

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 23x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-QFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8sb20f64g-b-qfp32r

1. Feature List

The EFM8SB2 highlighted features are listed below.

- · Core:
 - · Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - · 70% of instructions execute in 1-2 clock cycles
 - · 25 MHz maximum operating frequency
- · Memory:
 - Up to 64 kB flash memory, in-system re-programmable from firmware.
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- · Power:
 - · Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 24 total multifunction I/O pins:
 - · All pins 5 V tolerant under bias
 - · Flexible peripheral crossbar for peripheral routing
 - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 20 MHz low power oscillator with ±10% accuracy
 - Internal 24.5 MHz precision oscillator with ±2% accuracy
 - · External RTC 32 kHz crystal
 - External crystal, RC, C, and CMOS clock options

- Timers/Counters and PWM:
 - 32-bit Real Time Clock (RTC)
 - 6-channel programmable counter array (PCA) supporting PWM, capture/compare, and frequency output modes with watchdog timer function
 - · 4 x 16-bit general-purpose timers
- · Communications and Digital Peripherals:
 - UART
 - 2 x SPI™ Master / Slave
 - SMBus™/I2C™ Master / Slave
 - · External Memory Interface (EMIF)
 - 16-bit/32-bit CRC unit, supporting automatic CRC of flash at 1024-byte boundaries
- · Analog:
 - Programmable current reference (IREF0)
 - 10-Bit Analog-to-Digital Converter (ADC0)
 - · 2 x Low-current analog comparators
- · On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - · Four hardware breakpoints, single-stepping
- · Pre-loaded UART bootloader
- Temperature range -40 to 85 °C
- Single power supply 1.8 to 3.6 V
- · QFP32, QFN32, and QFN24 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8SB2 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Each device is specified for 1.8 to 3.6 V operation and is available in 24-pin QFN, 32-pin QFN, or 32-pin QFP packages. All package options are lead-free and RoHS compliant.

3.5 Counters/Timers and PWM

Real Time Clock (RTC0)

The RTC is an ultra low power, 36 hour 32-bit independent time-keeping Real Time Clock with alarm. The RTC has a dedicated 32 kHz oscillator. No external resistor or loading capacitors are required, and a missing clock detector features alerts the system if the external crystal fails. The on-chip loading capacitors are programmable to 16 discrete levels allowing compatibility with a wide range of crystals.

The RTC module includes the following features:

- Up to 36 hours (32-bit) of independent time keeping.
- Support for external 32 kHz crystal or internal self-oscillate mode.
- Internal crystal loading capacitors with 16 levels.
- Operation in the lowest power mode and across the full supported voltage range.
- Alarm and oscillator failure events to wake from the lowest power mode or reset the device.

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- · 16-bit time base.
- Programmable clock divisor and clock source selection.
- · Up to six independently-configurable channels
- 8, 9, 10, 11 and 16-bit PWM modes (edge-aligned operation).
- · Frequency output mode.
- · Capture on rising, falling or any edge.
- · Compare function for arbitrary waveform generation.
- Software timer (internal compare) mode.
- · Integrated watchdog timer.

Timers (Timer 0, Timer 1, Timer 2, and Timer 3)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- · 8-bit auto-reload counter/timer mode
- · 13-bit counter/timer mode
- · 16-bit counter/timer mode
- · Dual 8-bit counter/timer mode (Timer 0)

Timer 2 and Timer 3 are 16-bit timers including the following features:

- Clock sources include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8.
- 16-bit auto-reload timer mode
- · Dual 8-bit auto-reload timer mode
- Comparator 0 or RTC0 capture (Timer 2)
- · Comparator 1 or EXTCLK/8 capture (Timer 3)

10-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 10- and 8-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- · Up to 22 external inputs.
- · Single-ended 10-bit mode.
- · Supports an output update rate of 300 ksps samples per second.
- · Operation in low power modes at lower conversion speeds.
- · Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer sources.
- Output data window comparator allows automatic range checking.
- Support for burst mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on settling and tracking time.
- · Conversion complete and window compare interrupts supported.
- · Flexible output data formatting.
- Includes an internal 1.65 V fast-settling reference and support for external reference.
- Integrated temperature sensor.

Low Current Comparators (CMP0, CMP1)

Analog comparators are used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.

The comparator module includes the following features:

- · Up to 12 external positive inputs.
- · Up to 11 external negative inputs.
- · Additional input options:
 - · Capacitive Sense Comparator output.
 - VDD.
 - · VDD divided by 2.
 - · Internal connection to LDO output.
 - · Direct connection to GND.
- · Synchronous and asynchronous outputs can be routed to pins via crossbar.
- Programmable hysteresis between 0 and +/-20 mV.
- · Programmable response time.
- · Interrupts generated on rising, falling, or both edges.

4.1.2 Power Consumption

Table 4.2. Power Consumption

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Digital Supply Current						
Normal Mode supply current - Full speed with code executing from	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	_	4.1	5.0	mA
flash ^{3,4,5}		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz	_	3.5	_	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	_	90	_	μА
Normal Mode supply current frequency sensitivity ^{1, 3, 5}	I _{DDFREQ}	V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} < 14 MHz	_	226	_	µA/MHz
		V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} > 14 MHz	_	120	_	µA/MHz
Idle Mode supply current - Core halted with peripherals running ⁴ , ⁶	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	_	2.5	3.0	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz	_	1.8	_	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	_	84	_	μА
Idle Mode Supply Current Frequency Sensitivity ^{1,6}	I _{DDFREQ}	V _{DD} = 1.8–3.6 V, T = 25 °C	_	95	_	µA/MHz
Suspend Mode Supply Current	I _{DD}	V _{DD} = 1.8–3.6 V	_	77	_	μA
Sleep Mode Supply Current with	I _{DD}	1.8 V, T = 25 °C	_	0.60	_	μA
RTC running from 32.768 kHz crystal		3.6 V, T = 25 °C	_	0.85	_	μA
		1.8 V, T = 85 °C	_	1.30	_	μA
		3.6 V, T = 85 °C	_	1.90	_	μA
Sleep Mode Supply Current (RTC	I _{DD}	1.8 V, T = 25 °C	_	0.05	_	μA
off)		3.6 V, T = 25 °C	_	0.12	_	μA
		1.8 V, T = 85 °C	_	0.75	_	μA
		3.6 V, T = 85 °C	_	1.20	_	μA
V _{DD} Monitor Supply Current	I _{VMON}		_	7	_	μA
Oscillator Supply Current	I _{HFOSC0}	25 °C	_	300	_	μA
ADC0 Always-on Power Supply	I _{ADC}	300 ksps	_	800	_	μA
Current ⁷		V _{DD} = 3.0 V				
		Tracking	_	680	_	μA
		V _{DD} = 3.0 V				

4.1.8 External Clock Input

Table 4.8. External Clock Input

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Input CMOS Clock	f _{CMOS}		0	_	25	MHz
Frequency (at EXTCLK pin)						
External Input CMOS Clock High Time	t _{CMOSH}		18	_	_	ns
External Input CMOS Clock Low Time	t _{CMOSL}		18	_	_	ns

4.1.9 ADC

Table 4.9. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}			10		Bits
Throughput Rate	f _S		_	_	300	ksps
Tracking Time	t _{TRK}		1.5	_	_	μs
Power-On Time	t _{PWR}		1.5	_	_	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode,	_	_	8.33	MHz
Conversion Time	T _{CNV}		13	_	_	Clocks
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	30	_	pF
		Gain = 0.5	_	28	_	pF
Input Pin Capacitance	C _{IN}		_	20	_	pF
Input Mux Impedance	R _{MUX}		_	5	_	kΩ
Voltage Reference Range	V _{REF}		1	_	V _{DD}	V
Input Voltage Range ¹	V _{IN}	Gain = 1	0	_	V _{REF}	V
		Gain = 0.5	0	_	2 x V _{REF}	V
Power Supply Rejection Ratio	PSRR _{ADC}	Internal High Speed VREF	_	67	_	dB
		External VREF	_	74	_	dB
DC Performance	1			1	1	
Integral Nonlinearity	INL		_	±0.5	±1	LSB
Differential Nonlinearity (Guaranteed Monotonic)	DNL		_	±0.5	±1	LSB
Offset Error	E _{OFF}	VREF = 1.65 V	-2	0	2	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.004	_	LSB/°C
Slope Error	E _M		_	±0.06	±0.24	%
Dynamic Performance 10 kHz Si	ne Wave Inp	ut 1dB below full scale, Max thro	oughput			
Signal-to-Noise	SNR		54	58	_	dB
Signal-to-Noise Plus Distortion	SNDR		54	58	_	dB
Total Harmonic Distortion (Up to 5th Harmonic)	THD		_	-73	_	dB
Spurious-Free Dynamic Range	SFDR		_	75	_	dB

Note:

1. Absolute input pin voltage is limited by the V_{DD} supply.

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.16 Absolute Maximum Ratings on page 23 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.16. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit		
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C		
Storage Temperature	T _{STG}		-65	150	°C		
Voltage on V _{DD}	V _{DD}		GND-0.3	4.0	V		
Voltage on I/O pins or RSTb	V _{IN}	V _{DD} > 2.2 V	GND-0.3	5.8	V		
		V _{DD} <= 2.2 V	GND-0.3	V _{DD} + 3.6	V		
Total Current Sunk into Supply Pin	I _{VDD}		_	400	mA		
Total Current Sourced out of Ground Pin	I _{GND}		400	_	mA		
Current Sourced or Sunk by Any I/O Pin or RSTb	I _{IO}		-100	100	mA		
Maximum Total Current through all Port Pins	Іютот		_	200	mA		
Operating Junction Temperature	TJ		-40	105	°C		
Exposure to maximum rating conditions	Exposure to maximum rating conditions for extended periods may affect device reliability.						

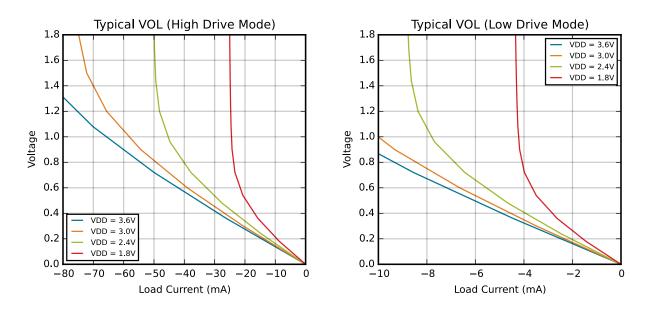


Figure 4.3. Typical V_{OL} Curves

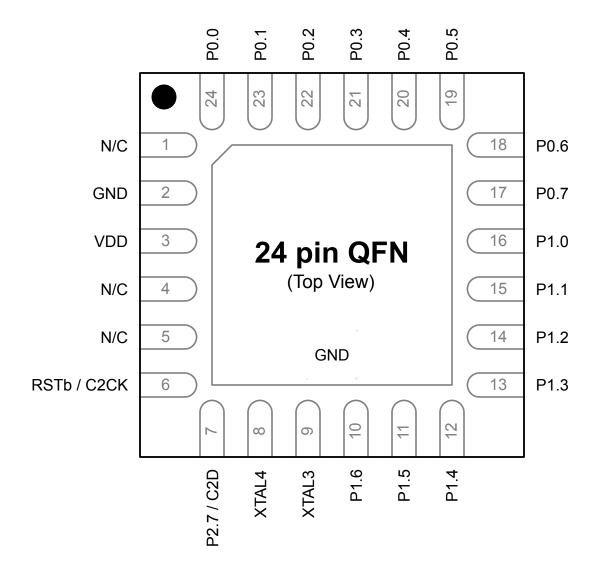


Figure 6.2. EFM8SB2x-QFN24 Pinout

Table 6.2. Pin Definitions for EFM8SB2x-QFN24

Pin	Pin Name	Description	Crossbar Capability		Analog Functions
Number				Functions	
1	N/C	No Connection			
2	GND	Ground			
3	VDD	Supply Power Input			
4	N/C	No Connection			
5	N/C	No Connection			

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
6	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
7	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
8	XTAL4	RTC Crystal			XTAL4
9	XTAL3	RTC Crystal			XTAL3
10	P1.6	Multifunction I/O	Yes		ADC0.14
					CMP0P.7
					CMP1P.7
11	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
					CMP0N.6
					CMP1N.6
12	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CMP0P.6
					CMP1P.6
13	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
				SPI1_NSS	CMP0N.5
					CMP1N.5
14	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				SPI1_MOSI	CMP0P.5
					CMP1P.5
15	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				SPI1_MISO	CMP0N.4
					CMP1N.4
16	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
				SPI1_SCK	CMP0P.4
					CMP1P.4
17	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	IREF0
				INT1.7	CMP0N.3
					CMP1N.3
18	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.3
				INT0.6	CMP1P.3
				INT1.6	

6.3 EFM8SB2x-QFP32 Pin Definitions

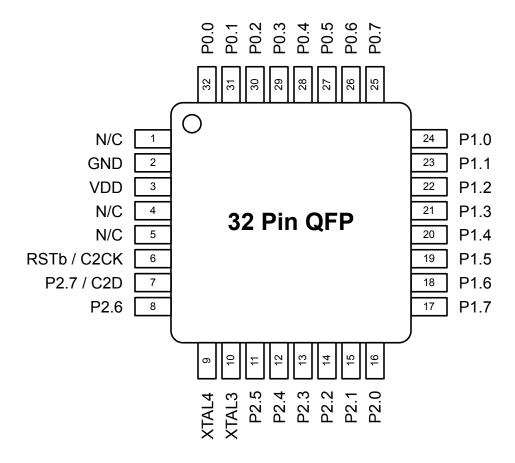


Figure 6.3. EFM8SB2x-QFP32 Pinout

Table 6.3. Pin Definitions for EFM8SB2x-QFP32

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
1	N/C	No Connection			
2	GND	Ground			
3	VDD	Supply Power Input			
4	N/C	No Connection			
5	N/C	No Connection			
6	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
7	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			

7. QFN32 Package Specifications

7.1 QFN32 Package Dimensions

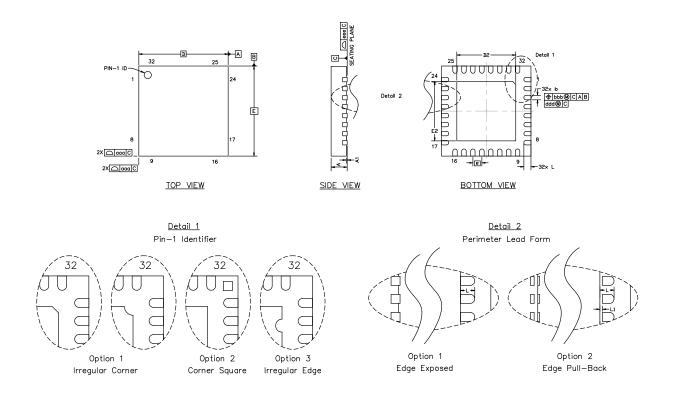


Figure 7.1. QFN32 Package Drawing

Table 7.1. QFN32 Package Dimensions

Dimension	Min	Тур	Max	
А	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
b	0.18	0.25	0.30	
D	5.00 BSC			
D2	3.20	3.30	3.40	
е		0.50 BSC		
E		5.00 BSC		
E2	3.20	3.30	3.40	
L	0.30	0.40	0.50	
L1	0.00	_	0.15	
aaa	_	_	0.15	

Dimension	Min	Тур	Max
bbb	_	_	0.10
ddd	_	_	0.05
eee	_	_	0.08

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC Solid State Outline MO-220, variation VHHD except for custom features D2, E2, and L which are toleranced per supplier designation.
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

7.2 QFN32 PCB Land Pattern

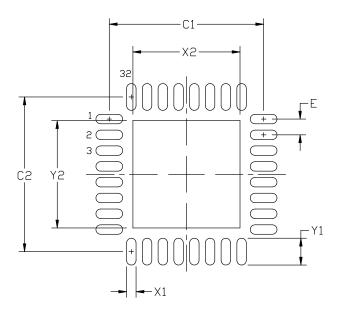


Figure 7.2. QFN32 PCB Land Pattern Drawing

Table 7.2. QFN32 PCB Land Pattern Dimensions

Dimension	Min	Max	
C1	4.80	4.90	
C2	4.80	4.90	
E	0.50 BSC		
X1	0.20	0.30	
X2	3.20	3.40	
Y1	0.75	0.85	
Y2	3.20	3.40	

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu m$ minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 3 x 3 array of 1.0 mm x 1.0 mm openings on a 1.2 mm pitch should be used for the center pad.
- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

8. QFN24 Package Specifications

8.1 QFN24 Package Dimensions

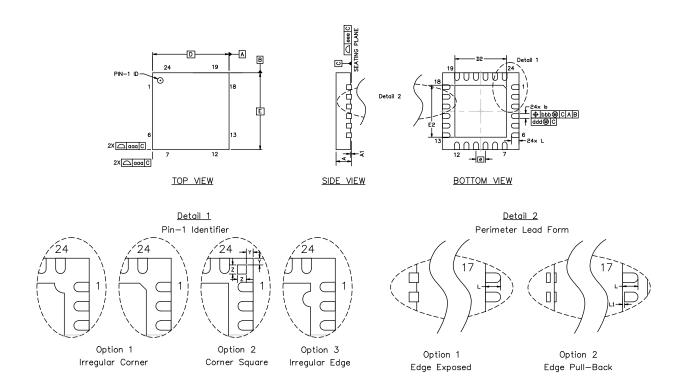


Figure 8.1. QFN24 Package Drawing

Table 8.1. QFN24 Package Dimensions

Dimension	Min	Тур	Max	
A	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
b	0.18	0.25	0.30	
D	4.00 BSC			
D2	2.55	2.70	2.80	
е		0.50 BSC		
Е		4.00 BSC		
E2	2.55	2.70	2.80	
L	0.30	0.40	0.50	
L1	0.00	_	0.15	
ааа	_	_	0.15	

9. QFP32 Package Specifications

9.1 QFP32 Package Dimensions

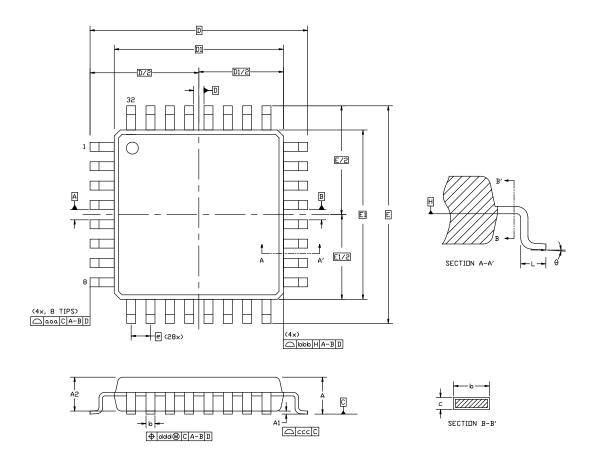


Figure 9.1. QFP32 Package Drawing

Table 9.1. QFP32 Package Dimensions

Dimension	Min	Тур	Max									
A	_	_	1.60									
A1	0.05	_	0.15									
A2	1.35	1.40	1.45									
b	0.30	0.37	0.45									
D	9.00 BSC											
D1	7.00 BSC											
е	0.80 BSC											
Е	9.00 BSC											
E1	7.00 BSC											
L	0.45	0.60	0.75									
aaa	0.20											

10. Revision History

10.1 Revision 1.2

Updated ordering part numbers to revision B.

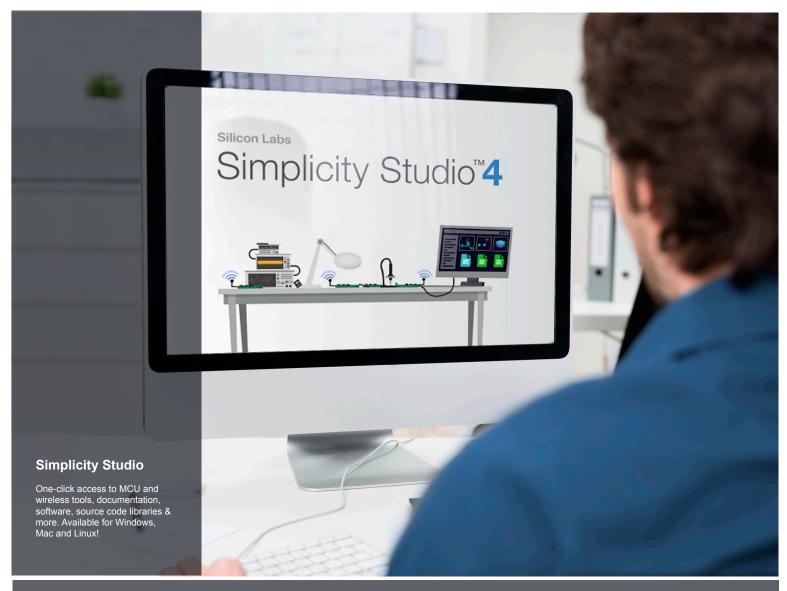
Added Reset Delay from POR specification.

Added I/O 5 V tolerance to 1. Feature List.

Added information on the bootloader to 3.10 Bootloader.

Added a Debug Typical Connection Diagram to 5. Typical Connection Diagrams.

Added reference to the Reference Manual in 3.1 Introduction.


10.2 Revision 1.1

Initial release.

Table of Contents

1.	Feature List	. 1
2.	Ordering Information	. 2
3.	System Overview	. 4
	3.1 Introduction	. 4
	3.2 Power	. 5
	3.3 I/O	. 5
	3.4 Clocking	
	3.5 Counters/Timers and PWM	
	3.6 Communications and Other Digital Peripherals	
	3.7 Analog	
	3.8 Reset Sources	
	3.9 Debugging	
	3.10 Bootloader	
4.	Electrical Specifications	
	4.1 Electrical Characteristics	
	4.1.1 Recommended Operating Conditions	
	4.1.2 Power Consumption	
	4.1.3 Reset and Supply Monitor	
	4.1.4 Flash Memory	.15
	4.1.5 Power Management Timing	.16
	4.1.6 Internal Oscillators.	.16
	4.1.7 Crystal Oscillator	.16
	4.1.8 External Clock Input	.17
	4.1.9 ADC	.18
	4.1.10 Voltage References	.19
	4.1.11 Temperature Sensor	.19
	4.1.12 Comparators	.20
	4.1.13 Programmable Current Reference (IREF0)	.21
	4.1.14 Port I/O	.22
	4.2 Thermal Conditions	.22
	4.3 Absolute Maximum Ratings	.23
	4.4 Typical Performance Curves	.24
5.	Гуріcal Connection Diagrams	26
	5.1 Power	
	5.2 Debug	
	5.3 Other Connections	
c		
ь.	Pin Definitions	
	6.1 EFM8SB2x-QFN32 Pin Definitions	.28

	6.2 EFM8SB2x-QFN24 Pin Definitions	3 .											.32
	6.3 EFM8SB2x-QFP32 Pin Definitions	.											.35
7.	QFN32 Package Specifications												39
	7.1 QFN32 Package Dimensions												.39
	7.2 QFN32 PCB Land Pattern												.41
	7.3 QFN32 Package Marking												.42
8.	QFN24 Package Specifications												43
	8.1 QFN24 Package Dimensions												.43
	8.2 QFN24 PCB Land Pattern												.45
	8.3 QFN24 Package Marking												.46
9.	QFP32 Package Specifications												47
	9.1 QFP32 Package Dimensions												.47
	9.2 QFP32 PCB Land Pattern												.49
	9.3 QFP32 Package Marking												.50
10	. Revision History												51
	10.1 Revision 1.2												.51
	10.2 Revision 1.1												.51
Та	ble of Contents												52

loT Portfolio www.silabs.com/loT

SW/HW www.silabs.com/simplicity

Quality www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, Silabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZRadio®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701