
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 23x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-QFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8sb20f64g-b-qfp32

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

EFM8SB2 Data Sheet Ordering Information

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC Channels	Comparator Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8SB20F16G-B-QFN24	16	4352	16	15	8	Yes	-40 to +85 C	QFN24

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 12, unless stated otherwise.

Table 4.1. Recommended Operating Conditions

4.1.1 Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		1.8	2.4	3.6	V
Minimum RAM Data Retention	V _{RAM}	Not in Sleep Mode	_	1.4	_	V
Voltage on VDD ¹		Sleep Mode	_	0.3		V
System Clock Frequency	f _{SYSCLK}		0	—	25	MHz
Operating Ambient Temperature	T _A		-40	—	85	°C
Note:	1		1	1		

1. All voltages with respect to GND.

Parameter	Symbol	Conditions	Min	Тур	Мах	Units
Comparator 0 (CMP0) Supply Cur-	I _{CMP}	CPMD = 11	_	0.4	_	μA
rent		CPMD = 10	—	2.6	_	μA
		CPMD = 01	_	8.8	_	μA
		CPMD = 00	_	23		μA
Internal Fast-settling 1.65V ADC0 Reference, Always-on ⁸	I _{VREFFS}		-	200	_	μA
On-chip Precision Reference	I _{VREFP}		—	15	_	μA
Temp sensor Supply Current	I _{TSENSE}		_	35	_	μA
Programmable Current Reference (IREF0) Supply Current ⁹	I _{IREF}	Current Source, Either Power Mode, Any Output Code	_	10		μA
		Low Power Mode, Current Sink	_	1	_	μA
		IREF0DAT = 000001				
		Low Power Mode, Current Sink	_	11	_	μA
		IREF0DAT = 111111				
		High Current Mode, Current Sink	_	12		μA
		IREF0DAT = 000001				
		High Current Mode, Current Sink	_	81	_	μA
		IREF0DAT = 111111				

- 1. Based on device characterization data; Not production tested.
- 2. SYSCLK must be at least 32 kHz to enable debugging.
- 3. Digital Supply Current depends upon the particular code being executed. The values in this table are obtained with the CPU executing an "simp \$" loop, which is the compiled form of a while(1) loop in C. One iteration requires 3 CPU clock cycles, and the flash memory is read on each cycle. The supply current will vary slightly based on the physical location of the simp instruction and the number of flash address lines that toggle as a result. In the worst case, current can increase by up to 30% if the simp loop straddles a 128-byte flash address boundary (e.g., 0x007F to 0x0080). Real-world code with larger loops and longer linear sequences will have few transitions across the 128-byte address boundaries.
- Includes supply current from regulator and oscillator source (24.5 MHz high-frequency oscillator, 20 MHz low-power oscillator, or 32.768 kHz RTC oscillator).
- 5. IDD can be estimated for frequencies < 10 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range, then adding an offset of 90 μ A. When using these numbers to estimate I_{DD} for > 10 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 20 MHz, I_{DD} = 4.1 mA (25 MHz 20 MHz) x 0.120 mA/MHz = 3.5 mA assuming the same oscillator setting.
- 6. Idle IDD can be estimated by taking the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 5 MHz, Idle I_{DD} = 2.5 mA (25 MHz 5 MHz) x 0.095 mA/MHz = 0.6 mA.
- 7. ADC0 always-on power excludes internal reference supply current.
- 8. The internal reference is enabled as-needed when operating the ADC in burst mode to save power.
- 9. IREF0 supply current only. Does not include current sourced or sunk from IREF0 output pin.

4.1.5 Power Management Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Idle Mode Wake-up Time	t _{IDLEWK}		2	_	3	SYSCLKs
Suspend Mode Wake-up Time	t _{SUS-}	CLKDIV = 0x00	_	400	_	ns
	PENDWK	Precision Osc.				
		CLKDIV = 0x00	—	1.3	—	μs
		Low Power Osc.				
Sleep Mode Wake-up Time	t _{SLEEPWK}		_	2	_	μs

Table 4.5. Power Management Timing

4.1.6 Internal Oscillators

Table 4.6. Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
High Frequency Oscillator 0 (24.5 MHz)									
Oscillator Frequency	f _{HFOSC0}	Full Temperature and Supply Range	24	24.5	25	MHz			
Low Power Oscillator (20 MHz)			·						
Oscillator Frequency	f _{LPOSC}	Full Temperature and Supply Range	18	20	22	MHz			
RTC in Self-Oscillate Mode									
Oscillator Frequency	f _{LFOSC}	Bias Off	_	12 ± 5	_	kHz			
		Bias On	—	25 ± 10		kHz			

4.1.7 Crystal Oscillator

Table 4.7. Crystal Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Crystal Frequency	f _{XTAL}		0.02	-	25	MHz

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}			10		Bits
Throughput Rate	f _S		_	_	300	ksps
Tracking Time	t _{TRK}		1.5	_	_	μs
Power-On Time	t _{PWR}		1.5	_	_	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode,		_	8.33	MHz
Conversion Time	T _{CNV}		13	_	_	Clocks
Sample/Hold Capacitor	C _{SAR}	Gain = 1		30	_	pF
		Gain = 0.5	_	28	_	pF
Input Pin Capacitance	C _{IN}		_	20	_	pF
Input Mux Impedance	R _{MUX}		_	5	_	kΩ
Voltage Reference Range	V _{REF}		1	_	V _{DD}	V
Input Voltage Range ¹	V _{IN}	Gain = 1	0	_	V _{REF}	V
		Gain = 0.5	0	_	2 x V _{REF}	V
Power Supply Rejection Ratio	PSRR _{ADC}	Internal High Speed VREF	_	67	_	dB
		External VREF	_	74	_	dB
DC Performance			I	1		
Integral Nonlinearity	INL		_	±0.5	±1	LSB
Differential Nonlinearity (Guaran- teed Monotonic)	DNL		_	±0.5	±1	LSB
Offset Error	E _{OFF}	VREF = 1.65 V	-2	0	2	LSB
Offset Temperature Coefficient	TC _{OFF}			0.004	_	LSB/°C
Slope Error	E _M			±0.06	±0.24	%
Dynamic Performance 10 kHz Si	ne Wave Inpu	ut 1dB below full scale, Max thr	oughput	1	1	<u> </u>
Signal-to-Noise	SNR		54	58	_	dB
Signal-to-Noise Plus Distortion	SNDR		54	58	_	dB
Total Harmonic Distortion (Up to 5th Harmonic)	THD		_	-73	-	dB
Spurious-Free Dynamic Range	SFDR		_	75	_	dB

1. Absolute input pin voltage is limited by the $V_{\mbox{DD}}$ supply.

4.1.10 Voltage References

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Internal Fast Settling Reference			1			
Output Voltage	V _{REFFS}		1.60	1.65	1.70	V
Temperature Coefficient	TC _{REFFS}		_	50	_	ppm/°C
Turn-on Time	t _{VREFFS}		—		1.5	μs
Power Supply Rejection	PSRR _{REF} FS		—	400		ppm/V
On-chip Precision Reference			1		1	1
Output Voltage	V _{REFP}		1.645	1.68	1.715	V
Turn-on Time, settling to 0.5 LSB	t _{VREFP}	4.7 μF tantalum + 0.1 μF ceramic bypass on VREF pin	_	15		ms
		0.1 µF ceramic bypass on VREF pin	_	300		μs
		No bypass on VREF pin	_	25	_	μs
Load Regulation	LR _{VREFP}	Load = 0 to 200 µA to GND	—	400	_	μV / μΑ
Short-circuit current	ISC _{VREFP}		_	3.5		mA
Power Supply Rejection	PSRR _{VRE} FP		_	140		ppm/V
External Reference	1	1	1	1	1	
Input Voltage	V _{EXTREF}		1		V _{DD}	V
Input Current	I _{EXTREF}	Sample Rate = 300 ksps; VREF = 3.0 V	_	5.25		μA

Table 4.10. Voltage References

4.1.11 Temperature Sensor

Table 4.11. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Offset	V _{OFF}	T _A = 0 °C		940	—	mV
Offset Error ¹	E _{OFF}	T _A = 0 °C	_	18	_	mV
Slope	М		_	3.40	_	mV/°C
Slope Error ¹	E _M		_	40	—	µV/°C
Linearity			_	±1	_	°C
Turn-on Time	t _{PWR}		_	1.8	—	μs
Note: 1. Represents one star	dard doviation from th		I	1	1	1

ents one standard deviation from the mean.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-1.5	_	mV
Mode 3 (CPMD = 11)		CPHYN = 01	—	-4	_	mV
		CPHYN = 10	—	-8	_	mV
		CPHYN = 11	_	-16	_	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	—	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}		—	12	-	pF
Common-Mode Rejection Ratio	CMRR _{CP}		—	70	-	dB
Power Supply Rejection Ratio	PSRR _{CP}		—	72	-	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	-	μV/°C

4.1.13 Programmable Current Reference (IREF0)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Static Performance					-	
Resolution	N _{bits}			6		bits
Output Compliance Range	V _{IOUT}	Low Power Mode, Source	0	_	V _{DD} – 0.4	V
		High Current Mode, Source	0	_	V _{DD} – 0.8	V
		Low Power Mode, Sink	0.3	_	V _{DD}	V
		High Current Mode, Sink	0.8	_	V _{DD}	V
Integral Nonlinearity	INL			<±0.2	±1.0	LSB
Differential Nonlinearity	DNL			<±0.2	±1.0	LSB
Offset Error	E _{OFF}		_	<±0.1	±0.5	LSB
Full Scale Error	E _{FS}	Low Power Mode, Source		_	±5	%
		High Current Mode, Source	_	_	±6	%
		Low Power Mode, Sink	_	_	±8	%
		High Current Mode, Sink	_	_	±8	%
Absolute Current Error	E _{ABS}	Low Power Mode Sourcing 20 µA	_	<±1	±3	%
Dynamic Performance					1	
Output Settling Time to 1/2 LSB	t _{SETTLE}			300	—	ns
Startup Time	t _{PWR}			1	_	μs

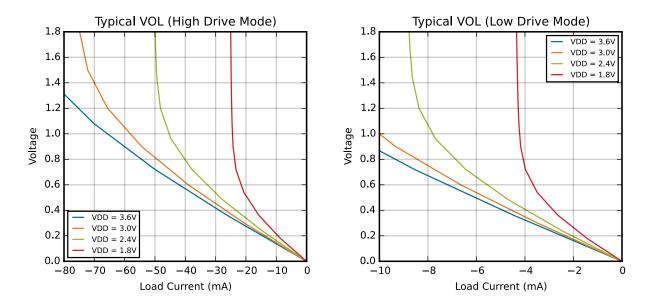


Figure 4.3. Typical V_{OL} Curves

5.3 Other Connections

Other components or connections may be required to meet the system-level requirements. Application note, "AN203: 8-bit MCU Printed Circuit Board Design Notes", contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/8bit-appnotes).

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
5	N/C	No Connection			
6	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
7	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
8	P2.6	Multifunction I/O	Yes	EMIF_WRb	ADC0.22
					CMP0P.11
					CMP1P.11
9	XTAL4	RTC Crystal			XTAL4
10	XTAL3	RTC Crystal			XTAL3
11	P2.5	Multifunction I/O	Yes	EMIF_RDb	ADC0.21
					CMP0N.10
					CMP1N.10
12	P2.4	Multifunction I/O	Yes	EMIF_ALE	ADC0.20
					CMP0P.10
					CMP1P.10
13	P2.3	Multifunction I/O	Yes	EMIF_A11	ADC0.19
					CMP0N.9
					CMP1N.9
14	P2.2	Multifunction I/O	Yes	EMIF_A10	ADC0.18
					CMP0P.9
					CMP1P.9
15	P2.1	Multifunction I/O	Yes	EMIF_A9	ADC0.17
					CMP0N.8
					CMP1N.8
16	P2.0	Multifunction I/O	Yes	EMIF_A8	ADC0.16
					CMP0P.8
					CMP1P.8
17	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.15
				EMIF_AD7	CMP0N.7
					CMP1N.7
18	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.14
				EMIF_AD6	CMP0P.7
					CMP1P.7

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
19	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				EMIF_AD5	CMP0N.6
					CMP1N.6
20	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
				EMIF_AD4	CMP0P.6
					CMP1P.6
21	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
				SPI1_NSS	CMP0N.5
				EMIF_AD3	CMP1N.5
22	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				SPI1_MOSI	CMP0P.5
				EMIF_AD2	CMP1P.5
23	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				SPI1_MISO	CMP0N.4
				EMIF_AD1	CMP1N.4
24	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
				SPI1_SCK	CMP0P.4
				EMIF_AD0	CMP1P.4
25	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	IREF0
				INT1.7	CMP0N.3
					CMP1N.3
26	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.3
				INT0.6	CMP1P.3
				INT1.6	
27	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0N.2
				INT1.5	CMP1N.2
28	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.2
				INT1.4	CMP1P.2
29	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	XTAL2
				INT0.3	CMP0N.1
				INT1.3	CMP1N.1

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
6	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
7	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
8	XTAL4	RTC Crystal			XTAL4
9	XTAL3	RTC Crystal			XTAL3
10	P1.6	Multifunction I/O	Yes		ADC0.14
					CMP0P.7
					CMP1P.7
11	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
					CMP0N.6
					CMP1N.6
12	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CMP0P.6
					CMP1P.6
13	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
				SPI1_NSS	CMP0N.5
					CMP1N.5
14	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				SPI1_MOSI	CMP0P.5
					CMP1P.5
15	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				SPI1_MISO	CMP0N.4
					CMP1N.4
16	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
				SPI1_SCK	CMP0P.4
					CMP1P.4
17	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	IREF0
				INT1.7	CMP0N.3
					CMP1N.3
18	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.3
				INT0.6	CMP1P.3
				INT1.6	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
8	P2.6	Multifunction I/O	Yes	EMIF_WRb	ADC0.22
					CMP0P.11
					CMP1P.11
9	XTAL4	RTC Crystal			XTAL4
10	XTAL3	RTC Crystal			XTAL3
11	P2.5	Multifunction I/O	Yes	EMIF_RDb	ADC0.21
					CMP0N.10
					CMP1N.10
12	P2.4	Multifunction I/O	Yes	EMIF_ALE	ADC0.20
					CMP0P.10
					CMP1P.10
13	P2.3	Multifunction I/O	Yes	EMIF_A11	ADC0.19
					CMP0N.9
					CMP1N.9
14	P2.2	Multifunction I/O	Yes	EMIF_A10	ADC0.18
					CMP0P.9
					CMP1P.9
15	P2.1	Multifunction I/O	Yes	EMIF_A9	ADC0.17
					CMP0N.8
					CMP1N.8
16	P2.0	Multifunction I/O	Yes	EMIF_A8	ADC0.16
					CMP0P.8
					CMP1P.8
17	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.15
				EMIF_AD7	CMP0N.7
					CMP1N.7
18	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.14
				EMIF_AD6	CMP0P.7
					CMP1P.7
19	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				EMIF_AD5	CMP0N.6
					CMP1N.6
20	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
				EMIF_AD4	CMP0P.6
					CMP1P.6

7. QFN32 Package Specifications

7.1 QFN32 Package Dimensions

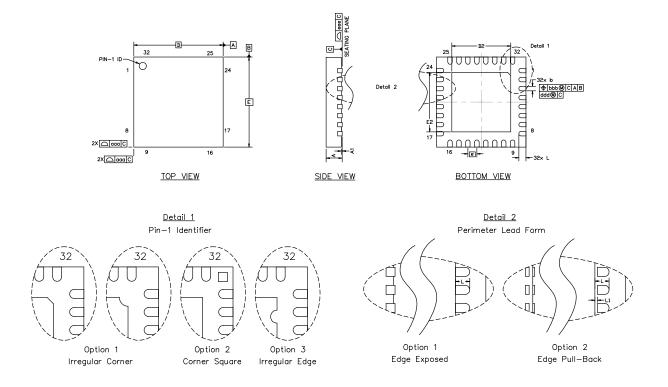


Figure 7.1. QFN32 Package Drawing

Table 7.1. QFN32 Package Dimensions

Dimension	Min	Тур	Мах		
A	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
b	0.18	0.25	0.30		
D		5.00 BSC			
D2	3.20	3.30	3.40		
е	0.50 BSC				
E		5.00 BSC			
E2	3.20	3.30	3.40		
L	0.30	0.40	0.50		
L1	0.00	—	0.15		
ааа	—	_	0.15		

Dimension	Min	Тур	Мах
bbb	—	—	0.10
ddd	—	—	0.05
eee	—	—	0.08

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220, variation VHHD except for custom features D2, E2, and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Figure 7.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Тур	Мах
bbb	—	_	0.10
ddd	_	_	0.05
eee	_		0.08
Z	_	0.24	_
Y	—	0.18	_

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220, variation WGGD except for custom features D2, E2, Z, Y, and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Max

Note:

Dimension

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 2 x 2 array of 1.10 mm x 1.10 mm openings on 1.30 mm pitch should be used for the center ground pad.
- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.3 QFN24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Тур	Мах
bbb		0.20	
ссс	0.10		
ddd		0.20	
theta	0°	3.5°	7°
Noto			

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS-026, variation BBA.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Supp

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com