

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e600
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.25GHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	1023-BCBGA, FCCBGA
Supplier Device Package	1023-FCCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc8641dtvu1250he

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Support for PCI-Express message-shared interrupts (MSIs)
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Eight chip selects support eight external slaves
- Integrated DMA controller
 - Four-channel controller
 - All channels accessible by both the local and the remote masters
 - Supports transfers to or from any local memory or I/O port
 - Ability to start and flow control each DMA channel from external 3-pin interface
- Device performance monitor
 - Supports eight 32-bit counters that count the occurrence of selected events
 - Ability to count up to 512 counter-specific events
 - Supports 64 reference events that can be counted on any of the 8 counters
 - Supports duration and quantity threshold counting
 - Burstiness feature that permits counting of burst events with a programmable time between bursts
 - Triggering and chaining capability
 - Ability to generate an interrupt on overflow
- Dual I²C controllers
 - Two-wire interface
 - Multiple master support
 - Master or slave I^2C mode support
 - On-chip digital filtering rejects spikes on the bus
- Boot sequencer
 - Optionally loads configuration data from serial ROM at reset via the I^2C interface
 - Can be used to initialize configuration registers and/or memory
 - Supports extended I^2C addressing mode
 - Data integrity checked with preamble signature and CRC
- DUART
 - Two 4-wire interfaces (SIN, SOUT, $\overline{\text{RTS}}$, $\overline{\text{CTS}}$)
 - Programming model compatible with the original 16450 UART and the PC16550D
- IEEE 1149.1-compatible, JTAG boundary scan
- Available as 1023 pin Hi-CTE flip chip ceramic ball grid array (FC-CBGA)

Characteristic		Symbol	Absolute Maximum Value	Unit	Notes
Input voltage	DDR and DDR2 SDRAM signals	D <i>n</i> _MV _{IN}	– 0.3 to (D <i>n</i> _GV _{DD} + 0.3)	V	5
	DDR and DDR2 SDRAM reference	Dn_MV _{REF}	- 0.3 to (D <i>n</i> _GV _{DD} /2 + 0.3)	V	—
	Three-speed Ethernet signals	LV _{IN} TV _{IN}	GND to (LV _{DD} + 0.3) GND to (TV _{DD} + 0.3)	V	5
	DUART, Local Bus, DMA, Multiprocessor Interrupts, System Control & Clocking, Debug, Test, Power management, I ² C, JTAG and Miscellaneous I/O voltage	OV _{IN}	GND to (OV _{DD} + 0.3)	V	5
Storage temperature range		T _{STG}	-55 to 150	°C	

Table 1. A	bsolute	Maximum	Ratings ¹	(continued)
------------	---------	---------	----------------------	-------------

Notes:

1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

- 2. Core 1 characteristics apply only to MPC8641D. If two separate power supplies are used for V_{DD}_Core0 and V_{DD}_Core1, they must be kept within 100 mV of each other during normal run time.
- 3. The -0.3 to 2.75 V range is for DDR and -0.3 to 1.98 V range is for DDR2.
- 4. The 3.63V maximum is only supported when the port is configured in GMII, MII, RMII, or TBI modes; otherwise the 2.75V maximum applies. See Section 8.2, "FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications," for details on the recommended operating conditions per protocol.
- 5. During run time (M,L,T,O)V_{IN} and D*n*_MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.

2.1.2 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8641. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed. For details on order information and specific operating conditions for parts, see Section 21, "Ordering Information."

Characteristic	Symbol	Recommended Value	Unit	Notes
Cores supply voltages	V _{DD} _Core0,	1.10 ± 50 mV	V	1, 2, 8
	V _{DD} _Core1	1.05 ± 50 mV		1, 2, 7
		0.95 ± 50 mV		1, 2, 12
Cores PLL supply	AV _{DD} Core0, AV _{DD} Core1	1.10 ± 50 mV	V	8, 13
		1.05 ± 50 mV		7, 13
		0.95 ± 50 mV		12, 13
SerDes Transceiver Supply (Ports 1 and 2)	SV _{DD}	1.10 ± 50 mV	V	8, 11
		1.05 ± 50 mV		7, 11

Table 2. Recommended Operating Conditions

Power Characteristics

The power dissipation for the MPC8641 single core device is shown in Table 6.

Power Mode	Core Frequency (MHz)	Platform Frequency (MHz)	V _{DD} _Coren, V _{DD} _PLAT (Volts)	Junction Temperature	Power (Watts)	Notes	
Typical				65 °C	20.3	1, 2	
Thermal	1500 MHz	600 MHz	1.1 V		25.2	1, 3	
Maxim				105 °C	28.9	1, 4	
Typical				65 ^o C	16.3	1, 2	
Thermal	1333 MHz	533 MHz	1.05 V		20.2	1, 3	
Maximum					105 °C	23.2	1, 4
Typical			4.05.14	65 ^o C	16.3	1, 2	
Thermal	1250 MHz	500 MHz	1.05 V		20.2	1, 3	
Maximum				105 °C	23.2	1, 4	
Typical			4.05.14	65 ^o C	16.3	1, 2	
Thermal	1000 MHz	400 MHZ	1.05 V		20.2	1, 3	
Maximum				105 °C	23.2	1, 4	
Typical		500 MU	0.05.1/	65 ^o C	11.6	1, 2, 5	
Thermal	1000 MHZ	500 MHZ	0.95 V, 1.05 V		14.4	1, 3, 5	
Maximum				105 °C	16.5	1, 4, 5	

Table 6. MPC8641 Power Dissipation (Single Core)

Notes:

1. These values specify the power consumption at nominal voltage and apply to all valid processor bus frequencies and configurations. The values do not include power dissipation for I/O supplies.

2. Typical power is an average value measured at the nominal recommended core voltage (V_{DD}_Core*n*) and 65°C junction temperature (see Table 2)while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz.

3. Thermal power is the average power measured at nominal core voltage (V_{DD}_Core*n*) and maximum operating junction temperature (see Table 2) while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz and a typical workload on platform interfaces.

4. Maximum power is the maximum power measured at nominal core voltage (V_{DD}_Coren) and maximum operating junction temperature (see Table 2) while running a test which includes an entirely L1-cache-resident, contrived sequence of instructions which keep all the execution units maximally busy.

5. These power numbers are for Part Number MC8641xx1000NX only. V_{DD}_Coren = 0.95 V and V_{DD}_PLAT = 1.05 V.

Table 10. ECn_GTX_CLK125 AC Timing Specifications (continued)

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
EC <i>n</i> _GTX_CLK125 duty cycle GMII, TBI 1000Base-T for RGMII, RTBI	t _{G125H} /t _{G125}	45 47	_	55 53	%	1, 2

Notes:

1. Timing is guaranteed by design and characterization.

2. ECn_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. ECn_GTX_CLK125 duty cycle can be loosened from 47/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC GTX_CLK. See Section 8.2.6, "RGMII and RTBI AC Timing Specifications," for duty cycle for 10Base-T and 100Base-T reference clock.

3. ±100 ppm tolerance on ECn_GTX_CLK125 frequency

NOTE

The phase between the output clocks TSEC1_GTX_CLK and TSEC2_GTX_CLK (ports 1 and 2) is no more than 100 ps. The phase between the output clocks TSEC3_GTX_CLK and TSEC4_GTX_CLK (ports 3 and 4) is no more than 100 ps.

4.4 Platform Frequency Requirements for PCI-Express and Serial RapidIO

The MPX platform clock frequency must be considered for proper operation of the high-speed PCI Express and Serial RapidIO interfaces as described below.

For proper PCI Express operation, the MPX clock frequency must be greater than or equal to:

527 MHz x (PCI-Express link width) 16 / (1 + cfg_plat_freq)

Note that at MPX = 400 MHz, cfg_plat_freq = 0 and at MPX > 400 MHz, cfg_plat_freq = 1. Therefore, when operating PCI Express in x8 link width, the MPX platform frequency must be 400 MHz with cfg_plat_freq = 0 or greater than or equal to 527 MHz with cfg_plat_freq = 1.

For proper Serial RapidIO operation, the MPX clock frequency must be greater than or equal to:

2 × (0.8512) × (Serial RapidIO interface frequency) × (Serial RapidIO link width)

64

4.5 Other Input Clocks

For information on the input clocks of other functional blocks of the platform such as SerDes, and eTSEC, see the specific section of this document.

DDR and DDR2 SDRAM

Table 15 provides the recommended operating conditions for the DDR SDRAM component(s) when $Dn_GV_{DD}(typ) = 2.5 \text{ V}.$

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	D <i>n_</i> GV _{DD}	2.375	2.625	V	1
I/O reference voltage	Dn_MV _{REF}	$0.49 \times Dn_GV_{DD}$	$0.51 \times Dn_GV_{DD}$	V	2
I/O termination voltage	V _{TT}	D <i>n</i> _MV _{REF} – 0.04	D <i>n</i> _MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	D <i>n</i> _MV _{REF} + 0.15	D <i>n</i> _GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	D <i>n</i> _MV _{REF} - 0.15	V	—
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-16.2	—	mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	16.2	_	mA	—

Table	15 DDR	SDRAM DC	Electrical	Characteristics	for Dn	GV	(tvn)	- 251	/
lable	15. DDn	SURAW DC	Electrical	Characteristics			(LYP)	= 2.5	

Notes:

1. Dn_GV_{DD} is expected to be within 50 mV of the DRAM Dn_GV_{DD} at all times.

2. MV_{REF} is expected to be equal to $0.5 \times Dn_{GV_{DD}}$, and to track $Dn_{GV_{DD}}$ DC variations as measured at the receiver. Peak-to-peak noise on $Dn_{MV_{REF}}$ may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to Dn_MV_{REF}. This rail should track variations in the DC level of Dn_MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq D*n*_GV_{DD}.

Table 16 provides the DDR capacitance when $Dn \text{ } \text{GV}_{DD}$ (typ)=2.5 V.

Table 16. DDR SDRAM Capacitance for Dn_GV_{DD} (typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $Dn_GV_{DD} = 2.5 V \pm 0.125 V$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = Dn_GVDD/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 17 provides the current draw characteristics for MV_{REF} .

Table 17. Current Draw Characteristics for MV_{REF}

Parameter / Condition	Symbol	Min	Max	Unit	Note
Current draw for MV _{REF}	I _{MVREF}	—	500	μA	1

1. The voltage regulator for MV_{REF} must be able to supply up to 500 μA current.

Figure 7 provides the AC test load for the DDR bus.

Figure 7. DDR AC Test Load

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8641.

7.1 DUART DC Electrical Characteristics

Table 22 provides the DC electrical characteristics for the DUART interface.

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current $(V_{IN} \ ^{1} = 0 \ V \text{ or } V_{IN} = V_{DD})$	I _{IN}	—	±5	μΑ
High-level output voltage (OV _{DD} = min, I _{OH} = −100 μA)	V _{OH}	OV _{DD} - 0.2	_	V
Low-level output voltage ($OV_{DD} = min, I_{OL} = 100 \mu A$)	V _{OL}	_	0.2	V

Table 22. DUART DC Electrical Characteristics

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.2 DUART AC Electrical Specifications

Table 23 provides the AC timing parameters for the DUART interface.

Table 23. DUART AC Timing Specifications

Parameter	Value	Unit	Notes
Minimum baud rate	MPX clock/1,048,576	baud	1,2
Maximum baud rate	MPX clock/16	baud	1,3
Oversample rate	16		1,4

Notes:

1. Guaranteed by design.

- 2. MPX clock refers to the platform clock.
- 3. Actual attainable baud rate will be limited by the latency of interrupt processing.
- 4. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

This section provides the AC and DC electrical characteristics for enhanced three-speed and MII management.

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics

The electrical characteristics specified here apply to all gigabit media independent interface (GMII), media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), and reduced media independent interface (RMII) signals except management data input/output (MDIO) and management data clock (MDC). The RGMII and RTBI interfaces are defined for 2.5 V, while the GMII and TBI interfaces can be operated at 3.3 or 2.5 V. Whether the GMII or TBI interface is operated at 3.3 or 2.5 V, the timing is compatible with IEEE 802.3. The RGMII and RTBI interfaces follow the Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3 (12/10/2000). The RMII interface follows the RMII Consortium RMII Specification Version 1.2 (3/20/1998). The electrical characteristics for MDIO and MDC are specified in Section 9, "Ethernet Management Interface Electrical Characteristics."

8.1.1 eTSEC DC Electrical Characteristics

All GMII, MII, TBI, RGMII, RMII and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 24 and Table 25. The potential applied to the input of a GMII, MII, TBI, RGMII, RMII or RTBI receiver may exceed the potential of the receiver's power supply (that is, a GMII driver powered from a 3.6-V supply driving V_{OH} into a GMII receiver powered from a 2.5-V supply). Tolerance for dissimilar GMII driver and receiver supply potentials is implicit in these specifications. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Min	Мах	Unit	Notes
Supply voltage 3.3 V	LV _{DD} TV _{DD}	3.135	3.465	V	1, 2
Output high voltage $(LV_{DD}/TV_{DD} = Min, I_{OH} = -4.0 \text{ mA})$	V _{OH}	2.40	_	V	—
Output low voltage $(LV_{DD}/TV_{DD} = Min, I_{OL} = 4.0 \text{ mA})$	V _{OL}	_	0.50	V	_
Input high voltage	V _{IH}	2.0	—	V	_
Input low voltage	V _{IL}	—	0.90	V	_
Input high current $(V_{IN} = LV_{DD}, V_{IN} = TV_{DD})$	IIH	_	40	μA	1, 2,3

Table 24. GMII, MII, RMII, TBI and FIFO DC Electrical Characteristics

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

Timing diagrams for FIFO appear in Figure 8 and Figure 9.

Figure 9. FIFO Receive AC Timing Diagram

8.2.2 GMII AC Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.2.1 GMII Transmit AC Timing Specifications

Table 28 provides the GMII transmit AC timing specifications.

Table 28. GMII Transmit AC Timing Specifications

At recommended operating conditions with L/TV_DD of 3.3 V \pm 5% and 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
GMII data TXD[7:0], TX_ER, TX_EN setup time	t _{GTKHDV}	2.5	_	—	ns
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	t _{GTKHDX}	0.5	—	5.0	ns
GTX_CLK data clock rise time (20%-80%)	t _{GTXR} 2	_	_	1.0	ns

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2.3.2 MII Receive AC Timing Specifications

Table 31 provides the MII receive AC timing specifications.

Table 31. MII Receive AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX} 2,3	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX} ³	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise time (20%-80%)	t _{MRXR} 2	1.0	—	4.0	ns
RX_CLK clock fall time (80%-20%)	t _{MRXF} 2	1.0	—	4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

3. ±100 ppm tolerance on RX_CLK frequency

Figure 14 provides the AC test load for eTSEC.

Figure 14. eTSEC AC Test Load

Figure 15 shows the MII receive AC timing diagram.

Figure 15. MII Receive AC Timing Diagram

Table 45. I²C DC Electrical Characteristics (continued)

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Parameter	Symbol	Min	Max	Unit	Notes
Capacitance for each I/O pin	CI	_	10	pF	

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. Refer to the MPC8641 Integrated Host Processor Reference Manual for information on the digital filter used.

3. I/O pins will obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

12.2 I²C AC Electrical Specifications

Table 46 provides the AC timing parameters for the I^2C interfaces.

Table 46. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 45).

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL} 4	1.3	—	μS
High period of the SCL clock	t _{I2CH} 4	0.6	—	μS
Setup time for a repeated START condition	t _{I2SVKH} 4	0.6	—	μS
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL} 4	0.6	—	μS
Data setup time	t _{I2DVKH} 4	100	_	ns
Data input hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	0 ²	_	μs
Rise time of both SDA and SCL signals	t _{I2CR}	20 + 0.1 C _B ⁵	300	ns
Fall time of both SDA and SCL signals	t _{I2CF}	20 + 0.1 C _b ⁵	300	ns
Data output delay time	t _{I2OVKL}	—	0.9 ³	μS
Set-up time for STOP condition	^t I2PVKH	0.6	—	μS
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μS
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$		V

Figure 48. Single-Ended Measurement Points for Rise and Fall Time Matching

The other detailed AC requirements of the SerDes Reference Clocks is defined by each interface protocol based on application usage. Refer to the following sections for detailed information:

- Section 14.2, "AC Requirements for PCI Express SerDes Clocks"
- Section 15.2, "AC Requirements for Serial RapidIO SDn_REF_CLK and SDn_REF_CLK"

13.3 SerDes Transmitter and Receiver Reference Circuits

Figure 49 shows the reference circuits for SerDes data lane's transmitter and receiver.

Figure 49. SerDes Transmitter and Receiver Reference Circuits

The DC and AC specification of SerDes data lanes are defined in each interface protocol section below (PCI Express or Serial Rapid IO) in this document based on the application usage:"

- Section 14, "PCI Express"
- Section 15, "Serial RapidIO"

Note that external AC Coupling capacitor is required for the above two serial transmission protocols with the capacitor value defined in specification of each protocol section.

14 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8641.

Transmitter Type	V _{DIFF} min (mV)	V _{DIFF} max (mV)	A (UI)	B (UI)
1.25 GBaud short range	250	500	0.175	0.39
1.25 GBaud long range	400	800	0.175	0.39
2.5 GBaud short range	250	500	0.175	0.39
2.5 GBaud long range	400	800	0.175	0.39
3.125 GBaud short range	250	500	0.175	0.39
3.125 GBaud long range	400	800	0.175	0.39

Table 58. Transmitter Differential Output Eye Diagram Parameters

15.7 Receiver Specifications

LP-Serial receiver electrical and timing specifications are stated in the text and tables of this section.

Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode return loss better than 6 dB from 100 MHz to (0.8)*(Baud Frequency). This includes contributions from on-chip circuitry, the chip package and any off-chip components related to the receiver. AC coupling components are included in this requirement. The reference impedance for return loss measurements is 100 Ohm resistive for differential return loss and 25 Ohm resistive for common mode.

Characteristic	Symbol	Range		Unit	Natas	
Characteristic	Symbol	Min	Мах	Unit	Notes	
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver	
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver	
Total Jitter Tolerance ¹	J _T	0.65	—	UI p-p	Measured at receiver	
Multiple Input Skew	S _{MI}	—	24	ns	Skew at the receiver input between lanes of a multilane link	
Bit Error Rate	BER	—	10 ⁻¹²	—	—	
Unit Interval	UI	800	800	ps	+/– 100 ppm	

Table 59. Receiver AC Timing Specifications—1.25 GBaud

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 55. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Characteristic	Symbol	Range		Unit	Netes	
Characteristic	Symbol	Min	Мах	Unit	Notes	
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver	
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver	
Total Jitter Tolerance ¹	J _T	0.65	_	UI p-p	Measured at receiver	
Multiple Input Skew	S _{MI}	_	24	ns	Skew at the receiver input between lanes of a multilane link	
Bit Error Rate	BER	—	10 ⁻¹²	_	—	
Unit Interval	UI	400	400	ps	+/– 100 ppm	

Table	60.	Receiver	AC	Timing	Specifications-	-2.5	GBaud
-------	-----	----------	----	--------	-----------------	------	-------

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 55. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Tuble of Theorem Ao Thining opcontoutions 0.120 abudu

Characteristic	Symbol	Range		Unit	Notos	
Unaracteristic	Symbol	Min	Мах	Onic	Notes	
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver	
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver	
Total Jitter Tolerance ¹	J _T	0.65	—	UI p-p	Measured at receiver	
Multiple Input Skew	S _{MI}	—	22	ns	Skew at the receiver input between lanes of a multilane link	
Bit Error Rate	BER	—	10 ⁻¹²	_	—	
Unit Interval	UI	320	320	ps	+/- 100 ppm	

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 55. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Continuous Jitter Test Pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10^{-12} . The eye pattern shall be measured with AC coupling and the compliance template centered at 0 Volts differential. The left and right edges of the template shall be aligned with the mean zero crossing points of the measured data eye. The load for this test shall be 100Ω resistive +/- 5% differential to 2.5 GHz.

15.9.2 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (Baud Frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter Test Pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured with AC coupling and at 0 Volts differential. Jitter measurement for the transmitter (or for calibration of a jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described in Annex 48B of IEEE 802.3ae.

15.9.3 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive +/- 5% differential to 2.5 GHz.

15.9.4 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first producing the sum of deterministic and random jitter defined in Section 8.6 and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template shown in Figure 8-4 and Table 8-11. Note that for this to occur, the test signal must have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter specified in Section 8.6 is then added to the signal and the test load is replaced by the receiver being tested.

17 Signal Listings

Table 63 provides the pin assignments for the signals. Notes for the signal changes on the single core device (MPC8641) are italicized and prefixed by "*S*".

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes					
DDR Memory Interface 1 Signals ^{2,3}									
D1_MDQ[0:63]	D15, A14, B12, D12, A15, B15, B13, C13, C11, D11, D9, A8, A12, A11, A9, B9, F11, G12, K11, K12, E10, E9, J11, J10, G8, H10, L9, L7, F10, G9, K9, K8, AC6, AC7, AG8, AH9, AB6, AB8, AE9, AF9, AL8, AM8, AM10, AK11, AH8, AK8, AJ10, AK10, AL12, AJ12, AL14, AM14, AL11, AM11, AM13, AK14, AM15, AJ16, AK18, AL18, AJ15, AL15, AL17, AM17	I/O	D1_GV _{DD}						
D1_MECC[0:7]	M8, M7, R8, T10, L11, L10, P9, R10	I/O	D1_GV _{DD}	_					
D1_MDM[0:8]	C14, A10, G11, H9, AD7, AJ9, AM12, AK16, N10	0	D1_GV _{DD}	_					
D1_MDQS[0:8]	A13, C10, H12, J7, AE8, AM9, AK13, AK17, N9	I/O	D1_GV _{DD}	_					
D1_MDQS[0:8]	D14, B10, H13, J8, AD8, AL9, AJ13, AM16, P10	I/O	D1_GV _{DD}	_					
D1_MBA[0:2]	AA8, AA10, T9	0	D1_GV _{DD}	_					
D1_MA[0:15]	Y10, W8, W9, V7, V8, U6, V10, U9, U7, U10, Y9, T6, T8, AE12, R7, P6	0	D1_GV _{DD}	_					
D1_MWE	AB11	0	D1_GV _{DD}	_					
D1_MRAS	AB12	0	D1_GV _{DD}	_					
D1_MCAS	AC10	0	D1_GV _{DD}	_					
D1_MCS[0:3]	AB9, AD10, AC12, AD11	0	D1_GV _{DD}	—					
D1_MCKE[0:3]	P7, M10, N8, M11	0	D1_GV _{DD}	23					
D1_MCK[0:5]	W6, E13, AH11, Y7, F14, AG10	0	D1_GV _{DD}	—					
D1_MCK[0:5]	Y6, E12, AH12, AA7, F13, AG11	0	D1_GV _{DD}	—					
D1_MODT[0:3]	AC9, AF12, AE11, AF10	0	D1_GV _{DD}	—					
D1_MDIC[0:1]	E15, G14	IO	D1_GV _{DD}	27					
D1_MV _{REF}	AM18	DDR Port 1 reference voltage	D1_GV _{DD} /2	3					
DDR Memory Interface 2 Signals ^{2,3}									

Table 63. MPC8641 Signal Reference by Functional Block

Signal Listings

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
XV _{DD} _SRDS2	AA25, AB28, AC26, AD27, AE25, AF28, AH27, AK28, AM27, W24, Y27	Serial I/O Power Supply for SerDes Port 2	XV _{DD} _SRDS2 1.05/1.1 V	_
V _{DD} _Core0	L12, L13, L14, M13, M15, N12, N14, P11, P13, P15, R12, R14, T11, T13, T15, U12, U14, V11, V13, V15, W12, W14, Y12, Y13, Y15, AA12, AA14, AB13	Core 0 voltage supply	V _{DD} _Core0 0.95/1.05/1.1 V	_
V _{DD} _Core1	R16, R18, R20, T17, T19, T21, T23, U16, U18, U22, V17, V19, V21, V23, W16, W18, W20, W22, Y17, Y19, Y21, Y23, AA16, AA18, AA20, AA22, AB23, AC24	Core 1 voltage supply	V _{DD} _Core1 0.95/1.05/1.1 V	12, <i>S1</i>
V _{DD} _PLAT	M16, M17, M18, N16, N20, N22, P17, P19, P21, P23, R22	Platform supply voltage	V _{DD} _PLAT 1.05/1.1 V	_
AV _{DD} _Core0	B20	Core 0 PLL Supply	AV _{DD} _Core0 0.95/1.05/1.1 V	_
AV _{DD} _Core1	A19	Core 1 PLL Supply	AV _{DD} _Core1 0.95/1.05/1.1 V	12, <i>S2</i>
AV _{DD} _PLAT	B19	Platform PLL AV _{DD} PLAT supply voltage 1.05/1.1 V		_
AV _{DD} _LB	A20	Local Bus PLL AV _{DD} _LB supply voltage 1.05/1.1 V		_
AV _{DD} _SRDS1	P32	SerDes Port 1 PLL & DLL Power Supply	AV _{DD} _SRDS1 1.05/1.1 V	_
AV _{DD} _SRDS2	AF32	SerDes Port 2 PLL & DLL Power Supply	AV _{DD} _SRDS2 1.05/1.1 V	_
GND	C3, C6, C9, C12, C15, C23, C26, E5, E8, E11, E14, E18, E25, E28, F3, G7, G10, G13, G20, G23, G27, G30, H5, J3, J9, J12, J15, J22, J25, K7, L5, L20, M3, M9, M12, N7, N11, N13, N15, N17, N19, N21, N23, P5, P12, P16, P20, P22, R3, R9, R11, R13, R15, R17, R19, R21, R23, T7, T12, T14, T16, T18, T20, T22, U5, U11,U13, U15, U17, U19, U21, U23, V3, V9, V12, V14, V16, V18, V22, W7, W11, W13, W15, W17, W19, W21, W23, Y5, Y14, Y16, Y18, Y20, Y22, AA3, AA9, AA13, AA15, AA17, AA19, AA21, AA23, AB7, AB24, AC5, AC11, AD3, AD9, AD15, AE7, AE13, AE18, AF5, AF11, AF21, AF24, AG3, AG9, AH7, AH13, AJ5, AJ11, AK3, AK9, AK15, AK19, AK23, AL7, AL13	GND	_	

Table 63. MPC8641 Signal Reference by Functional Block (contin	nued)
--	-------

Table 65. Memory Bus Clocking Specifications

Charactoristic	Maximum Processor Core Frequency		Unit	Notes
Unaracteristic	1000, 1250, 1333, 1500MHz			
	Min	Мах		
Memory bus clock frequency	200	300	MHz	1, 2

Notes:

1. Caution: The MPX clock to SYSCLK ratio and e600 core to MPX clock ratio settings must be chosen such that the resulting SYSCLK frequency, e600 (core) frequency, and MPX clock frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 18.2, "MPX to SYSCLK PLL Ratio," and Section 18.3, "e600 to MPX clock PLL Ratio," for ratio settings.

2. The memory bus clock speed is half the DDR/DDR2 data rate, hence, half the MPX clock frequency.

Table 66.	Platform/MPX	bus Clocking	Specifications	

	Maximum Processor Core Frequency		Unit	Notes
Characteristic	1000, 1250, 1333, 1500MHz			
	Min	Мах		
Platform/MPX bus clock frequency	400	500-600	MHz	1, 2

Notes:

1. **Caution:** The MPX clock to SYSCLK ratio and e600 core to MPX clock ratio settings must be chosen such that the resulting SYSCLK frequency, e600 (core) frequency, and MPX clock frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 18.2, "MPX to SYSCLK PLL Ratio," and Section 18.3, "e600 to MPX clock PLL Ratio," for ratio settings.

2. Platform/MPX frequencies between 400 and 500 MHz are not supported.

Table 67. Local Bus Clocking Specifications

	Maximum Processor Core Frequency		Unit	Notes
Characteristic	1000, 1250, 1333, 1500MHz			
	Min	Мах		
Local bus clock speed (for Local Bus Controller)	25	133	MHz	1

Notes:

1. The Local bus clock speed on LCLK[0:2] is determined by MPX clock divided by the Local Bus PLL ratio programmed in LCRR[CLKDIV]. See the reference manual for the MPC8641D for more information on this.

18.2 MPX to SYSCLK PLL Ratio

The MPX clock is the clock that drives the MPX bus, and is also called the platform clock. The frequency of the MPX is set using the following reset signals, as shown in Table 68:

• SYSCLK input signal

Tyco Electronics800-522-6752Chip CoolersTMP.O. Box 3668Harrisburg, PA 17105-3668Internet: www.chipcoolers.comWakefield Engineering603-635-510233 Bridge St.Pelham, NH 03076Internet: www.wakefield.comInternet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost.

19.2.1 Internal Package Conduction Resistance

For the exposed-die packaging technology described in Table 71, the intrinsic conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)
- The die junction-to-board thermal resistance

Figure 60 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

Figure 60. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach material (or thermal interface material), and finally to the heat sink where it is removed by forced-air convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected for a first-order analysis. Thus the thermal interface material and the heat sink conduction/convective thermal resistances are the dominant terms.

example, assuming a T_i of 30°C, a T_r of 5°C, a package $R_{\theta JC} = 0.1$, and a typical power consumption (P_d) of 43.4 W, the following expression for T_i is obtained:

Die-junction temperature: $T_i = 30^{\circ}C + 5^{\circ}C + (0.1^{\circ}C/W + 0.2^{\circ}C/W + \theta_{sa}) \times 43.4 W$

For this example, a $R_{\theta sa}$ value of 1.32 °C/W or less is required to maintain the die junction temperature below the maximum value of Table 2.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common figure-of-merit used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system-level design and its operating conditions. In addition to the component's power consumption, a number of factors affect the final operating die-junction temperature—airflow, board population (local heat flux of adjacent components), heat sink efficiency, heat sink placement, next-level interconnect technology, system air temperature rise, altitude, and so on.

Due to the complexity and variety of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as well as system-level designs.

For system thermal modeling, the MPC8641 thermal model is shown in Figure 62. Four cuboids are used to represent this device. The die is modeled as 12.4x15.3 mm at a thickness of 0.86 mm. See Section 3, "Power Characteristics" for power dissipation details. The substrate is modeled as a single block 33x33x1.2 mm with orthotropic conductivity: $13.5 \text{ W/(m} \cdot \text{K})$ in the xy-plane and $5.3 \text{ W/(m} \cdot \text{K})$ in the z-direction. The die is centered on the substrate. The bump/underfill layer is modeled as a collapsed thermal resistance between the die and substrate with a conductivity of $5.3 \text{ W/(m} \cdot \text{K})$ in the thickness dimension of 0.07 mm. Because the bump/underfill is modeled with zero physical dimension (collapsed height), the die thickness was slightly enlarged to provide the correct height. The C5 solder layer is modeled as a cuboid with dimensions 33x33x0.4 mm and orthotropic thermal conductivity of $0.034 \text{ W/(m} \cdot \text{K})$ in the xy-plane and $9.6 \text{ W/(m} \cdot \text{K})$ in the z-direction. An LGA solder layer would be modeled as a collapsed thermal resistance with thermal conductivity of $9.6 \text{W/(m} \cdot \text{K})$ and an effective height of 0.1 mm. The thermal model uses approximate dimensions to reduce grid. Please refer to the case outline for actual dimensions.

System Design Information

Notes:

- 1. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.

Figure 68. JTAG/COP Interface Connection for one MPC8641 device