

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e600
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.25GHz
Co-Processors/DSP	·
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	1023-BBGA, FCBGA
Supplier Device Package	1023-FCCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc8641dthx1250hc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical Characteristics

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8641.

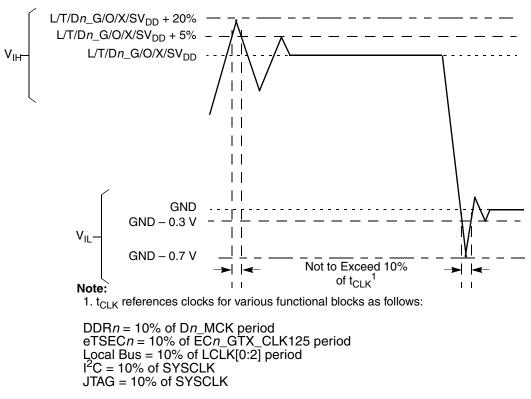


Figure 2. Overshoot/Undershoot Voltage for Dn_M/O/L/TV_{IN}

The MPC8641 core voltage must always be provided at nominal V_{DD} _Core*n* (See Table 2 for actual recommended core voltage). Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 2. The input voltage threshold scales with respect to the associated I/O supply voltage. OV_{DD} and L/TV_{DD} based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses a single-ended differential receiver referenced to each externally supplied Dn_MV_{REF} signal (nominally set to $Dn_GV_{DD}/2$) as is appropriate for the (SSTL-18 and SSTL-25) electrical signaling standards.

6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications

Table 18 provides the input AC timing specifications for the DDR2 SDRAM when $Dn GV_{DD}(typ)=1.8 V$.

Table 18. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage 400, 533 MHz 600 MHz		_	D <i>n_</i> MV _{REF} – 0.25 D <i>n_</i> MV _{REF} – 0.20	V	_
AC input high voltage 400, 533 MHz 600 MHz		D <i>n_</i> MV _{REF} + 0.25 D <i>n_</i> MV _{REF} + 0.20	_	V	_

Table 19 provides the input AC timing specifications for the DDR SDRAM when $Dn_GV_{DD}(typ)=2.5$ V.

 Table 19. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

At recommended operating conditions.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	_	D <i>n</i> _MV _{REF} – 0.31	V	_
AC input high voltage	V _{IH}	D <i>n</i> _MV _{REF} + 0.31	_	V	_

Table 20 provides the input AC timing specifications for the DDR SDRAM interface.

Table 20. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions.

Parameter	Symbol	Min	Мах	Unit	Notes
Controller Skew for MDQS—MDQ/MECC	^t CISKEW	—		ps	1, 2
600 MHz	—	-240	240	—	3
533 MHz	—	-300	300	—	3
400 MHz	—	-365	365	—	

Note:

1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that will be captured with MDQS[n]. This should be subtracted from the total timing budget.

- The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} =+/-(T/4 - abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.
- 3. Maximum DDR1 frequency is 400 MHz.

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

Table 24. GMII, MII, RMII, TBI and FIFO DC Electrical Characteristics (continued)

Parameter	Symbol	Min	Мах	Unit	Notes
Input low current (V _{IN} = GND)	I _{IL}	-600	_	μA	3

Notes:

¹ LV_{DD} supports eTSECs 1 and 2.

² TV_{DD} supports eTSECs 3 and 4.

³ The symbol V_{IN} , in this case, represents the LV_{IN} and TV_{IN} symbols referenced in Table 1 and Table 2.

Table 25. GMII, RGMII, RTBI, TBI and FIFO DC Electrical Characteristics

Parameters	Symbol	Min	Мах	Unit	Notes
Supply voltage 2.5 V	LV _{DD} /TV _{DD}	2.375	2.625	V	1,2
Output high voltage (LV _{DD} /TV _{DD} = Min, I _{OH} = -1.0 mA)	V _{OH}	2.00	_	V	—
Output low voltage (LV _{DD} /TV _{DD} = Min, I _{OL} = 1.0 mA)	V _{OL}	—	0.40	V	—
Input high voltage	V _{IH}	1.70	—	V	—
Input low voltage	V _{IL}	—	0.90	V	—
Input high current (V _{IN} = LV _{DD} , V _{IN} = TV _{DD})	IIH	—	10	μΑ	1, 2,3
Input low current (V _{IN} = GND)	Ι _{IL}	-15	_	μA	3

Note:

 $^1\,$ LV_{DD} supports eTSECs 1 and 2.

² TV_{DD} supports eTSECs 3 and 4.

³ Note that the symbol V_{IN}, in this case, represents the LV_{IN} and TV_{IN} symbols referenced in Table 1 and Table 2.

8.2 FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications

The AC timing specifications for FIFO, GMII, MII, TBI, RGMII, RMII and RTBI are presented in this section.

8.2.1 FIFO AC Specifications

The basis for the AC specifications for the eTSEC's FIFO modes is the double data rate RGMII and RTBI specifications, since they have similar performance and are described in a source-synchronous fashion like FIFO modes. However, the FIFO interface provides deliberate skew between the transmitted data and source clock in GMII fashion.

When the eTSEC is configured for FIFO modes, all clocks are supplied from external sources to the relevant eTSEC interface. That is, the transmit clock must be applied to the eTSEC*n*'s TSEC*n*_TX_CLK, while the receive clock must be applied to pin TSEC*n*_RX_CLK. The eTSEC internally uses the transmit

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2.7.2 RMII Receive AC Timing Specifications

Table 37. RMII Receive AC Timing Specifications

At recommended operating conditions with L/TV_DD of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
REF_CLK clock period	t _{RMR}	15.0	20.0	25.0	ns
REF_CLK duty cycle	t _{RMRH} /t _{RMR}	35	50	65	%
REF_CLK peak-to-peak jitter	t _{RMRJ}	_	_	250	ps
Rise time REF_CLK (20%–80%)	t _{RMRR}	1.0	—	2.0	ns
Fall time REF_CLK (80%–20%)	t _{RMRF}	1.0	_	2.0	ns
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK rising edge	t _{RMRDV}	4.0	_	_	ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK rising edge	t _{RMRDX}	2.0	_		ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 21 provides the AC test load for eTSEC.

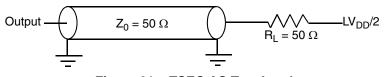


Figure 21. eTSEC AC Test Load

Figure 22 shows the RMII receive AC timing diagram.

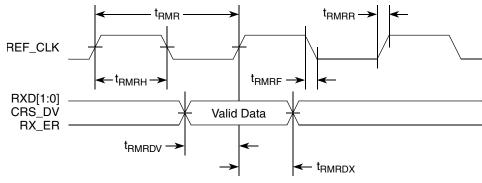


Figure 22. RMII Receive AC Timing Diagram

l²C

Table 46. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 45).

Parameter	Symbol ¹	Min	Мах	Unit
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	—	V

Note:

- 1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the low (L) state or hold time. Also, t_{12PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 2. As a transmitter, the MPC8641 provides a delay time of at least 300 ns for the SDA signal (referred to the Vihmin of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of Start or Stop condition. When MPC8641 acts as the I²C bus master while transmitting, MPC8641 drives both SCL and SDA. As long as the load on SCL and SDA are balanced, MPC8641 would not cause unintended generation of Start or Stop condition. Therefore, the 300 ns SDA output delay time is not a concern. If, under some rare condition, the 300 ns SDA output delay time is required for MPC8641 as transmitter, the following setting is recommended for the FDR bit field of the I2CFDR register to ensure both the desired I²C SCL clock frequency and SDA output delay time are achieved, assuming that the desired I²C SCL clock frequency is 400 KHz and the Digital Filter Sampling Rate Register (I2CDFSRR) is programmed with its default setting of 0x10 (decimal 16):

I ² C Source Clock Frequency	333 MHz	266 MHz	200 MHz	133 MHz
FDR Bit Setting	0x2A	0x05	0x26	0x00
Actual FDR Divider Selected	896	704	512	384
Actual I ² C SCL Frequency Generated	371 KHz	378 KHz	390 KHz	346 KHz

For the detail of I²C frequency calculation, refer to the application note AN2919 "Determining the I²C Frequency Divider Ratio for SCL". Note that the I²C Source Clock Frequency is half of the MPX clock frequency for MPC8641.

- 3. The maximum t_{I2DXKL} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. Guaranteed by design.
- 5. C_B = capacitance of one bus line in pF.

Figure 32 provides the AC test load for the I^2C .

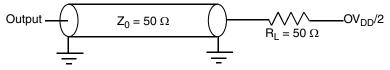


Figure 36. I²C AC Test Load

Figure 37 shows the AC timing diagram for the I^2C bus.

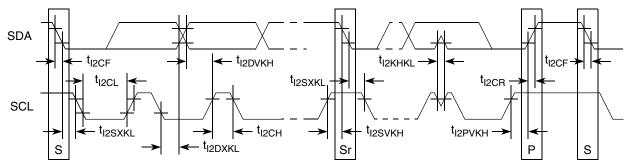


Figure 37. I²C Bus AC Timing Diagram

13 High-Speed Serial Interfaces (HSSI)

The MPC8641D features two Serializer/Deserializer (SerDes) interfaces to be used for high-speed serial interconnect applications. The SerDes1 interface is dedicated for PCI Express data transfers. The SerDes2 can be used for PCI Express and/or Serial RapidIO data transfers.

This section describes the common portion of SerDes DC electrical specifications, which is the DC requirement for SerDes Reference Clocks. The SerDes data lane's transmitter and receiver reference circuits are also shown.

13.1 Signal Terms Definition

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals.

Figure 38 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for description. The figure shows waveform for either a transmitter output (SD*n*_TX and $\overline{SDn}_T\overline{X}$) or a receiver input (SD*n*_RX and $\overline{SDn}_R\overline{X}$). Each signal swings between A Volts and B Volts where A > B.

Using this waveform, the definitions are as follows. To simplify illustration, the following definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment.

1. Single-Ended Swing

The transmitter output signals and the receiver input signals SDn_TX , $\overline{SDn_TX}$, SDn_RX and $\overline{SDn_RX}$ each have a peak-to-peak swing of A – B Volts. This is also referred as each signal wire's Single-Ended Swing.

2. Differential Output Voltage, V_{OD} (or Differential Output Swing):

The Differential Output Voltage (or Swing) of the transmitter, V_{OD} , is defined as the difference of the two complimentary output voltages: $V_{SDn_TX} - V_{\overline{SDn_TX}}$. The V_{OD} value can be either positive or negative.

3. Differential Input Voltage, V_{ID} (or Differential Input Swing):

Serial RapidIO

Characteristic	Symbol	Ra	inge	Unit	Notes
Characteristic	Symbol	Min	Max	onic	NOICES
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	500	1000	mV p-p	_
Deterministic Jitter	J _D	—	0.17	UI p-p	—
Total Jitter	J _T	—	0.35	UI p-p	—
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	800	800	ps	+/– 100 ppm

Table 52. Short Run Transmitter AC Timing Specifications—1.25 GBaud

Table 53. Short Run Transmitter AC Timing Specifications—2.5 GBaud

Characteristic	Symbol	Ra	nge	Unit	Notes
	Symbol	Min	Max	onit	NOICS
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	500	1000	mV p-p	—
Deterministic Jitter	J _D	_	0.17	UI p-p	_
Total Jitter	J _T	_	0.35	UI p-p	_
Multiple Output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	400	400	ps	+/- 100 ppm

Table 54. Short Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic	Symbol	Ra	nge	Unit	Notes		
	Symbol	Min	Мах	Unit	Onit	Onn	NOICS
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair		
Differential Output Voltage	V _{DIFFPP}	500	1000	mV p-p	_		
Deterministic Jitter	J _D	—	0.17	UI p-p	—		
Total Jitter	J _T	—	0.35	UI p-p	—		

Transmitter Type	V _{DIFF} min (mV)	V _{DIFF} max (mV)	A (UI)	B (UI)
1.25 GBaud short range	250	500	0.175	0.39
1.25 GBaud long range	400	800	0.175	0.39
2.5 GBaud short range	250	500	0.175	0.39
2.5 GBaud long range	400	800	0.175	0.39
3.125 GBaud short range	250	500	0.175	0.39
3.125 GBaud long range	400	800	0.175	0.39

Table 58. Transmitter Differential Output Eye Diagram Parameters

15.7 Receiver Specifications

LP-Serial receiver electrical and timing specifications are stated in the text and tables of this section.

Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode return loss better than 6 dB from 100 MHz to (0.8)*(Baud Frequency). This includes contributions from on-chip circuitry, the chip package and any off-chip components related to the receiver. AC coupling components are included in this requirement. The reference impedance for return loss measurements is 100 Ohm resistive for differential return loss and 25 Ohm resistive for common mode.

Characteristic	Range		nge Unit		Notes	
Characteristic	Symbol	Min	Max	Unit	notes	
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver	
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	—	UI p-p	Measured at receiver	
Total Jitter Tolerance ¹	J _T	0.65	—	UI p-p	Measured at receiver	
Multiple Input Skew	S _{MI}	_	24	ns	Skew at the receiver input between lanes of a multilane link	
Bit Error Rate	BER	—	10 ⁻¹²	—	—	
Unit Interval	UI	800	800	ps	+/- 100 ppm	

Table 59. Receiver AC Timing Specifications—1.25 GBaud

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 55. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

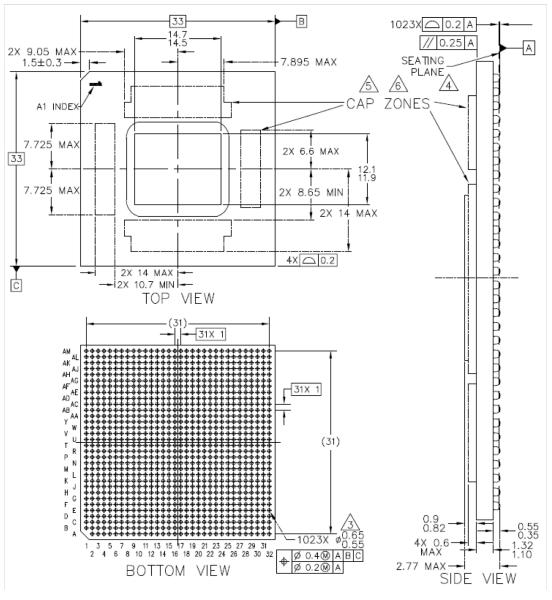
Characteristic	Range Symbol		nge	Unit	Notes	
Characteristic	Symbol	Min	Мах	Onit	Notes	
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver	
Deterministic Jitter Tolerance	J _D	0.37	_	UI p-p	Measured at receiver	
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver	
Total Jitter Tolerance ¹	J _T	0.65	—	UI p-p	Measured at receiver	
Multiple Input Skew	S _{MI}	_	24	ns	Skew at the receiver input between lanes of a multilane link	
Bit Error Rate	BER	—	10 ⁻¹²	_	_	
Unit Interval	UI	400	400	ps	+/- 100 ppm	

Table 60. Receiver	AC Timing	Specifications—2.5 GBaud
--------------------	-----------	--------------------------

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 55. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Table 61. Receiver AC Timing Speci	ifications—3.125 GBaud
------------------------------------	------------------------


Characteristic	Range Symbol		uge Unit		Notes	
Characteristic	Cymbol	Min	Max	Onit	noico	
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver	
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver	
Total Jitter Tolerance ¹	J _T	0.65	—	UI p-p	Measured at receiver	
Multiple Input Skew	S _{MI}	—	22	ns	Skew at the receiver input between lanes of a multilane link	
Bit Error Rate	BER	—	10 ⁻¹²	_	—	
Unit Interval	UI	320	320	ps	+/– 100 ppm	

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 55. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

8. Note that for MPC8641 (single core) the solder balls for the following signals/pins are not populated in the package: VDD_Core1 (R16, R18, R20, T17, T19, T21, T23, U16, U18, U22, V17, V19, V21, V23, W16, W18, W20, W22, Y17, Y19, Y21, Y23, AA16, AA18, AA20, AA22, AB23, AC24) and SENSEVDD_Core1 (U20).

NOTES for Figure 58

- 1. All dimensions are in millimeters.
- 2. Dimensions and tolerances per ASME Y14.5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is defined by the spherical crowns of the solder balls.
- 5. Capacitors may not be present on all devices.
- 6. Caution must be taken not to short capacitors or expose metal capacitor pads on package top.
- 7. All dimensions symmetrical about centerlines unless otherwise specified.
- Note that for MPC8641 (single core) the solder balls for the following signals/pins are not populated in the package: VDD_Core1 (R16, R18, R20, T17, T19, T21, T23, U16, U18, U22, V17, V19, V21, V23, W16, W18, W20, W22, Y17, Y19, Y21, Y23, AA16, AA18, AA20, AA22, AB23, AC24) and SENSEVDD_Core1 (U20).

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
D2_MDQ[0:63]	A7, B7, C5, D5, C8, D8, D6, A5, C4, A3, D3, D2, A4, B4, C2, C1, E3, E1, H4, G1, D1, E4, G3, G2, J4, J2, L1, L3, H3, H1, K1, L4, AA4, AA2, AD1, AD2, Y1, AA1, AC1, AC3, AD5, AE1, AG1, AG2, AC4, AD4, AF3, AF4, AH3, AJ1, AM1, AM3, AH1, AH2, AL2, AL3, AK5, AL5, AK7, AM7, AK4, AM4, AM6, AJ7	I/O	D2_GV _{DD}	_
D2_MECC[0:7]	H6, J5, M5, M4, G6, H7, M2, M1	I/O	$D2_GV_{DD}$	—
D2_MDM[0:8]	C7, B3, F4, J1, AB1, AE2, AK1, AM5, K6	0	D2_GV _{DD}	—
D2_MDQS[0:8]	B6, B1, F1, K2, AB3, AF1, AL1, AL6, L6	I/O	D2_GV _{DD}	_
D2_MDQS[0:8]	A6, A2, F2, K3, AB2, AE3, AK2, AJ6, K5	I/O	D2_GV _{DD}	_
D2_MBA[0:2]	W5, V5, P3	0	D2_GV _{DD}	_
D2_MA[0:15]	W1, U4, U3, T1, T2, T3, T5, R2, R1, R5, V4, R4, P1, AH5, P4, N1	0	D2_GV _{DD}	_
D2_MWE	Y4	0	D2_GV _{DD}	_
D2_MRAS	W3	0	D2_GV _{DD}	_
D2_MCAS	AB5	0	D2_GV _{DD}	_
D2_MCS[0:3]	Y3, AF6, AA5, AF7	0	D2_GV _{DD}	_
D2_MCKE[0:3]	N6, N5, N2, N3	0	D2_GV _{DD}	23
D2_MCK[0:5]	U1, F5, AJ3, V2, E7, AG4	0	D2_GV _{DD}	—
D2_MCK[0:5]	V1, G5, AJ4, W2, E6, AG5	0	D2_GV _{DD}	—
D2_MODT[0:3]	AE6, AG7, AE5, AH6	0	D2_GV _{DD}	—
D2_MDIC[0:1]	F8, F7	IO	D2_GV _{DD}	27
D2_MV _{REF}	A18	DDR Port 2 reference voltage	D2_GV _{DD} /2	3
	High Speed I/O Interface 1 (SERDES 1) ⁴		
SD1_TX[0:7]	L26, M24, N26, P24, R26, T24, U26, V24	0	SV _{DD}	—
SD1_TX[0:7]	L27, M25, N27, P25, R27, T25, U27, V25	0	SV _{DD}	—
SD1_RX[0:7]	J32, K30, L32, M30, T30, U32, V30, W32	Ι	SV _{DD}	—
SD1_RX[0:7]	J31, K29, L31, M29, T29, U31, V29, W31	I	SV _{DD}	—
SD1_REF_CLK	N32	I	SV _{DD}	—
SD1_REF_CLK	N31	I	SV _{DD}	—
SD1_IMP_CAL_TX	Y26	Analog	SV _{DD}	19
SD1_IMP_CAL_RX	J28	Analog	SV _{DD}	30
SD1_PLL_TPD	U28	0	SV _{DD}	13, 17

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Signal Listings

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
TSEC1_TXD[0:7]/ GPOUT[0:7]	AF25, AC23, AG24, AG23, AE24, AE23, AE22, AD22	0	LV _{DD}	6, 10
TSEC1_TX_EN	AB22	0	LV _{DD}	36
TSEC1_TX_ER	AH26	0	LV _{DD}	_
TSEC1_TX_CLK	AC22	I	LV _{DD}	40
TSEC1_GTX_CLK	AH25	0	LV _{DD}	41
TSEC1_CRS	AM24	I/O	LV _{DD}	37
TSEC1_COL	AM25	I	LV _{DD}	_
TSEC1_RXD[0:7]/ GPIN[0:7]	AL25, AL24, AK26, AK25, AM26, AF26, AH24, AG25	I	LV _{DD}	10
TSEC1_RX_DV	AJ24	I	LV _{DD}	—
TSEC1_RX_ER	AJ25	I	LV _{DD}	—
TSEC1_RX_CLK	AK24	I	LV _{DD}	40
	eTSEC Port 2 Sign	als ⁵		
TSEC2_TXD[0:3]/ GPOUT[8:15]	AB20, AJ23, AJ22, AD19	0	LV _{DD}	6, 10
TSEC2_TXD[4]/ GPOUT[12]	AH23	0	LV _{DD}	6,10, 38
TSEC2_TXD[5:7]/ GPOUT[13:15]	AH21, AG22, AG21	0	LV _{DD}	6, 10
TSEC2_TX_EN	AB21	0	LV _{DD}	36
TSEC2_TX_ER	AB19	0	LV _{DD}	6, 38
TSEC2_TX_CLK	AC21	I	LV _{DD}	40
TSEC2_GTX_CLK	AD20	0	LV _{DD}	41
TSEC2_CRS	AE20	I/O	LV _{DD}	37
TSEC2_COL	AE21	I	LV _{DD}	
TSEC2_RXD[0:7]/ GPIN[8:15]	AL22, AK22, AM21, AH20, AG20, AF20, AF23, AF22	I	LV _{DD}	10
TSEC2_RX_DV	AC19	I	LV _{DD}	_
TSEC2_RX_ER	AD21	I	LV _{DD}	_
TSEC2_RX_CLK	AM22	I	LV _{DD}	40
	eTSEC Port 3 Sign	als ⁵	1	
TSEC3_TXD[0:3]	AL21, AJ21, AM20, AJ20	0	TV _{DD}	6
TSEC3_TXD[4]/	AM19	0	TV _{DD}	_
TSEC3_TXD[5:7]	AK21, AL20, AL19	0	TV _{DD}	6

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Signal Listings

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
D1_MDVAL/LB_DVAL	J16	0	OV _{DD}	10
D2_MDVAL	D19	0	OV _{DD}	_
	Power Management S	Signals ⁵		
ASLEEP	C19	0	OV _{DD}	—
	System Clocking Si	gnals ⁵		
SYSCLK	G16	I	OV _{DD}	—
RTC	K17	I	OV _{DD}	32
CLK_OUT	B16	0	OV _{DD}	23
	Test Signals ⁵		- I	
LSSD_MODE	C18	I	OV _{DD}	26
TEST_MODE[0:3]	C16, E17, D18, D16	I	OV _{DD}	26
	JTAG Signals ⁵	5	· · ·	
ТСК	H18	I	OV _{DD}	
TDI	J18	I	OV _{DD}	24
TDO	G18	0	OV _{DD}	23
TMS	F18	I	OV _{DD}	24
TRST	A17	I	OV _{DD}	24
	Miscellaneous	5	· · ·	
Spare	J17	_	—	13
GPOUT[0:7]/ TSEC1_TXD[0:7]	AF25, AC23, AG24, AG23, AE24, AE23, AE22, AD22	0	OV _{DD}	6, 10
GPIN[0:7]/ TSEC1_RXD[0:7]	AL25, AL24, AK26, AK25, AM26, AF26, AH24, AG25	I	OV _{DD}	10
GPOUT[8:15]/ TSEC2_TXD[0:7]	AB20, AJ23, AJ22, AD19, AH23, AH21, AG22, AG21	0	OV _{DD}	10
GPIN[8:15]/ TSEC2_RXD[0:7]	AL22, AK22, AM21, AH20, AG20, AF20, AF23, AF22	I	OV _{DD}	10
	Additional Analog S	ignals	- I	
TEMP_ANODE	AA11	Thermal	—	
TEMP_CATHODE	Y11	Thermal	—	
	Sense, Power and GNI) Signals		
SENSEV _{DD} _Core0	M14	V _{DD} _Core0 sensing pin	-	31
SENSEV _{DD} Core1	U20	V _{DD} _Core1 sensing pin	-	12,31, <i>S1</i>

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
SENSEV _{SS} _Core0	P14	Core0 GND sensing pin	—	31
SENSEV _{SS} _Core1	V20	Core1 GND sensing pin	—	12, 31, <i>S3</i>
SENSEV _{DD} _PLAT	N18	V _{DD} _PLAT sensing pin	—	28
SENSEV _{SS} _PLAT	P18	Platform GND sensing pin	_	29
D1_GV _{DD}	B11, B14, D10, D13, F9, F12, H8, H11, H14, K10, K13, L8, P8, R6, U8, V6, W10, Y8, AA6, AB10, AC8, AD12, AE10, AF8, AG12, AH10, AJ8, AJ14, AK12, AL10, AL16	SDRAM 1 I/O supply	D1_GV _{DD} 2.5 - DDR 1.8 DDR2	_
D2_GV _{DD}	B2, B5, B8, D4, D7, E2, F6, G4, H2, J6, K4, L2, M6, N4, P2, T4, U2, W4, Y2, AB4, AC2, AD6, AE4, AF2, AG6, AH4, AJ2, AK6, AL4, AM2	SDRAM 2 I/O supply	D2_GV _{DD} 2.5 V - DDR 1.8 V - DDR2	_
OV _{DD}	B22, B25, B28, D17, D24, D27, F19, F22, F26, F29, G17, H21, H24, K19, K23, M21, AM30	DUART, Local Bus, DMA, Multiprocessor Interrupts, System Control & Clocking, Debug, Test, JTAG, Power management, I ² C, JTAG and Miscellaneous I/O voltage	OV _{DD} 3.3 V	_
LV _{DD}	AC20, AD23, AH22	TSEC1 and TSEC2 I/O voltage	LV _{DD} 2.5/3.3 V	_
TV _{DD}	AC17, AG18, AK20	TSEC3 and TSEC4 I/O voltage	TV _{DD} 2.5/3.3 V	_
SV _{DD}	H31, J29, K28, K32, L30, M28, M31, N29, R30, T31, U29, V32, W30, Y31, AA29, AB32, AC30, AD31, AE29, AG30, AH31, AJ29, AK32, AL30, AM31	Transceiver Power Supply SerDes	SV _{DD} 1.05/1.1 V	
XV _{DD} _SRDS1	K26, L24, M27, N25, P26, R24, R28, T27, U25, V26	Serial I/O Power Supply for SerDes Port 1	XV _{DD} _SRDS1 1.05/1.1 V	_

Signal Listings

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
TSEC3_TXD[6:7]/ cfg_tsec3_prtcl[0:1]	AL20, AL19		LV _{DD}	_
TSEC4_TXD[0:3]/ cfg_io_ports[0:3]	AC18, AC16, AD18, AD17	_	LV _{DD}	—
TSEC4_TXD[5]/ cfg_tsec4_reduce	AB18	_	LV _{DD}	_
TSEC4_TXD[6:7]/ cfg_tsec4_prtcl[0:1]	AB17, AB16	_	LV _{DD}	_
LAD[0:31]/ cfg_gpporcr[0:31]	A30, E29, C29, D28, D29, H25, B29, A29, C28, L22, M22, A28, C27, H26, G26, B27, B26, A27, E27, G25, D26, E26, G24, F27, A26, A25, C25, H23, K22, D25, F25, H22	_	OV _{DD}	_
LWE[0]/cfg_cpu_boot	E21	_	OV _{DD}	—
LWE[1]/cfg_rio_sys_size	F21	—	OV _{DD}	_
LWE[2:3]/ cfg_host_agt[0:1]	D22, E20	—	OV _{DD}	_
LDP[0:3], LA[27] / cfg_core_pll[0:4]	A24, E24, C24, B24, J21	_	OV _{DD}	22
LA[28:31]/ cfg_sys_pll[0:3]	K21, G22, F24, G21		OV _{DD}	22
LGPL[3], LGPL[5]/ cfg_boot_seq[0:1]	K20, J19	_	OV _{DD}	_
D1_MSRCID[0]/ cfg_mem_debug	F15	_	OV _{DD}	_
D1_MSRCID[1]/ cfg_ddr_debug	K15	_	OV _{DD}	_

Table 63. MPC8641 Signal Reference by Functional Block (continued)

19 Thermal

This section describes the thermal specifications of the MPC8641.

19.1 Thermal Characteristics

Table 71 provides the package thermal characteristics for the MPC8641.

Table 71. Package Thermal Characteristics¹

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient thermal resistance, natural convection, single-layer (1s) board	$R_{ ext{ heta}JA}$	18	°C/W	1, 2
Junction-to-ambient thermal resistance, natural convection, four-layer (2s2p) board	$R_{ ext{ heta}JA}$	13	°C/W	1, 3
Junction-to-ambient thermal resistance, 200 ft/min airflow, single-layer (1s) board	R_{\thetaJMA}	13	°C/W	1, 3
Junction-to-ambient thermal resistance, 200 ft/min airflow, four-layer (2s2p) board	R_{\thetaJMA}	9	°C/W	1, 3
Junction-to-board thermal resistance	R_{\thetaJB}	5	°C/W	4
Junction-to-case thermal resistance	$R_{ ext{ heta}JC}$	< 0.1	°C/W	5

Notes:

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- 2. Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. This is the thermal resistance between die and case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the calculated case temperature. Actual thermal resistance is less than 0.1 °C/W.

19.2 Thermal Management Information

This section provides thermal management information for the high coefficient of thermal expansion (HCTE) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal interface material. The MPC8641 implements several features designed to assist with thermal management, including the temperature diode. The temperature diode allows an external device to monitor the die temperature in order to detect excessive temperature conditions and alert the system; see Section 19.2.4, "Temperature Diode," for more information.

To reduce the die-junction temperature, heat sinks are required; due to the potential large mass of the heat sink, attachment through the printed-circuit board is suggested. In any implementation of a heat sink solution, the force on the die should not exceed ten pounds force (45 newtons). Figure 59 shows a spring clip through the board. Occasionally the spring clip is attached to soldered hooks or to a plastic backing structure. Screw and spring arrangements are also frequently used.

The Bergquist Company 18930 West 78 th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572
Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01801 Internet: www.chomerics.com	781-935-4850
Dow-Corning Corporation Corporate Center PO Box 994 Midland, MI 48686-0994 Internet: www.dowcorning.com	800-248-2481
Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674
Thermagon Inc. 4707 Detroit Ave. Cleveland, OH 44102 Internet: www.thermagon.com	888-246-9050

The following section provides a heat sink selection example using one of the commercially available heat sinks.

19.2.3 Heat Sink Selection Example

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

 $T_j = T_i + T_r + (R_{\theta JC} + R_{\theta int} + R_{\theta sa}) \times P_d$

where:

T_i is the die-junction temperature

T_i is the inlet cabinet ambient temperature

 T_r is the air temperature rise within the computer cabinet

 $R_{\theta JC}$ is the junction-to-case thermal resistance

 $R_{\theta int}$ is the adhesive or interface material thermal resistance

 $R_{\theta sa}$ is the heat sink base-to-ambient thermal resistance

P_d is the power dissipated by the device

During operation, the die-junction temperatures (T_j) should be maintained less than the value specified in Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (T_j) may range from 30° to 40°C. The air temperature rise within a cabinet (T_r) may be in the range of 5° to 10°C. The thermal resistance of the thermal interface material (R_{0int}) is typically about 0.2°C/W. For

System Design Information

designer place at least one decoupling capacitor at each OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , V_{DD}_{DD} . Coren, and $V_{DD}_{DD}_{PLAT}$ pin of the device. These decoupling capacitors should receive their power from separate OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , $V_{DD}_{DD}_{DD}_{PLAT}$ and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , V_{DD} . Coren, and V_{DD} _PLAT planes, to enable quick recharging of the smaller chip capacitors. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo OSCON).

20.4 SerDes Block Power Supply Decoupling Recommendations

The SerDes block requires a clean, tightly regulated source of power (SV_{DD} and XV_{DD} _SRDS*n*) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below.

Only surface mount technology (SMT) capacitors should be used to minimize inductance. Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance.

- First, the board should have at least 10 x 10-nF SMT ceramic chip capacitors as close as possible to the supply balls of the device. Where the board has blind vias, these capacitors should be placed directly below the chip supply and ground connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the device as close to the supply and ground connections as possible.
- Second, there should be a $1-\mu F$ ceramic chip capacitor on each side of the device. This should be done for all SerDes supplies.
- Third, between the device and any SerDes voltage regulator there should be a $10-\mu$ F, low equivalent series resistance (ESR) SMT tantalum chip capacitor and a $100-\mu$ F, low ESR SMT tantalum chip capacitor. This should be done for all SerDes supplies.

20.5 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. In general all unused active low inputs should be tied to OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , V_{DD} _Coren, and V_{DD}_{DD} _PLAT, XV_{DD}_{DD} _SRDSn, and SV_{DD} as required and unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Special cases:

DDR - If one of the DDR ports is not being used the power supply pins for that port can be connected to ground so that there is no need to connect the individual unused inputs of that port to ground. Note that these power supplies can only be powered up again at reset for functionality to occur on the DDR port. Power supplies for other functional buses should remain powered.

System Design Information

The following pins must be connected to GND:

- SD*n*_RX[7:0]
- $\overline{\text{SD}n \text{ RX}}[7:0]$
- SD*n*_REF_CLK
- SDn_REF_CLK

NOTE

It is recommended to power down the unused lane through SRDS1CR1[0:7] register (offset = $0xE_0F08$) and SRDS2CR1[0:7] register (offset = $0xE_0F44$.) (This prevents the oscillations and holds the receiver output in a fixed state.) that maps to SERDES lane 0 to lane 7 accordingly.

For other directions on reserved or no-connects pins see Section 17, "Signal Listings."

20.6 Pull-Up and Pull-Down Resistor Requirements

The MPC8641 requires weak pull-up resistors (2–10 k Ω is recommended) on all open drain type pins.

The following pins must NOT be pulled down during power-on reset: TSEC4_TXD[4], LGPL0/LSDA10, LGPL1/LSDWE, TRIG_OUT/READY, and D1_MSRCID[2].

The following are factory test pins and require strong pull up resistors (100 Ω –1 k Ω) to OVDD

LSSD_MODE, TEST_MODE[0:3]. The following pins require weak pull up resistors (2–10 kΩ) to their specific power supplies: LCS[0:4], LCS[5]/DMA_DREQ2, LCS[6]/DMA_DACK[2], LCS[7]/DMA_DDONE[2], IRQ_OUT, IIC1_SDA, IIC1_SCL, IIC2_SDA, IIC2_SCL, and CKSTP_OUT.

The following pins should be pulled to ground with a 100- Ω resistor: SD1_IMP_CAL_TX, SD2_IMP_CAL_TX. The following pins should be pulled to ground with a 200- Ω resistor: SD1_IMP_CAL_RX, SD2_IMP_CAL_RX.

TSEC*n*_TX_EN signals require an external 4.7-k Ω pull down resistor to prevent PHY from seeing a valid Transmit Enable before it is actively driven.

When the platform frequency is 400 MHz, TSEC1_TXD[1] must be pulled down at reset.

TSEC2_TXD[4] and TSEC2_TX_ER pins function as cfg_dram_type[0 or 1] at reset and MUST BE VALID BEFORE HRESET ASSERTION when coming out of device sleep mode.

20.6.1 Special instructions for Single Core device

The mechanical drawing for the single core device does not have all the solder balls that exist on the single core device. This includes all the balls for VDD_Core1 and SENSEV_{DD}_Core1 which exist on the package for the dual core device, but not on the single core package. A solder ball is present for SENSEV_{SS}_Core1 and needs to be connected to ground with a weak (2-10 k Ω) pull down resistor. Likewise, AV_{DD}_Core1 needs to be pulled to ground as shown in Figure 64.

The mechanical drawing for the single core device is located in Section 16.2, "Mechanical Dimensions of the MPC8641 FC-CBGA."

Ordering Information

21 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 21.1, "Part Numbers Fully Addressed by This Document."

21.1 Part Numbers Fully Addressed by This Document

Table 74 provides the Freescale part numbering nomenclature for the MPC8641. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number.

MC	nnnn	x	xx	nnnn	x	x
Product Code	Part Identifier	Core Count	Package ¹	Core Processor Frequency ² (MHz)	DDR speed (MHz)	Product Revision Level
МС	8641	Blank = Single Core D = Dual Core	HX = High-lead HCTE FC-CBGA VU = RoHS lead-free HCTE FC-CBGA ⁵ VJ = lead-free HCTE FC-CBGA ⁶	1000, 1250, 1333, 1500	N = 500 MHz ⁴ K = 600 MHz J = 533 MHz H = 500 MHz G = 400 MHz	Revision B = 2.0 System Version Register Value for Rev B: $0x8090_0020 - MPC8641$ $0x8090_0120 - MPC8641D$ Revision C = 2.1 System Version Register Value for Rev C: $0x8090_0021 - MPC8641$ $0x8090_0121 - MPC8641D$ Revision E = 3.0 System Version Register Value for Rev E: $0x8090_0030 - MPC8641$ $0x8090_0130 - MPC8641D$

Table 74. Part Numbering Nomenclature

Notes:

- 1. See Section 16, "Package," for more information on available package types.
- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by part number specifications may support other maximum core frequencies.
- 3. The P prefix in a Freescale part number designates a "Pilot Production Prototype" as defined by Freescale SOP 3-13. These parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the fact that product changes may still occur while shipping pilot production prototypes.
- 4. Part Number MC8641xxx1000NX is our low V_{DD} _Core*n* device. V_{DD} _Core*n* = 0.95 V and V_{DD} _PLAT = 1.05 V.
- 5. VU part number is RoHS compliant with the permitted exception of the C4 die bumps.
- 6. VJ part number is entirely lead-free including the C4 die bumps.