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Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8 Ethernet: Enhanced Three-Speed Ethernet (eTSEC), 
MII Management

This section provides the AC and DC electrical characteristics for enhanced three-speed and MII 
management.

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) 
(10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI/RMII Electrical 
Characteristics

The electrical characteristics specified here apply to all gigabit media independent interface (GMII), media 
independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface 
(RGMII), reduced ten-bit interface (RTBI), and reduced media independent interface (RMII) signals 
except management data input/output (MDIO) and management data clock (MDC). The RGMII and RTBI 
interfaces are defined for 2.5 V, while the GMII and TBI interfaces can be operated at 3.3 or 2.5 V. Whether 
the GMII or TBI interface is operated at 3.3 or 2.5 V, the timing is compatible with IEEE 802.3. The 
RGMII and RTBI interfaces follow the Reduced Gigabit Media-Independent Interface (RGMII) 
Specification Version 1.3 (12/10/2000). The RMII interface follows the RMII Consortium RMII 
Specification Version 1.2 (3/20/1998). The electrical characteristics for MDIO and MDC are specified in 
Section 9, “Ethernet Management Interface Electrical Characteristics.”

8.1.1 eTSEC DC Electrical Characteristics
All GMII, MII, TBI, RGMII, RMII and RTBI drivers and receivers comply with the DC parametric 
attributes specified in Table 24 and Table 25. The potential applied to the input of a GMII, MII, TBI, 
RGMII, RMII or RTBI receiver may exceed the potential of the receiver’s power supply (that is, a GMII 
driver powered from a 3.6-V supply driving VOH into a GMII receiver powered from a 2.5-V supply). 
Tolerance for dissimilar GMII driver and receiver supply potentials is implicit in these specifications. The 
RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC 
EIA/JESD8-5.

Table 24. GMII, MII, RMII, TBI and FIFO DC Electrical Characteristics

Parameter Symbol Min Max Unit Notes

Supply voltage 3.3 V LVDD
TVDD

3.135 3.465 V 1, 2 

Output high voltage
(LVDD/TVDD = Min, IOH = –4.0 mA)

VOH 2.40 — V —

Output low voltage
(LVDD/TVDD = Min, IOL = 4.0 mA)

VOL — 0.50 V —

Input high voltage VIH 2.0 — V —

Input low voltage VIL — 0.90 V —

Input high current
(VIN

 = LVDD, VIN = TVDD)
IIH — 40 μA 1, 2,3 
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8.2.4 TBI AC Timing Specifications
This section describes the TBI transmit and receive AC timing specifications.

8.2.4.1 TBI Transmit AC Timing Specifications

Table 32 provides the TBI transmit AC timing specifications.

Figure 16 shows the TBI transmit AC timing diagram.

Figure 16. TBI Transmit AC Timing Diagram

Table 32. TBI Transmit AC Timing Specifications
At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

TCG[9:0] setup time GTX_CLK going high tTTKHDV 2.0 — — ns

TCG[9:0] hold time from GTX_CLK going high tTTKHDX 1.0 — — ns

GTX_CLK rise time (20%–80%) tTTXR
2 — — 1.0 ns

GTX_CLK fall time (80%–20%) tTTXF
2 — — 1.0 ns

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state )(reference)(state) 

for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTTKHDV symbolizes the TBI 
transmit timing (TT) with respect to the time from tTTX (K) going high (H) until the referenced data signals (D) reach the valid 
state (V) or setup time. Also, tTTKHDX symbolizes the TBI transmit timing (TT) with respect to the time from tTTX (K) going high 
(H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference 
symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of 
tTTX represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: 
R (rise) or F (fall).

2. Guaranteed by design.

GTX_CLK

TCG[9:0]

tTTXR

tTTX

tTTXH

tTTXR

tTTXF

tTTKHDV

tTTKHDX

tTTXF
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8.2.5 TBI Single-Clock Mode AC Specifications
When the eTSEC is configured for TBI modes, all clocks are supplied from external sources to the relevant 
eTSEC interface. In single-clock TBI mode, when TBICON[CLKSEL] = 1 a 125-MHz TBI receive clock 
is supplied on TSECn_RX_CLK pin (no receive clock is used on TSECn_TX_CLK in this mode, whereas 
for the dual-clock mode this is the PMA1 receive clock). The 125-MHz transmit clock is applied on the 
TSEC_GTX_CLK125 pin in all TBI modes.

A summary of the single-clock TBI mode AC specifications for receive appears in Table 34.

A timing diagram for TBI receive appears in Figure 18.
.

Figure 18. TBI Single-Clock Mode Receive AC Timing Diagram

8.2.6 RGMII and RTBI AC Timing Specifications

Table 35 presents the RGMII and RTBI AC timing specifications.

Table 34. TBI single-clock Mode Receive AC Timing Specification
At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol Min Typ Max Unit

RX_CLK clock period tTRR
1

1 ±100 ppm tolerance on RX_CLK frequency

7.5 8.0 8.5 ns

RX_CLK duty cycle tTRRH/tTRR 40 50 60 %

RX_CLK peak-to-peak jitter tTRRJ — — 250 ps

Rise time RX_CLK (20%–80%) tTRRR — — 1.0 ns

Fall time RX_CLK (80%–20%) tTRRF — — 1.0 ns

RCG[9:0] setup time to RX_CLK rising edge tTRRDVKH 2.0 — — ns

RCG[9:0] hold time to RX_CLK rising edge tTRRDXKH 1.0 — — ns

Table 35. RGMII and RTBI AC Timing Specifications
At recommended operating conditions with L/TVDD of 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

Data to clock output skew (at transmitter) tSKRGT
5 –500 0 500 ps

Data to clock input skew (at receiver) 2 tSKRGT 1.0 — 2.8 ns

tTRR

tTRRH
tTRRF

tTRRR

RX_CLK

RCG[9:0]

valid data

tTRRDXKHtTRRDVKH
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Figure 19 shows the RGMII and RTBI AC timing and multiplexing diagrams.

Figure 19. RGMII and RTBI AC Timing and Multiplexing Diagrams

Clock period duration 3 tRGT
5,6 7.2 8.0 8.8 ns

Duty cycle for 10BASE-T and 100BASE-TX 3, 4 tRGTH/tRGT
5 40 50 60 %

Rise time (20%–80%) tRGTR
5 — — 0.75 ns

Fall time (80%–20%) tRGTF
5 — — 0.75 ns

Notes:
1. Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent 

RGMII and RTBI timing. For example, the subscript of tRGT represents the TBI (T) receive (RX) clock. Note also that the 
notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the 
subscript is skew (SK) followed by the clock that is being skewed (RGT).

2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns 
will be added to the associated clock signal.

3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long 

as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed transitioned 
between.

5. Guaranteed by characterization
6. ±100 ppm tolerance on RX_CLK frequency

Table 35. RGMII and RTBI AC Timing Specifications (continued)
At recommended operating conditions with L/TVDD of 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

GTX_CLK

tRGT
tRGTH

tSKRGT

TX_CTL

TXD[8:5]
TXD[7:4]

TXD[9]
TXERR

TXD[4]
TXEN

TXD[3:0]

(At Transmitter)

TXD[8:5][3:0]
TXD[7:4][3:0]

TX_CLK
(At PHY)

RX_CTL

RXD[8:5]
RXD[7:4]

RXD[9]
RXERR

RXD[4]
RXDV

RXD[3:0]
RXD[8:5][3:0]
RXD[7:4][3:0]

RX_CLK
(At PHY)

tSKRGT

tSKRGT

tSKRGT
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Figure 26 to Figure 31 show the local bus signals.

Figure 26. Local Bus Signals (PLL Enabled)

NOTE

PLL bypass mode is recommended when LBIU frequency is at or below 
83 MHz. When LBIU operates above 83 MHz, LBIU PLL is recommended 
to be enabled.

Table 42 describes the general timing parameters of the local bus interface at OVDD = 3.3 V with PLL 
bypassed.

Table 42. Local Bus Timing Parameters—PLL Bypassed

Parameter Symbol 1 Min Max Unit Notes

Local bus cycle time tLBK 12 — ns 2

Local bus duty cycle tLBKH/tLBK 45 55 % —

Internal launch/capture clock to LCLK delay tLBKHKT 2.3 3.9 ns 8

Input setup to local bus clock (except LGTA/LUPWAIT) tLBIVKH1 5.7 — ns 4, 5

LGTA/LUPWAIT input setup to local bus clock tLBIVKL2 5.6 — ns 4, 5

Input hold from local bus clock (except LGTA/LUPWAIT) tLBIXKH1 –1.8 — ns 4, 5

Output Signals:
LA[27:31]/LBCTL/LBCKE/LOE/

LSDA10/LSDWE/LSDRAS/
LSDCAS/LSDDQM[0:3]

tLBKHOV1

tLBKHOV2

tLBKHOV3

LSYNC_IN

Input Signals:
LAD[0:31]/LDP[0:3]

Output (Data) Signals:
LAD[0:31]/LDP[0:3]

Output (Address) Signal:
LAD[0:31]

LALE

tLBIXKH1
tLBIVKH1

tLBIVKH2

tLBIXKH2

tLBKHOX1

tLBKHOZ1

tLBKHOX2

tLBKHOZ2

Input Signal:
LGTA

tLBOTOT

tLBKHOZ2
tLBKHOX2

tLBKHOV4

LUPWAIT
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Figure 27. Local Bus Signals (PLL Bypass Mode)

NOTE
In PLL bypass mode, LCLK[n] is the inverted version of the internal clock 
with the delay of tLBKHKT. In this mode, signals are launched at the rising edge 
of the internal clock and are captured at falling edge of the internal clock, 
with the exception of the LGTA/LUPWAIT signal, which is captured at the 
rising edge of the internal clock.

Output Signals:
LA[27:31]/LBCTL/LBCKE/LOE/

LSDA10/LSDWE/LSDRAS/
LSDCAS/LSDDQM[0:3]

tLBKLOV2

LCLK[n]

Input Signals:
LAD[0:31]/LDP[0:3]

Output (Data) Signals:
LAD[0:31]/LDP[0:3]

LALE

tLBIXKH1

Input Signal:
LGTA

Output (Address) Signal:
LAD[0:31]

tLBIVKH1

tLBIXKL2

tLBIVKL2

tLBKLOX1

tLBKLOZ2

tLBOTOT

Internal launch/capture clock

tLBKLOX2

tLBKLOV1

tLBKLOV3

tLBKLOZ1

tLBKHKT

tLBKLOV4

LUPWAIT
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Figure 30. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 or 8 (clock ratio of 8 or 16) 
(PLL Enabled)

LSYNC_IN

UPM Mode Input Signal:
LUPWAIT

tLBIXKH2

tLBIVKH2

tLBIVKH1

tLBIXKH1

tLBKHOZ1

T1

T3

UPM Mode Output Signals:
LCS[0:7]/LBS[0:3]/LGPL[0:5]

GPCM Mode Output Signals:
LCS[0:7]/LWE

tLBKHOV1

tLBKHOV1 tLBKHOZ1

T2

T4

Input Signals:
LAD[0:31]/LDP[0:3]

GPCM Mode Input Signal:
LGTA
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Figure 32 provides the AC test load for TDO and the boundary-scan outputs.

Figure 32. AC Test Load for the JTAG Interface

Figure 33 provides the JTAG clock input timing diagram.

Figure 33. JTAG Clock Input Timing Diagram

Output hold times:
Boundary-scan data

TDO
tJTKLDX
tJTKLOX

30
30

—
—

ns
5, 6

JTAG external clock to output high impedance:
Boundary-scan data

TDO
tJTKLDZ
tJTKLOZ

3
3

19
9

ns
5, 6

Notes:
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question. 

The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 32). 
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) 
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG 
device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference 
(K) going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input 
signals (D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, the clock 
reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall 
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
4. Non-JTAG signal input timing with respect to tTCLK.
5. Non-JTAG signal output timing with respect to tTCLK.
6. Guaranteed by design.

Table 44. JTAG AC Timing Specifications (Independent of SYSCLK) 1 (continued)
At recommended operating conditions (see Table 3).

Parameter Symbol 2 Min Max Unit Notes

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

JTAG

tJTKHKL tJTGR

External Clock VMVMVM

tJTG tJTGF

VM = Midpoint Voltage (OVDD/2)
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The Differential Input Voltage (or Swing) of the receiver, VID, is defined as the difference of the 
two complimentary input voltages: VSDn_RX – VSDn_RX. The VID value can be either positive or 
negative.

4. Differential Peak Voltage, VDIFFp
The peak value of the differential transmitter output signal or the differential receiver input signal 
is defined as Differential Peak Voltage, VDIFFp = |A – B| Volts.

5. Differential Peak-to-Peak, VDIFFp-p
Since the differential output signal of the transmitter and the differential input signal of the receiver 
each range from A – B to –(A – B) Volts, the peak-to-peak value of the differential transmitter 
output signal or the differential receiver input signal is defined as Differential Peak-to-Peak 
Voltage, VDIFFp-p = 2*VDIFFp = 2 * |(A – B)| Volts, which is twice of differential swing in 
amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage 
can also be calculated as VTX-DIFFp-p = 2*|VOD|.

6. Differential Waveform
The differential waveform is constructed by subtracting the inverting signal (SDn_TX, for 
example) from the non-inverting signal (SDn_TX, for example) within a differential pair. There is 
only one signal trace curve in a differential waveform. The voltage represented in the differential 
waveform is not referenced to ground. Refer to Figure 47 as an example for differential waveform.

7. Common Mode Voltage, Vcm
The Common Mode Voltage is equal to one half of the sum of the voltages between each conductor 
of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out = 
(VSDn_TX + VSDn_TX)/2 = (A + B) / 2, which is the arithmetic mean of the two complimentary 
output voltages within a differential pair. In a system, the common mode voltage may often differ 
from one component’s output to the other’s input. Sometimes, it may be even different between the 
receiver input and driver output circuits within the same component. It is also referred as the DC 
offset in some occasion.

Figure 38. Differential Voltage Definitions for Transmitter or Receiver

Differential Swing, VID or VOD = A - B

A Volts

B Volts

SDn_TX or 
SDn_RX

SDn_TX or 
SDn_RX

Differential Peak Voltage, VDIFFp = |A - B|

Differential Peak-Peak Voltage, VDIFFpp = 2*VDIFFp (not shown)

Vcm = (A + B) / 2



MPC8641 and MPC8641D Integrated Host Processor Hardware Specifications, Rev. 3

72 Freescale Semiconductor
 

PCI Express

TTX-IDLE-SET-TO-IDLE Maximum time to 
transition to a 
valid Electrical 
idle after sending 
an Electrical Idle 
ordered set

— — 20 UI After sending an Electrical Idle ordered set, the 
Transmitter must meet all Electrical Idle Specifications 
within this time. This is considered a debounce time 
for the Transmitter to meet Electrical Idle after 
transitioning from L0.

TTX-IDLE-TO-DIFF-DATA Maximum time to 
transition to valid 
TX specifications 
after leaving an 
Electrical idle 
condition

— — 20 UI Maximum time to meet all TX specifications when 
transitioning from Electrical Idle to sending differential 
data. This is considered a debounce time for the TX to 
meet all TX specifications after leaving Electrical Idle

RLTX-DIFF Differential 
Return Loss

12 — — dB Measured over 50 MHz to 1.25 GHz. See Note 4

RLTX-CM Common Mode 
Return Loss

6 — — dB Measured over 50 MHz to 1.25 GHz. See Note 4

ZTX-DIFF-DC DC Differential 
TX Impedance

80 100 120 Ω TX DC Differential mode Low Impedance

ZTX-DC Transmitter DC 
Impedance

40 — — Ω Required TX D+ as well as D- DC Impedance during 
all states

LTX-SKEW Lane-to-Lane 
Output Skew

— — 500 + 
2 UI

ps Static skew between any two Transmitter Lanes within 
a single Link

CTX AC Coupling 
Capacitor

75 — — nF All Transmitters shall be AC coupled. The AC coupling 
is required either within the media or within the 
transmitting component itself. See Note 8.

Tcrosslink Crosslink 
Random 
Timeout

0 — — ms This random timeout helps resolve conflicts in 
crosslink configuration by eventually resulting in only 
one Downstream and one Upstream Port. See Note 7.

Notes:
1. No test load is necessarily associated with this value.
2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 52 and measured over 

any 250 consecutive TX UIs. (Also refer to the transmitter compliance eye diagram shown in Figure 50)
3. A TTX-EYE = 0.70 UI provides for a total sum of deterministic and random jitter budget of TTX-JITTER-MAX = 0.30 UI for the 

Transmitter collected over any 250 consecutive TX UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total 
TX jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. 
The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed 
to the averaged time value.

4. The Transmitter input impedance shall result in a differential return loss greater than or equal to 12 dB and a common mode 
return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement 
applies to all valid input levels. The reference impedance for return loss measurements is 50 Ω to ground for both the D+ and 
D- line (that is, as measured by a Vector Network Analyzer with 50 ohm probes—see Figure 52). Note that the series 
capacitors CTX is optional for the return loss measurement. 

5. Measured between 20-80% at transmitter package pins into a test load as shown in Figure 52 for both VTX-D+ and VTX-D-. 
6. See Section 4.3.1.8 of the PCI Express Base Specifications Rev 1.0a
7. See Section 4.2.6.3 of the PCI Express Base Specifications Rev 1.0a
8. MPC8641D SerDes transmitter does not have CTX built-in. An external AC Coupling capacitor is required.

Table 49. Differential Transmitter (TX) Output Specifications (continued)

Symbol Parameter Min Nom Max Units Comments
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15.7 Receiver Specifications
LP-Serial receiver electrical and timing specifications are stated in the text and tables of this section.

Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode 
return loss better than 6 dB from 100 MHz to (0.8)*(Baud Frequency). This includes contributions from 
on-chip circuitry, the chip package and any off-chip components related to the receiver. AC coupling 
components are included in this requirement. The reference impedance for return loss measurements is 
100 Ohm resistive for differential return loss and 25 Ohm resistive for common mode.

Table 58. Transmitter Differential Output Eye Diagram Parameters

Transmitter Type
VDIFFmin 

(mV)
VDIFFmax 

(mV)
A (UI) B (UI)

1.25 GBaud short range 250 500 0.175 0.39

1.25 GBaud long range 400 800 0.175 0.39

2.5 GBaud short range 250 500 0.175 0.39

2.5 GBaud long range 400 800 0.175 0.39

3.125 GBaud short range 250 500 0.175 0.39

3.125 GBaud long range 400 800 0.175 0.39

Table 59. Receiver AC Timing Specifications—1.25 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Input Voltage VIN 200 1600 mV p-p Measured at receiver

Deterministic Jitter Tolerance JD 0.37 — UI p-p Measured at receiver

Combined Deterministic and Random 
Jitter Tolerance

JDR 0.55 — UI p-p Measured at receiver

Total Jitter Tolerance1 JT 0.65 — UI p-p Measured at receiver

Multiple Input Skew SMI — 24 ns Skew at the receiver input 
between lanes of a multilane 
link

Bit Error Rate BER — 10–12 — —

Unit Interval UI 800 800 ps +/– 100 ppm

Note:  
1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The 

sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 55. The sinusoidal jitter component 
is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
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17 Signal Listings
Table 63 provides the pin assignments for the signals. Notes for the signal changes on the single core 
device (MPC8641) are italicized and prefixed by “S”.

Table 63. MPC8641 Signal Reference by Functional Block

Name1 Package Pin Number Pin Type Power Supply Notes

DDR Memory Interface 1 Signals2,3

D1_MDQ[0:63] D15, A14, B12, D12, A15, B15, B13, C13, 
C11, D11, D9, A8, A12, A11, A9, B9, F11, 
G12, K11, K12, E10, E9, J11, J10, G8, H10, 
L9, L7, F10, G9, K9, K8, AC6, AC7, AG8, 
AH9, AB6, AB8, AE9, AF9, AL8, AM8, 
AM10, AK11, AH8, AK8, AJ10, AK10, AL12, 
AJ12, AL14, AM14, AL11, AM11, AM13, 
AK14, AM15, AJ16, AK18, AL18, AJ15, 
AL15, AL17, AM17

I/O D1_GVDD —

D1_MECC[0:7] M8, M7, R8, T10, L11, L10, P9, R10 I/O D1_GVDD —

D1_MDM[0:8] C14, A10, G11, H9, AD7, AJ9, AM12, AK16, 
N10

O D1_GVDD —

D1_MDQS[0:8] A13, C10, H12, J7, AE8, AM9, AK13, AK17, 
N9

I/O D1_GVDD —

D1_MDQS[0:8] D14, B10, H13, J8, AD8, AL9, AJ13, AM16, 
P10

I/O D1_GVDD —

D1_MBA[0:2] AA8, AA10, T9 O D1_GVDD —

D1_MA[0:15] Y10, W8, W9, V7, V8, U6, V10, U9, U7, U10, 
Y9, T6, T8, AE12, R7, P6

O D1_GVDD —

D1_MWE AB11 O D1_GVDD —

D1_MRAS AB12 O D1_GVDD —

D1_MCAS AC10 O D1_GVDD —

D1_MCS[0:3] AB9, AD10, AC12, AD11 O D1_GVDD —

D1_MCKE[0:3] P7, M10, N8, M11 O D1_GVDD 23

D1_MCK[0:5] W6, E13, AH11, Y7, F14, AG10 O D1_GVDD —

D1_MCK[0:5] Y6, E12, AH12, AA7, F13, AG11 O D1_GVDD —

D1_MODT[0:3] AC9, AF12, AE11, AF10 O D1_GVDD —

D1_MDIC[0:1] E15, G14 IO D1_GVDD 27

D1_MVREF AM18 DDR Port 1 
reference 
voltage

D1_GVDD /2 3

DDR Memory Interface 2 Signals2,3
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18.2 MPX to SYSCLK PLL Ratio 
The MPX clock is the clock that drives the MPX bus, and is also called the platform clock. The frequency 
of the MPX is set using the following reset signals, as shown in Table 68:

• SYSCLK input signal

Table 65. Memory Bus Clocking Specifications

Characteristic

Maximum Processor Core 
Frequency

Unit Notes
1000, 1250, 1333, 1500MHz

Min Max

Memory bus clock frequency 200 300 MHz 1, 2

Notes:
1.  Caution: The MPX clock to SYSCLK ratio and e600 core to MPX clock ratio settings must be chosen such that the resulting 

SYSCLK frequency, e600 (core) frequency, and MPX clock frequency do not exceed their respective maximum or minimum 
operating frequencies. Refer to Section 18.2, “MPX to SYSCLK PLL Ratio,” and Section 18.3, “e600 to MPX clock PLL Ratio,” 
for ratio settings.

2.  The memory bus clock speed is half the DDR/DDR2 data rate, hence, half the MPX clock frequency.

Table 66. Platform/MPX bus Clocking Specifications

Characteristic

Maximum Processor Core 
Frequency

Unit Notes
1000, 1250, 1333, 1500MHz

Min Max

Platform/MPX bus clock frequency 400 500-600 MHz 1, 2

Notes:
1.  Caution: The MPX clock to SYSCLK ratio and e600 core to MPX clock ratio settings must be chosen such that the resulting 

SYSCLK frequency, e600 (core) frequency, and MPX clock frequency do not exceed their respective maximum or minimum 
operating frequencies. Refer to Section 18.2, “MPX to SYSCLK PLL Ratio,” and Section 18.3, “e600 to MPX clock PLL Ratio,” 
for ratio settings.

2.  Platform/MPX frequencies between 400 and 500 MHz are not supported.

Table 67. Local Bus Clocking Specifications

Characteristic

Maximum Processor Core 
Frequency

Unit Notes
1000, 1250, 1333, 1500MHz

Min Max

Local bus clock speed (for Local Bus Controller) 25 133 MHz 1

Notes:
1.  The Local bus clock speed on LCLK[0:2] is determined by MPX clock divided by the Local Bus PLL ratio programmed in 

LCRR[CLKDIV]. See the reference manual for the MPC8641D for more information on this.
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Tyco Electronics 800-522-6752
Chip Coolers™
P.O. Box 3668
Harrisburg, PA 17105-3668
Internet: www.chipcoolers.com
Wakefield Engineering 603-635-5102
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal 
performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. 

19.2.1 Internal Package Conduction Resistance
For the exposed-die packaging technology described in Table 71, the intrinsic conduction thermal 
resistance paths are as follows:

• The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)
• The die junction-to-board thermal resistance

Figure 60 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 60. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach 
material (or thermal interface material), and finally to the heat sink where it is removed by forced-air 
convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected 
for a first-order analysis. Thus the thermal interface material and the heat sink conduction/convective 
thermal resistances are the dominant terms.

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance.)
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The Bergquist Company 800-347-4572
18930 West 78th St.
Chanhassen, MN 55317
Internet: www.bergquistcompany.com
Chomerics, Inc. 781-935-4850
77 Dragon Ct.
Woburn, MA 01801
Internet: www.chomerics.com
Dow-Corning Corporation 800-248-2481
Corporate Center 
PO Box 994 
Midland, MI 48686-0994
Internet: www.dowcorning.com
Shin-Etsu MicroSi, Inc. 888-642-7674
10028 S. 51st St.
Phoenix, AZ 85044
Internet: www.microsi.com
Thermagon Inc. 888-246-9050
4707 Detroit Ave.
Cleveland, OH 44102
Internet: www.thermagon.com

The following section provides a heat sink selection example using one of the commercially available heat 
sinks.

19.2.3 Heat Sink Selection Example
For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

 Tj = Ti + Tr + (RθJC + Rθint + Rθsa) × Pd 

where:
Tj is the die-junction temperature 
Ti is the inlet cabinet ambient temperature
Tr is the air temperature rise within the computer cabinet
RθJC is the junction-to-case thermal resistance
Rθint is the adhesive or interface material thermal resistance
Rθsa is the heat sink base-to-ambient thermal resistance
Pd is the power dissipated by the device

During operation, the die-junction temperatures (Tj) should be maintained less than the value specified in 
Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature 
and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (Ti) 
may range from 30° to 40°C. The air temperature rise within a cabinet (Tr) may be in the range of 5° to 
10°C. The thermal resistance of the thermal interface material (Rθint) is typically about 0.2°C/W. For 
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Another useful equation is:

Where:
Ifw = Forward current
Is = Saturation current
Vd = Voltage at diode
Vf = Voltage forward biased
VH = Diode voltage while IH is flowing
VL = Diode voltage while IL is flowing
IH = Larger diode bias current
IL = Smaller diode bias current
q = Charge of electron (1.6 x 10 –19 C)
n = Ideality factor (normally 1.0)
K = Boltzman’s constant (1.38 x 10–23 Joules/K)
T = Temperature (Kelvins)

The ratio of IH to IL is usually selected to be 10:1. The above simplifies to the following:

Solving for T, the equation becomes:

 VH – VL = n ln   
KT__
q

 IH__
IL

 VH – VL = 1.986 × 10–4 × nT 

 nT =   
 VH – VL__________

1.986 × 10–4
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20 System Design Information
This section provides electrical and thermal design recommendations for successful application of the 
MPC8641.

20.1 System Clocking
This device includes six PLLs, as follows:

1. The platform PLL generates the platform clock from the externally supplied SYSCLK input. The 
frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio 
configuration bits as described in Section 18.2, “MPX to SYSCLK PLL Ratio.”

2. The dual e600 Core PLLs generate the e600 clock from the externally supplied input. 
3. The local bus PLL generates the clock for the local bus. 
4. There are two internal PLLs for the SerDes block. 

20.2 Power Supply Design and Sequencing

20.2.1 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide independent filter circuits per PLL power supply as illustrated in Figure 64, one to each of the 
AVDD type pins. By providing independent filters to each PLL the opportunity to cause noise injection 
from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD type pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
type pin, which is on the periphery of the footprint, without the inductance of vias.

Figure 63 and Figure 64 show the PLL power supply filter circuits for the platform and cores, respectively.
 

Figure 63. MPC8641 PLL Power Supply Filter Circuit (for platform and Local Bus)

  

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10 Ω

 

AVDD_PLAT, AVDD_LB;VDD_PLAT
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The COP interface has a standard header, shown in Figure 67, for connection to the target system, and is 
based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The 
connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features. An inexpensive option can be to leave 
the COP header unpopulated until needed.

There is no standardized way to number the COP header shown in Figure 67; consequently, many different 
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then 
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter 
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in 
Figure 67 is common to all known emulators.

For a multi-processor non-daisy chain configuration, Figure 68, can be duplicated for each processor. The 
recommended daisy chain configuration is shown in Figure 69. Please consult with your tool vendor to 
determine which configuration is supported by their emulator.

20.9.1 Termination of Unused Signals
If the JTAG interface and COP header will not be used, Freescale recommends the following connections:

• TRST should be tied to HRESET through a 0 kΩ isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during 
the power-on reset flow. Freescale recommends that the COP header be designed into the system 
as shown in Figure 68. If this is not possible, the isolation resistor will allow future access to TRST 
in case a JTAG interface may need to be wired onto the system in future debug situations.

• Tie TCK to OVDD through a 10 kΩ resistor. This will prevent TCK from changing state and 
reading incorrect data into the device. 

• No connection is required for TDI, TMS, or TDO.

Figure 67. COP Connector Physical Pinout
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1 2COP_TDO

COP_TDI
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NC

COP_TRST

COP_VDD_SENSE

COP_CHKSTP_IN

NC

NC

GND

COP_TCK

COP_TMS

COP_SRESET

COP_HRESET

COP_CHKSTP_OUT
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Figure 68. JTAG/COP Interface Connection for one MPC8641 device

HRESET
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Board Sources

COP_HRESET
13

COP_SRESET

SRESET1

NC

11

COP_VDD_SENSE2
6

5
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10 kΩ
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COP_CHKSTP_IN
CKSTP_IN8

COP_TMS
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C
O

P
 H
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d
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3. The KEY location (pin 14) is not physically present on the COP header.

10 kΩ

TRST1
10 kΩ

10 kΩ

10 kΩ

CKSTP_OUT
COP_CHKSTP_OUT
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KEY
No pin

COP Connector
Physical Pinout

1 2

NC

SRESET1

 

NC

OVDD

10 kΩ

10 kΩ HRESET1

4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for
improved signal integrity.

TCK

 4

5

5. This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid
accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.

10 kΩ

SRESET0 10 kΩ SRESET0

2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.

1. The COP port and target board should be able to independently assert HRESET and TRST to the processor
 in order to fully control the processor as shown here.

Notes:
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21 Ordering Information
Ordering information for the parts fully covered by this specification document is provided in 
Section 21.1, “Part Numbers Fully Addressed by This Document.”

21.1 Part Numbers Fully Addressed by This Document
Table 74 provides the Freescale part numbering nomenclature for the MPC8641. Note that the individual 
part numbers correspond to a maximum processor core frequency. For available frequencies, contact your 
local Freescale sales office. In addition to the processor frequency, the part numbering scheme also 
includes an application modifier which may specify special application conditions. Each part number also 
contains a revision code which refers to the die mask revision number.

Table 74. Part Numbering Nomenclature

MC nnnn x xx nnnn x x

Product
Code

Part
 Identifier

Core 
Count

Package 1
Core Processor 

Frequency 2

(MHz)

DDR speed 
(MHz)

Product Revision Level

MC 8641

Blank = 
Single 
Core HX = High-lead 

HCTE FC-CBGA

VU = RoHS lead-free 
HCTE FC-CBGA5

VJ = lead-free HCTE 
FC-CBGA6

1000, 1250, 1333, 
1500

N = 500 MHz4

K = 600 MHz

J = 533 MHz

H = 500 MHz

G = 400 MHz

Revision B = 2.0
System Version Register 

Value for Rev B:
0x8090_0020 - MPC8641

0x8090_0120 - MPC8641D

Revision C = 2.1
System Version Register 

Value for Rev C:
0x8090_0021 - MPC8641

0x8090_0121 - MPC8641D

Revision E = 3.0
System Version Register 

Value for Rev E:
0x8090_0030 - MPC8641
0x8090_0130 - MPC8641D

D = Dual 
Core

Notes: 
1. See Section 16, “Package,” for more information on available package types.
2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this 

specification support all core frequencies. Additionally, parts addressed by part number specifications may support other 
maximum core frequencies.

3. The P prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. These 
parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written 
authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the 
fact that product changes may still occur while shipping pilot production prototypes.

4. Part Number MC8641xxx1000NX is our low VDD_Coren device. VDD_Coren = 0.95 V and VDD_PLAT = 1.05 V.
5. VU part number is RoHS compliant with the permitted exception of the C4 die bumps.
6. VJ part number is entirely lead-free including the C4 die bumps.


