

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8sb20f64g-b-qfn24

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Ordering Information

Figure 2.1. EFM8SB2 Part Numbering

All EFM8SB2 family members have the following features:

- CIP-51 Core running up to 25 MHz
- Three Internal Oscillators (24.5 MHz, 20 MHz, and 16 kHz)
- SMBus / I2C
- 2 x SPI
- UART
- 6-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 4 16-bit Timers
- · 2 Analog Comparators
- 6-bit programmable current reference
- · 10-bit Analog-to-Digital Converter with integrated multiplexer, voltage reference, and temperature sensor
- Low-current 32 kHz oscillator and Real Time Clock
- 16-bit CRC Unit
- · Pre-loaded UART bootloader

In addition to these features, each part number in the EFM8SB2 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC Channels	Comparator Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8SB20F64G-B-QFN32	64	4352	24	23	12	Yes	-40 to +85 C	QFN32
EFM8SB20F64G-B-QFP32	64	4352	24	23	12	Yes	-40 to +85 C	QFP32
EFM8SB20F64G-B-QFN24	64	4352	16	15	8	Yes	-40 to +85 C	QFN24
EFM8SB20F32G-B-QFN32	32	4352	24	23	12	Yes	-40 to +85 C	QFN32
EFM8SB20F32G-B-QFP32	32	4352	24	23	12	Yes	-40 to +85 C	QFP32
EFM8SB20F32G-B-QFN24	32	4352	16	15	8	Yes	-40 to +85 C	QFN24

3. System Overview

3.1 Introduction

Figure 3.1. Detailed EFM8SB2 Block Diagram

This section describes the EFM8SB2 family at a high level. For more information on each module including register definitions, see the EFM8SB2 Reference Manual.

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	_	_
Idle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and digital peripherals halted Internal oscillators disabled Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 or LPOSC0 Set SUSPEND bit in PMU0CF 	 RTC0 Alarm Event RTC0 Fail Event Port Match Event Comparator 0 Rising Edge
Stop	 All internal power nets shut down Pins retain state Exit on any reset source	Set STOP bit in PCON0	Any reset source
Sleep	 Most internal power nets shut down Select circuits remain powered Pins retain state All RAM and SFRs retain state Code resumes execution on wake event 	 Disable unused ana- log peripherals Set SLEEP bit in PMU0CF 	 RTC0 Alarm Event RTC0 Fail Event Port Match Event Comparator 0 Rising Edge

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.6 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pin P2.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P2.7.

- Up to 24 multi-functions I/O pins, supporting digital and analog functions.
- Flexible priority crossbar decoder for digital peripheral assignment.
- Two drive strength settings for each pin.
- · Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- · Up to 16 direct-pin interrupt sources with shared interrupt vector (Port Match).

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 20 MHz low power oscillator divided by 8.

- · Provides clock to core and peripherals.
- 20 MHz low power oscillator (LPOSC0), accurate to +/- 10% over supply and temperature corners.
- 24.5 MHz internal oscillator (HFOSC0), accurate to +/- 2% over supply and temperature corners.
- External RTC 32 kHz crystal.
- · External RC, C, CMOS, and high-frequency crystal clock options (EXTCLK).
- Clock divider with eight settings for flexible clock scaling: Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) integrated within the PCA0 peripheral. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software. The state of the RSTb pin is unaffected by this reset.

The Watchdog Timer integrated in the PCA0 peripheral has the following features:

- Programmable timeout interval
- Runs from the selected PCA clock source
- · Automatically enabled after any system reset

3.6 Communications and Other Digital Peripherals

Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART module provides the following features:

- Asynchronous transmissions and receptions.
- Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive).
- 8- or 9-bit data.
- · Automatic start and stop generation.
- Single-byte FIFO on transmit and receive.

Serial Peripheral Interface (SPI0 and SPI1)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

The SPI module includes the following features:

- Supports 3- or 4-wire operation in master or slave modes.
- Supports external clock frequencies up to SYSCLK / 2 in master mode and SYSCLK / 10 in slave mode.
- Support for four clock phase and polarity options.
- 8-bit dedicated clock clock rate generator.
- Support for multiple masters on the same data lines.

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds.
- · Support for master, slave, and multi-master modes.
- · Hardware synchronization and arbitration for multi-master mode.
- · Clock low extending (clock stretching) to interface with faster masters.
- · Hardware support for 7-bit slave and general call address recognition.
- Firmware support for 10-bit slave address decoding.
- · Ability to inhibit all slave states.
- Programmable data setup/hold times.

3.8 Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- · Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- · External port pins are forced to a known state.
- · Interrupts and timers are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost. The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For Supply Monitor and power-on resets, the RSTb pin is driven low until the device exits the reset state. On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal oscillator. The Watchdog Timer is enabled, and program execution begins at location 0x0000.

Reset sources on the device include the following:

- Power-on reset
- External reset pin
- · Comparator reset
- · Software-triggered reset
- · Supply monitor reset (monitors VDD supply)
- · Watchdog timer reset
- · Missing clock detector reset
- · Flash error reset
- · RTC0 alarm or oscillator failure

3.9 Debugging

The EFM8SB2 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

4.1.2 Power Consumption

Table 4.2.	Power	Consum	ption
------------	-------	--------	-------

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Digital Supply Current						
Normal Mode supply current - Full speed with code executing from	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	—	4.1	5.0	mA
Tiash 0, 4, 0		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz	_	3.5	_	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	_	90		μA
Normal Mode supply current fre- quency sensitivity ^{1, 3, 5}	IDDFREQ	V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} < 14 MHz	_	226	_	µA/MHz
		V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} > 14 MHz	_	120	_	µA/MHz
Idle Mode supply current - Core Ighalted with peripherals running ^{4,6}	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	_	2.5	3.0	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz	_	1.8		mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	_	84		μA
Idle Mode Supply Current Frequen- cy Sensitivity ^{1 ,6}	I _{DDFREQ}	V _{DD} = 1.8–3.6 V, T = 25 °C	_	95		µA/MHz
Suspend Mode Supply Current	I _{DD}	V _{DD} = 1.8–3.6 V	_	77	_	μA
Sleep Mode Supply Current with	I _{DD}	1.8 V, T = 25 °C	_	0.60	_	μA
crystal		3.6 V, T = 25 °C	_	0.85	_	μA
		1.8 V, T = 85 °C	_	1.30	_	μA
		3.6 V, T = 85 °C	_	1.90	_	μA
Sleep Mode Supply Current (RTC	I _{DD}	1.8 V, T = 25 °C	_	0.05	—	μA
off)		3.6 V, T = 25 °C	_	0.12	_	μA
		1.8 V, T = 85 °C	_	0.75	_	μA
		3.6 V, T = 85 °C	_	1.20	—	μA
V _{DD} Monitor Supply Current	I _{VMON}		_	7	_	μA
Oscillator Supply Current	I _{HFOSC0}	25 °C	_	300	_	μA
ADC0 Always-on Power Supply	I _{ADC}	300 ksps	_	800	_	μA
Current ⁷		V _{DD} = 3.0 V				
		Tracking	_	680	_	μA
		V _{DD} = 3.0 V				

4.1.5 Power Management Timing

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Idle Mode Wake-up Time	t _{IDLEWK}		2	_	3	SYSCLKs
Suspend Mode Wake-up Time	t _{SUS-}	CLKDIV = 0x00	_	400	_	ns
	PENDWK	Precision Osc.				
		CLKDIV = 0x00	_	1.3	_	μs
		Low Power Osc.				
Sleep Mode Wake-up Time	t SLEEPWK		—	2	_	μs

Table 4.5. Power Management Timing

4.1.6 Internal Oscillators

Table 4.6. Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit	
High Frequency Oscillator 0 (24.5 MHz)							
Oscillator Frequency	f _{HFOSC0}	Full Temperature and Supply Range	24	24.5	25	MHz	
Low Power Oscillator (20 MHz)							
Oscillator Frequency	f _{LPOSC}	Full Temperature and Supply Range	18	20	22	MHz	
RTC in Self-Oscillate Mode							
Oscillator Frequency	f _{LFOSC}	Bias Off	—	12 ± 5	—	kHz	
		Bias On		25 ± 10		kHz	

4.1.7 Crystal Oscillator

Table 4.7. Crystal Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Crystal Frequency	f _{XTAL}		0.02	-	25	MHz

4.1.8 External Clock Input

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
External Input CMOS Clock	f _{CMOS}		0	_	25	MHz
Frequency (at EXTCLK pin)						
External Input CMOS Clock High Time	tсмоян		18	_	—	ns
External Input CMOS Clock Low Time	tCMOSL		18	_	_	ns

Table	4.9.	ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}			10		Bits
Throughput Rate	f _S		_	_	300	ksps
Tracking Time	t _{TRK}		1.5	—	_	μs
Power-On Time	t _{PWR}		1.5	_	—	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode,	—	—	8.33	MHz
Conversion Time	T _{CNV}		13	—	—	Clocks
Sample/Hold Capacitor	C _{SAR}	Gain = 1	—	30	_	pF
		Gain = 0.5	—	28	_	pF
Input Pin Capacitance	C _{IN}		_	20	_	pF
Input Mux Impedance	R _{MUX}		—	5	—	kΩ
Voltage Reference Range	V _{REF}		1	_	V _{DD}	V
Input Voltage Range ¹	V _{IN}	Gain = 1	0	_	V _{REF}	V
		Gain = 0.5	0	_	2 x V _{REF}	V
Power Supply Rejection Ratio	PSRR _{ADC}	Internal High Speed VREF	—	67	_	dB
		External VREF	_	74	_	dB
DC Performance		·				
Integral Nonlinearity	INL		—	±0.5	±1	LSB
Differential Nonlinearity (Guaran- teed Monotonic)	DNL		_	±0.5	±1	LSB
Offset Error	E _{OFF}	VREF = 1.65 V	-2	0	2	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.004	_	LSB/°C
Slope Error	E _M		—	±0.06	±0.24	%
Dynamic Performance 10 kHz Sir	e Wave Inp	ut 1dB below full scale, Max throug	hput	1	1	
Signal-to-Noise	SNR		54	58	-	dB
Signal-to-Noise Plus Distortion	SNDR		54	58	_	dB
Total Harmonic Distortion (Up to 5th Harmonic)	THD		_	-73	_	dB
Spurious-Free Dynamic Range	SFDR		-	75	-	dB
Note:						

1. Absolute input pin voltage is limited by the $V_{\mbox{DD}}$ supply.

4.1.12 Comparators

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Response Time, CPMD = 00	t _{RESP0}	+100 mV Differential	_	130	_	ns
(Highest Speed)		–100 mV Differential		200	_	ns
Response Time, CPMD = 11 (Low-	t _{RESP3}	+100 mV Differential	_	1.75	_	μs
est Power)		–100 mV Differential		6.2	_	μs
Positive Hysterisis	HYS _{CP+}	CPHYP = 00		0.4	_	mV
Mode 0 (CPMD = 00)		CPHYP = 01		8		mV
		CPHYP = 10		16		mV
		CPHYP = 11		32	_	mV
Negative Hysterisis	HYS _{CP-}	CPHYN = 00		-0.4		mV
Mode 0 (CPMD = 00)		CPHYN = 01		-8	_	mV
		CPHYN = 10	_	-16	_	mV
		CPHYN = 11		-32	_	mV
Positive Hysterisis	HYS _{CP+}	CPHYP = 00	_	0.5	_	mV
Mode 1 (CPMD = 01)		CPHYP = 01	_	6	_	mV
		CPHYP = 10	_	12	_	mV
		CPHYP = 11	_	24	_	mV
Negative Hysterisis	HYS _{CP-}	CPHYN = 00	_	-0.5	_	mV
Mode 1 (CPMD = 01)		CPHYN = 01	_	-6	_	mV
		CPHYN = 10	_	-12	_	mV
		CPHYN = 11	_	-24	_	mV
Positive Hysterisis	HYS _{CP+}	CPHYP = 00	_	0.7	_	mV
Mode 2 (CPMD = 10)		CPHYP = 01	_	4.5	_	mV
		CPHYP = 10	_	9	_	mV
		CPHYP = 11	_	18	_	mV
Negative Hysterisis	HYS _{CP-}	CPHYN = 00	_	-0.6	_	mV
Mode 2 (CPMD = 10)		CPHYN = 01	_	-4.5	_	mV
		CPHYN = 10	_	-9	_	mV
		CPHYN = 11	_	-18	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	1.5	_	mV
Mode 3 (CPMD = 11)		CPHYP = 01	_	4	_	mV
		CPHYP = 10	_	8	_	mV
		CPHYP = 11		16	_	mV

Table 4.12. Comparators

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.16 Absolute Maximum Ratings on page 23 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.16. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit		
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C		
Storage Temperature	T _{STG}		-65	150	°C		
Voltage on V _{DD}	V _{DD}		GND-0.3	4.0	V		
Voltage on I/O pins or RSTb	V _{IN}	V _{DD} > 2.2 V	GND-0.3	5.8	V		
		V _{DD} <= 2.2 V	GND-0.3	V _{DD} + 3.6	V		
Total Current Sunk into Supply Pin	I _{VDD}		_	400	mA		
Total Current Sourced out of Ground Pin	I _{GND}		400	—	mA		
Current Sourced or Sunk by Any I/O Pin or RSTb	I _{IO}		-100	100	mA		
Maximum Total Current through all Port Pins	I _{IOTOT}		—	200	mA		
Operating Junction Temperature	TJ		-40	105	°C		
Exposure to maximum rating conditions	Exposure to maximum rating conditions for extended periods may affect device reliability.						

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Power Connection Diagram on page 26 shows a typical connection diagram for the power pins of the EFM8SB2 devices.

Figure 5.1. Power Connection Diagram

5.2 Debug

The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connected to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin sharing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections can be omitted.

For more information on debug connections, see the example schematics and information available in AN127: "Pin Sharing Techniques for the C2 Interface." Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-appnotes) or in Simplicity Studio.

Figure 5.2. Debug Connection Diagram

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number					
19	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				EMIF_AD5	CMP0N.6
					CMP1N.6
20	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
				EMIF_AD4	CMP0P.6
					CMP1P.6
21	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
				SPI1_NSS	CMP0N.5
				EMIF_AD3	CMP1N.5
22	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				SPI1_MOSI	CMP0P.5
				EMIF_AD2	CMP1P.5
23	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				SPI1_MISO	CMP0N.4
				EMIF_AD1	CMP1N.4
24	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
				SPI1_SCK	CMP0P.4
				EMIF_AD0	CMP1P.4
25	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	IREF0
				INT1.7	CMP0N.3
					CMP1N.3
26	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.3
				INT0.6	CMP1P.3
				INT1.6	
27	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0N.2
				INT1.5	CMP1N.2
28	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.2
				INT1.4	CMP1P.2
29	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	XTAL2
				INT0.3	CMP0N.1
				INT1.3	CMP1N.1

Figure 6.2. EFM8SB2x-QFN24 Pinout

|--|

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	N/C	No Connection			
2	GND	Ground			
3	VDD	Supply Power Input			
4	N/C	No Connection			
5	N/C	No Connection			

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number					
6	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
7	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
8	XTAL4	RTC Crystal			XTAL4
9	XTAL3	RTC Crystal			XTAL3
10	P1.6	Multifunction I/O	Yes		ADC0.14
					CMP0P.7
					CMP1P.7
11	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
					CMP0N.6
					CMP1N.6
12	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CMP0P.6
					CMP1P.6
13	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
				SPI1_NSS	CMP0N.5
					CMP1N.5
14	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				SPI1_MOSI	CMP0P.5
					CMP1P.5
15	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				SPI1_MISO	CMP0N.4
					CMP1N.4
16	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
				SPI1_SCK	CMP0P.4
					CMP1P.4
17	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	IREF0
				INT1.7	CMP0N.3
					CMP1N.3
18	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.3
				INT0.6	CMP1P.3
				INT1.6	

Table 6.3. Pin Definitions for EFM8SB2x-QFP32

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
1	N/C	No Connection			
2	GND	Ground			
3	VDD	Supply Power Input			
4	N/C	No Connection			
5	N/C	No Connection			
6	RSTb /	Active-low Reset /			
	С2СК	C2 Debug Clock			
7	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			

Dimension	Min	Тур	Мах
bbb	—	—	0.10
ddd	_	_	0.05
eee	—	—	0.08

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220, variation VHHD except for custom features D2, E2, and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

7.2 QFN32 PCB Land Pattern

Figure 7.2. QFN32 PCB Land Pattern Drawing

Table 7.2.	QFN32 PCB	Land Pattern	Dimensions
------------	-----------	--------------	------------

Dimension	Min	Мах	
C1	4.80	4.90	
C2	4.80	4.90	
E	0.50 BSC		
X1	0.20	0.30	
X2	3.20	3.40	
Y1	0.75	0.85	
Y2	3.20	3.40	

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 3 x 3 array of 1.0 mm x 1.0 mm openings on a 1.2 mm pitch should be used for the center pad.
- 8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

8. QFN24 Package Specifications

8.1 QFN24 Package Dimensions

Figure 8.1. QFN24 Package Drawing

Table 8.1. QFN24 Package Dimensions

Dimension	Min	Тур	Мах	
A	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
b	0.18	0.25	0.30	
D	4.00 BSC			
D2	2.55	2.70	2.80	
е	0.50 BSC			
E	4.00 BSC			
E2	2.55	2.70	2.80	
L	0.30	0.40	0.50	
L1	0.00	_	0.15	
ааа	_	_	0.15	

9.2 QFP32 PCB Land Pattern

Figure 9.2. QFP32 PCB Land Pattern Drawing

Table 9.2.	QFP32 PCB	Land Pattern	Dimensions
------------	-----------	--------------	------------

Dimension	Min	Мах
C1	8.40	8.50
C2	8.40	8.50
E	0.80 BSC	
X1	0.40	0.50
Y1	1.25	1.35

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.