT1.5	CMP1N.2
28	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.2
				INT1.4	CMP1P.2
29	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	XTAL2
				INT0.3	CMP0N.1
				INT1.3	CMP1N.1

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
31	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	AGND
				INT1.1	CMP0N.0
					CMP1N.0
32	P0.0	Multifunction I/O	Yes	P0MAT.0	ADC0.0
				INT0.0	CMP0P.0
				INT1.0	CMP1P.0
					VREF

7. QFN32 Package Specifications

7.1 QFN32 Package Dimensions

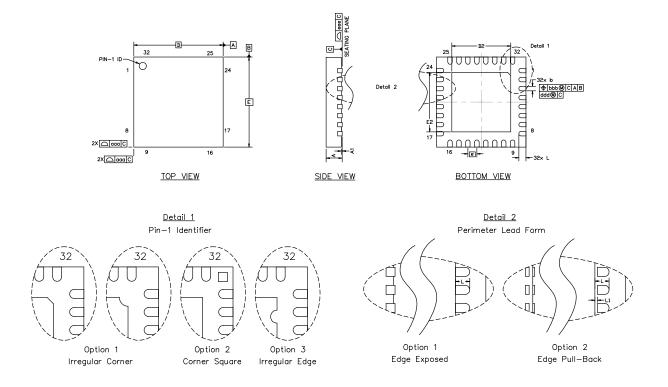


Figure 7.1. QFN32 Package Drawing

Table 7.1. QFN32 Package Dimensions

Dimension	Min	Тур	Мах	
A	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
b	0.18	0.25	0.30	
D		5.00 BSC		
D2	3.20	3.30	3.40	
е	0.50 BSC			
E	5.00 BSC			
E2	3.20	3.30	3.40	
L	0.30	0.40	0.50	
L1	0.00	—	0.15	
ааа	—	_	0.15	

Dimension	Min	Тур	Мах
bbb	—	—	0.10
ddd	—	—	0.05
eee	—	—	0.08

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220, variation VHHD except for custom features D2, E2, and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

7.2 QFN32 PCB Land Pattern

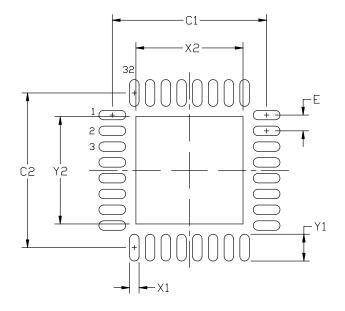


Figure 7.2. QFN32 PCB Land Pattern Drawing

Dimension	Min	Мах	
C1	4.80	4.90	
C2	4.80	4.90	
E	0.50 BSC		
X1	0.20	0.30	
X2	3.20	3.40	
Y1	0.75	0.85	
Y2	3.20	3.40	

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 3 x 3 array of 1.0 mm x 1.0 mm openings on a 1.2 mm pitch should be used for the center pad.
- 8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

8.2 QFN24 PCB Land Pattern

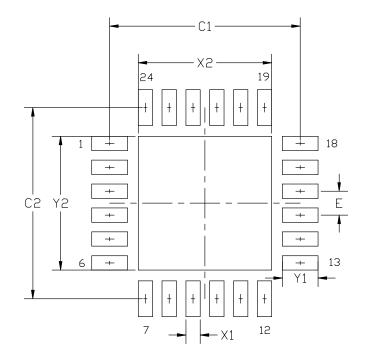


Figure 8.2. QFN24 PCB Land Pattern Drawing

Table 8.2. QFN24 PCB Land Pattern I	Dimensions
-------------------------------------	------------

Dimension	Min	Мах	
C1	3.90	4.00	
C2	3.90	4.00	
E	0.50 BSC		
X1	0.20	0.30	
X2	2.70	2.80	
Y1	0.65	0.75	
Y2	2.70	2.80	

Max

Note:

Dimension

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 2 x 2 array of 1.10 mm x 1.10 mm openings on 1.30 mm pitch should be used for the center ground pad.
- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.3 QFN24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

9. QFP32 Package Specifications

9.1 QFP32 Package Dimensions

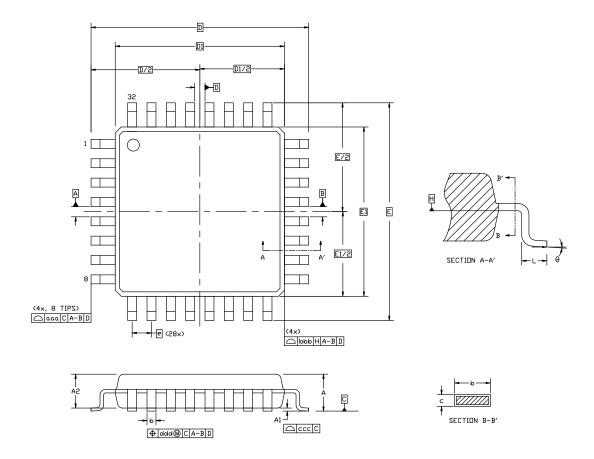


Figure 9.1. QFP32 Package Drawing

Table 9.1. QFP32 Package Dimensions

Dimension	Min	Тур	Мах
A	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
b	0.30	0.37	0.45
D	9.00 BSC		
D1	7.00 BSC		
е	0.80 BSC		
E	9.00 BSC		
E1	7.00 BSC		
L	0.45	0.60	0.75
ааа	0.20		

Table of Contents

1.	Feature List	. 1
2.	Ordering Information	. 2
3.	System Overview	. 4
	3.1 Introduction.	. 4
	3.2 Power	. 5
	3.3 I/O	. 5
	3.4 Clocking	. 5
	3.5 Counters/Timers and PWM	. 6
	3.6 Communications and Other Digital Peripherals	. 7
	3.7 Analog	
	3.8 Reset Sources	
	3.9 Debugging	.10
	3.10 Bootloader	
1	Electrical Specifications	
	4.1 Electrical Characteristics	
	4.1.1 Recommended Operating Conditions	
	4.1.2 Power Consumption	
	4.1.3 Reset and Supply Monitor	
	4.1.4 Flash Memory	
	4.1.5 Power Management Timing	
	4.1.6 Internal Oscillators.	
	4.1.7 Crystal Oscillator	.16
	4.1.8 External Clock Input	.17
	4.1.9 ADC	.18
	4.1.10 Voltage References	.19
	4.1.11 Temperature Sensor	.19
	4.1.12 Comparators	
	4.1.13 Programmable Current Reference (IREF0)	
	4.1.14 Port I/O	.22
	4.2 Thermal Conditions	.22
	4.3 Absolute Maximum Ratings	.23
	4.4 Typical Performance Curves	.24
5.	Typical Connection Diagrams	26
	5.1 Power	.26
	5.2 Debug	.26
	5.3 Other Connections	.27
6.	Pin Definitions	28
	6.1 EFM8SB2x-QFN32 Pin Definitions	