E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e600
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.5GHz
Co-Processors/DSP	·
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	1023-BCBGA, FCCBGA
Supplier Device Package	1023-FCCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc8641dvj1500ke

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Recommended Operating Conditions (continued)

Characteristic	Symbol	Recommended Value	Unit	Notes
Junction temperature range	TJ	0 to 105	°C	

Notes:

- 1. Core 1 characteristics apply only to MPC8641D
- 2. If two separate power supplies are used for V_{DD}_Core0 and V_{DD}_Core1, they must be at the same nominal voltage and the individual power supplies must be tracked and kept within 100 mV of each other during normal run time.
- 3. Caution: Dn_MV_{IN} must meet the overshoot/undershoot requirements for Dn_GV_{DD} as shown in Figure 2.
- 4. Caution: L/TV_{IN} must meet the overshoot/undershoot requirements for L/TV_{DD} as shown in Figure 2 during regular run time.
- 5. Caution: OV_{IN} must meet the overshoot/undershoot requirements for OV_{DD} as shown in Figure 2 during regular run time.
- 6. Timing limitations for M,L,T,O)V_{IN} and Dn_MV_{REF} during regular run time is provided in Figure 2
- 7. Applies to devices marked with a core frequency of 1333 MHz and below. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for a core frequency of 1333 MHz and below.
- 8. Applies to devices marked with a core frequency above 1333 MHz. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for a core frequency above 1333 MHz.
- 9. The 2.5 V \pm 125 mV range is for DDR and 1.8 V \pm 90 mV range is for DDR2.
- 10. See Section 8.2, "FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications," for details on the recommended operating conditions per protocol.
- 11. The PCI Express interface of the device is expected to receive signals from 0.175 to 1.2 V. For more information refer to Section 14.4.3, "Differential Receiver (RX) Input Specifications."
- 12. Applies to Part Number MC8641xxx1000NX only. V_{DD} _Core n = 0.95 V and V_{DD} _PLAT = 1.05 V devices. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for V_{DD} _Core n = 0.95 V.
- 13. This voltage is the input to the filter discussed in Section 20.2, "Power Supply Design and Sequencing," and not necessarily the voltage at the AV_{DD}_Core*n* pin, which may be reduced from V_{DD}_Core*n* by the filter.

4 Input Clocks

Table 7 provides the system clock (SYSCLK) DC specifications for the MPC8641.

Table 7. SYSCLK DC Electrical Characteristics (OVDD = 3.3 V ± 165 mV)

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current $(V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD})$	I _{IN}		±5	μA

Note:

1. Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

4.1 System Clock Timing

Table 8 provides the system clock (SYSCLK) AC timing specifications for the MPC8641.

Table 8. SYSCLK AC Timing Specifications

At recommended operating conditions (see Table 2) with $OV_{DD} = 3.3 \text{ V} \pm 165 \text{ mV}$.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
SYSCLK frequency	fsysclk	66	—	166.66	MHz	1
SYSCLK cycle time	t _{SYSCLK}	6	—	_	ns	_
SYSCLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	1.2	ns	2
SYSCLK duty cycle	t _{KHK} /t _{SYSCLK}	40	—	60	%	3
SYSCLK jitter	_			150	ps	4, 5

Notes:

- Caution: The MPX clock to SYSCLK ratio and e600 core to MPX clock ratio settings must be chosen such that the resulting SYSCLK frequency, e600 (core) frequency, and MPX clock frequency do not exceed their respective maximum or minimum operating frequencies. See Section 18.2, "MPX to SYSCLK PLL Ratio," and Section 18.3, "e600 to MPX clock PLL Ratio," for ratio settings.
- 2. Rise and fall times for SYSCLK are measured at 0.4 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the short term jitter only and is guaranteed by design.
- 5. The SYSCLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track SYSCLK drivers with the specified jitter. Note that the frequency modulation for SYSCLK reduces significantly for the spread spectrum source case. This is to guarantee what is supported based on design.

4.1.1 SYSCLK and Spread Spectrum Sources

Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise magnitude in order to meet industry and government requirements. These clock sources intentionally add long-term jitter in order to diffuse the EMI spectral content. The jitter specification given in Table 8 considers short-term (cycle-to-cycle) jitter only and the clock generator's cycle-to-cycle output jitter

6 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8641. Note that DDR SDRAM is $Dn_GV_{DD}(typ) = 2.5$ V and DDR2 SDRAM is $Dn_GV_{DD}(typ) = 1.8$ V.

6.1 DDR SDRAM DC Electrical Characteristics

Table 13 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8641 when $Dn_{GV}(typ) = 1.8 V$.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	D <i>n_</i> GV _{DD}	1.71	1.89	V	1
I/O reference voltage	Dn_MV _{REF}	$0.49 \times Dn_{GV_{DD}}$ $0.51 \times Dn_{GV_{DD}}$		V	2
I/O termination voltage	V _{TT}	D <i>n</i> _MV _{REF} – 0.0 4	D <i>n_</i> MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	D <i>n_</i> MV _{REF} + 0.1 25	D <i>n_</i> GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	D <i>n</i> _MV _{REF} - 0.125	V	_
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.420 V)	I _{ОН}	-13.4	_	mA	_
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	—	mA	—

Table 13. DDR2 SDRAM DC Electrical Characteristics for Dn_GV_{DD}(typ) = 1.8 V

Notes:

1. $Dn_{GV_{DD}}$ is expected to be within 50 mV of the DRAM $Dn_{GV_{DD}}$ at all times.

2. Dn_MV_{REF} is expected to be equal to $0.5 \times Dn_GV_{DD}$, and to track Dn_GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on Dn_MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to Dn_MV_{REF}. This rail should track variations in the DC level of Dn_MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq Dn_GV_{DD}.

Table 14 provides the DDR2 capacitance when $Dn_{GV_{DD}(typ)} = 1.8 \text{ V}$.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $Dn_GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = Dn_GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

8 Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

This section provides the AC and DC electrical characteristics for enhanced three-speed and MII management.

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics

The electrical characteristics specified here apply to all gigabit media independent interface (GMII), media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), and reduced media independent interface (RMII) signals except management data input/output (MDIO) and management data clock (MDC). The RGMII and RTBI interfaces are defined for 2.5 V, while the GMII and TBI interfaces can be operated at 3.3 or 2.5 V. Whether the GMII or TBI interface is operated at 3.3 or 2.5 V, the timing is compatible with IEEE 802.3. The RGMII and RTBI interfaces follow the Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3 (12/10/2000). The RMII interface follows the RMII Consortium RMII Specification Version 1.2 (3/20/1998). The electrical characteristics for MDIO and MDC are specified in Section 9, "Ethernet Management Interface Electrical Characteristics."

8.1.1 eTSEC DC Electrical Characteristics

All GMII, MII, TBI, RGMII, RMII and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 24 and Table 25. The potential applied to the input of a GMII, MII, TBI, RGMII, RMII or RTBI receiver may exceed the potential of the receiver's power supply (that is, a GMII driver powered from a 3.6-V supply driving V_{OH} into a GMII receiver powered from a 2.5-V supply). Tolerance for dissimilar GMII driver and receiver supply potentials is implicit in these specifications. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Min	Мах	Unit	Notes
Supply voltage 3.3 V	LV _{DD} TV _{DD}	3.135	3.465	V	1, 2
Output high voltage $(LV_{DD}/TV_{DD} = Min, I_{OH} = -4.0 \text{ mA})$	V _{OH}	2.40	_	V	—
Output low voltage $(LV_{DD}/TV_{DD} = Min, I_{OL} = 4.0 \text{ mA})$	V _{OL}	_	0.50	V	_
Input high voltage	V _{IH}	2.0	—	V	_
Input low voltage	V _{IL}	—	0.90	V	_
Input high current $(V_{IN} = LV_{DD}, V_{IN} = TV_{DD})$	IIH	_	40	μA	1, 2,3

Table 24. GMII, MII, RMII, TBI and FIFO DC Electrical Characteristics

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2.7.2 RMII Receive AC Timing Specifications

Table 37. RMII Receive AC Timing Specifications

At recommended operating conditions with L/TV_DD of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
REF_CLK clock period	t _{RMR}	15.0	20.0	25.0	ns
REF_CLK duty cycle	t _{RMRH} /t _{RMR}	35	50	65	%
REF_CLK peak-to-peak jitter	t _{RMRJ}	—	_	250	ps
Rise time REF_CLK (20%–80%)	t _{RMRR}	1.0	_	2.0	ns
Fall time REF_CLK (80%–20%)	t _{RMRF}	1.0	—	2.0	ns
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK rising edge	t _{RMRDV}	4.0	_	_	ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK rising edge	t _{RMRDX}	2.0	_	_	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 21 provides the AC test load for eTSEC.

Figure 21. eTSEC AC Test Load

Figure 22 shows the RMII receive AC timing diagram.

Figure 22. RMII Receive AC Timing Diagram

Ethernet Management Interface Electrical Characteristics

Table 39. MII Management AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} is 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDIO to MDC hold time	t _{MDDXKH}	0	-	—	ns	_
MDC rise time	t _{MDCR}	—	-	10	ns	4
MDC fall time	t _{MDHF}	—	-	10	ns	4

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and $t_{(first two letters of functional block)(reference)(state)(signal)(state)}$ for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

- 2. This parameter is dependent on the system clock speed. (The maximum frequency is the maximum platform frequency divided by 64.)
- 3. This parameter is dependent on the system clock speed. (That is, for a system clock of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a system clock of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz.)
- 4. Guaranteed by design.
- 5. t_{MPXCLK} is the platform (MPX) clock

Figure 23 provides the AC test load for eTSEC.

Figure 23. eTSEC AC Test Load

NOTE

Output will see a 50- Ω load since what it sees is the transmission line.

Figure 24 shows the MII management AC timing diagram.

Figure 24. MII Management Interface Timing Diagram

10 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8641.

10.1 Local Bus DC Electrical Characteristics

Table 40 provides the DC electrical characteristics for the local bus interface operating at $OV_{DD} = 3.3 \text{ V}$ DC.

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current $(V_{IN}^{1} = 0 V \text{ or } V_{IN} = OV_{DD})$	I _{IN}	_	±5	μA
High-level output voltage (OV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	OV _{DD} – 0.2	_	V
Low-level output voltage (OV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	—	0.2	V

Table 40. Local Bus DC Electrical Characteristics (3.3 V DC)

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

10.2 Local Bus AC Electrical Specifications

Table 41 describes the timing parameters of the local bus interface at $OV_{DD} = 3.3$ V with PLL enabled. For information about the frequency range of local bus see Section 18.1, "Clock Ranges."

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	—	ns	2
Local Bus Duty Cycle	t _{LBKH} /t _{LBK}	45	55	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{LBKSKEW}	—	150	ps	7, 8
Input setup to local bus clock (except LGTA/LUPWAIT)	t _{LBIVKH1}	1.8	—	ns	3, 4
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.7	—	ns	3, 4
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	1.0	—	ns	3, 4
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.0	—	ns	3, 4
LALE output transition to LAD/LDP output transition (LATCH hold time)	t _{LBOTOT}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	—	2.0	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	2.2	ns	—
Local bus clock to address valid for LAD	t _{LBKHOV3}		2.3	ns	_

Table 41. Local Bus Timing Parameters (OV_{DD} = 3.3 V)m - PLL Enabled

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to LALE assertion	t _{LBKHOV4}	_	2.3	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	0.7	—	ns	—
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	0.7	—	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKHOZ1}		2.5	ns	5
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}	_	2.5	ns	5

Table 41. Local Bus Timing Parameters (OV_{DD} = 3.3 V)m - PLL Enabled (continued)

Note:

- The symbols used for timing specifications herein follow the pattern of t_{(First two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
- 2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBOTOT} is programmed with the LBCR[AHD] parameter.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.
- 8. Guaranteed by design.

Figure 25 provides the AC test load for the local bus.

Figure 25. Local Bus AC Test Load

Parameter	Symbol ¹	Min	Мах	Unit	Notes
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKL2}	-1.3	—	ns	4, 5
LALE output transition to LAD/LDP output transition (LATCH hold time)	t _{LBOTOT}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKLOV1}		-0.3	ns	
Local bus clock to data valid for LAD/LDP	t _{LBKLOV2}		-0.1	ns	4
Local bus clock to address valid for LAD	t _{LBKLOV3}	_	0	ns	4
Local bus clock to LALE assertion	t _{LBKLOV4}		0	ns	4
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKLOX1}	-3.2	—	ns	4
Output hold from local bus clock for LAD/LDP	t _{LBKLOX2}	-3.2	—	ns	4
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{lbkloz1}	_	0.2	ns	7
Local bus clock to output high impedance for LAD/LDP	t _{LBKLOZ2}	_	0.2	ns	7

Table 42. Local Bus Timing Parameters—PLL Bypassed (continued)

Notes:

The symbols used for timing specifications herein follow the pattern of t<sub>(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(First two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKH0X} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.
</sub>

 All timings are in reference to local bus clock for PLL bypass mode. Timings may be negative with respect to the local bus clock because the actual launch and capture of signals is done with the internal launch/capture clock, which precedes LCLK by t_{LBKHKT}.

 Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.

4. All signals are measured from BVDD/2 of the rising edge of local bus clock for PLL bypass mode to 0.4 x BVDD of the signal in question for 3.3-V signaling levels.

- 5. Input timings are measured at the pin.
- 6. The value of t_{LBOTOT} is the measurement of the minimum time between the negation of LALE and any change in LAD

7. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

8. Guaranteed by characterization.

14.4.3 Differential Receiver (RX) Input Specifications

Table 50 defines the specifications for the differential input at all receivers (RXs). The parameters are specified at the component pins.

Symbol	Parameter	Min	Nom	Max	Units	Comments
UI	Unit Interval	399.88	400	400.12	ps	Each UI is 400 ps ± 300 ppm. UI does not account for Spread Spectrum Clock dictated variations. See Note 1.
V _{RX-DIFFp-p}	Differential Peak-to-Peak Output Voltage	0.175	—	_	V	$V_{RX-DIFF_{p-p}} = 2^{*} V_{RX-D_{+}} - V_{RX-D_{-}} $ See Note 2.
T _{RX-EYE}	Minimum Receiver Eye Width	0.4	_		UI	The maximum interconnect media and Transmitter jitter that can be tolerated by the Receiver can be derived as $T_{RX-MAX-JITTER} =$ 1 – $T_{RX-EYE} = 0.6$ UI. See Notes 2 and 3.
T _{RX-EYE-MEDIAN-to-MAX} -JITTER	Maximum time between the jitter median and maximum deviation from the median.		_	0.3	UI	Jitter is defined as the measurement variation of the crossing points ($V_{RX-DIFFp-p} = 0 V$) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2, 3 and 7.
V _{RX-CM-ACp}	AC Peak Common Mode Input Voltage	—	—	150	mV	$\label{eq:VRX-CM-ACp} \begin{split} & V_{RX-CM-ACp} = IV_{RXD+} - V_{RXD-}I/2 - V_{RX-CM-DC} \\ & V_{RX-CM-DC} = DC_{(avg)} \text{ of } IV_{RX-D+} - V_{RX-D-}I/2 \\ & See Note 2 \end{split}$
RL _{RX-DIFF}	Differential Return Loss	15	_	_	dB	Measured over 50 MHz to 1.25 GHz with the D+ and D– lines biased at +300 mV and –300 mV, respectively. See Note 4
RL _{RX-CM}	Common Mode Return Loss	6	_	—	dB	Measured over 50 MHz to 1.25 GHz with the D+ and D– lines biased at 0 V. See Note 4
Z _{RX-DIFF-DC}	DC Differential Input Impedance	80	100	120	Ω	RX DC Differential mode impedance. See Note 5
Z _{RX-DC}	DC Input Impedance	40	50	60	Ω	Required RX D+ as well as D– DC Impedance ($50 \pm 20\%$ tolerance). See Notes 2 and 5.
Z _{RX-HIGH-IMP-DC}	Powered Down DC Input Impedance	200 k	_	_	Ω	Required RX D+ as well as D– DC Impedance when the Receiver terminations do not have power. See Note 6.
V _{RX-IDLE-DET-DIFFp-p}	Electrical Idle Detect Threshold	65	_	_	mV	$V_{RX-IDLE-DET-DIFFp-p} = 2^{*} V_{RX-D+} - V_{RX-D-} $ Measured at the package pins of the Receiver

Table 50. Differential Receive	r (RX) Input Specifications
--------------------------------	-----------------------------

Symbol	Parameter	Min	Nom	Max	Units	Comments
T _{RX-IDLE-DET-DIFF-} ENTERTIME	Unexpected Electrical Idle Enter Detect Threshold Integration Time			10	ms	An unexpected Electrical Idle ($V_{RX-DIFFp-p} < V_{RX-IDLE-DET-DIFFp-p}$) must be recognized no longer than $T_{RX-IDLE-DET-DIFF-ENTERING}$ to signal an unexpected idle condition.
L _{TX-SKEW}	Total Skew			20	ns	Skew across all lanes on a Link. This includes variation in the length of SKP ordered set (for example, COM and one to five Symbols) at the RX as well as any delay differences arising from the interconnect itself.

Notes:

- 1. No test load is necessarily associated with this value.
- 2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 52 should be used as the RX device when taking measurements (also refer to the Receiver compliance eye diagram shown in Figure 51). If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.
- 3. A T_{RX-EYE} = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and interconnect collected any 250 consecutive UIs. The T_{RX-EYE-MEDIAN-to-MAX-JITTER} specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.
- 4. The Receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to 300 mV and the D- line biased to -300 mV and a common mode return loss greater than or equal to 6 dB (no bias required) over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements for is 50 Ω to ground for both the D+ and D- line (that is, as measured by a Vector Network Analyzer with 50 ohm probes see Figure 52). Note: that the series capacitors C_{TX} is optional for the return loss measurement.
- 5. Impedance during all LTSSM states. When transitioning from a Fundamental Reset to Detect (the initial state of the LTSSM) there is a 5 ms transition time before Receiver termination values must be met on all un-configured Lanes of a Port.
- 6. The RX DC Common Mode Impedance that exists when no power is present or Fundamental Reset is asserted. This helps ensure that the Receiver Detect circuit will not falsely assume a Receiver is powered on when it is not. This term must be measured at 300 mV above the RX ground.
- 7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.

14.5 Receiver Compliance Eye Diagrams

The RX eye diagram in Figure 51 is specified using the passive compliance/test measurement load (see Figure 52) in place of any real PCI Express RX component.

Note: In general, the minimum Receiver eye diagram measured with the compliance/test measurement load (see Figure 52) will be larger than the minimum Receiver eye diagram measured over a range of systems at the input Receiver of any real PCI Express component. The degraded eye diagram at the input Receiver is due to traces internal to the package as well as silicon parasitic characteristics which cause the real PCI Express component to vary in impedance from the compliance/test measurement load. The input Receiver eye diagram is implementation specific and is not specified. RX component designer should

Characteristic	Symbol	Range		Unit	Natas	
Characteristic	Symbol	Min	Мах	Unit	Notes	
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver	
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver	
Total Jitter Tolerance ¹	J _T	0.65	_	UI p-p	Measured at receiver	
Multiple Input Skew	S _{MI}	_	24	ns	Skew at the receiver input between lanes of a multilane link	
Bit Error Rate	BER	—	10 ⁻¹²	_	—	
Unit Interval	UI	400	400	ps	+/– 100 ppm	

Table	60.	Receiver	AC	Timing	Specifications-	-2.5	GBaud
-------	-----	----------	----	--------	-----------------	------	-------

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 55. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Tuble of Theorem Ao Thining opcontoutions 0.120 abudu

Characteristic	Symbol	Ra	nge	Unit	Notos	
Unaracteristic	Symbol	Min Max		Onic	Notes	
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver	
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver	
Total Jitter Tolerance ¹	J _T	0.65	—	UI p-p	Measured at receiver	
Multiple Input Skew	S _{MI}	—	22	ns	Skew at the receiver input between lanes of a multilane link	
Bit Error Rate	BER	—	10 ⁻¹²	_	—	
Unit Interval	UI	320	320	ps	+/- 100 ppm	

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 55. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

15.8 Receiver Eye Diagrams

For each baud rate at which an LP-Serial receiver is specified to operate, the receiver shall meet the corresponding Bit Error Rate specification (Table 59, Table 60, Table 61) when the eye pattern of the receiver test signal (exclusive of sinusoidal jitter) falls entirely within the unshaded portion of the Receiver Input Compliance Mask shown in Figure 56 with the parameters specified in Table . The eye pattern of the receiver test signal is measured at the input pins of the receiving device with the device replaced with a $100 \Omega + -5\%$ differential resistive load.

17 Signal Listings

Table 63 provides the pin assignments for the signals. Notes for the signal changes on the single core device (MPC8641) are italicized and prefixed by "*S*".

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes						
	DDR Memory Interface 1 S	Signals ^{2,3}								
D1_MDQ[0:63]	D15, A14, B12, D12, A15, B15, B13, C13, C11, D11, D9, A8, A12, A11, A9, B9, F11, G12, K11, K12, E10, E9, J11, J10, G8, H10, L9, L7, F10, G9, K9, K8, AC6, AC7, AG8, AH9, AB6, AB8, AE9, AF9, AL8, AM8, AM10, AK11, AH8, AK8, AJ10, AK10, AL12, AJ12, AL14, AM14, AL11, AM11, AM13, AK14, AM15, AJ16, AK18, AL18, AJ15, AL15, AL17, AM17	I/O	D1_GV _{DD}	_						
D1_MECC[0:7]	M8, M7, R8, T10, L11, L10, P9, R10	I/O	D1_GV _{DD}	_						
D1_MDM[0:8]	C14, A10, G11, H9, AD7, AJ9, AM12, AK16, N10	0	D1_GV _{DD}	_						
D1_MDQS[0:8]	A13, C10, H12, J7, AE8, AM9, AK13, AK17, N9	I/O	D1_GV _{DD}	_						
D1_MDQS[0:8]	D14, B10, H13, J8, AD8, AL9, AJ13, AM16, P10	I/O	D1_GV _{DD}	_						
D1_MBA[0:2]	AA8, AA10, T9	0	D1_GV _{DD}	_						
D1_MA[0:15]	Y10, W8, W9, V7, V8, U6, V10, U9, U7, U10, Y9, T6, T8, AE12, R7, P6	0	D1_GV _{DD}	_						
D1_MWE	AB11	0	D1_GV _{DD}	_						
D1_MRAS	AB12	0	D1_GV _{DD}	_						
D1_MCAS	AC10	0	D1_GV _{DD}	_						
D1_MCS[0:3]	AB9, AD10, AC12, AD11	0	D1_GV _{DD}	—						
D1_MCKE[0:3]	P7, M10, N8, M11	0	D1_GV _{DD}	23						
D1_MCK[0:5]	W6, E13, AH11, Y7, F14, AG10	0	D1_GV _{DD}	—						
D1_MCK[0:5]	Y6, E12, AH12, AA7, F13, AG11	0	D1_GV _{DD}	—						
D1_MODT[0:3]	AC9, AF12, AE11, AF10	0	D1_GV _{DD}	—						
D1_MDIC[0:1]	E15, G14	IO	D1_GV _{DD}	27						
D1_MV _{REF}	AM18	DDR Port 1 reference voltage	D1_GV _{DD} /2	3						
	DDR Memory Interface 2 Signals ^{2,3}									

Table 63. MPC8641 Signal Reference by Functional Block

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes				
SD1_PLL_TPA	T28	Analog	SV _{DD}	13, 18				
SD1_DLL_TPD	N28	0	SV _{DD}	13, 17				
SD1_DLL_TPA	P31	Analog	SV _{DD}	13, 18				
SD2_TX[0:3]	Y24, AA27, AB25, AC27	0	SV _{DD}	—				
SD2_TX[4:7]	AE27, AG27, AJ27, AL27	0	SV _{DD}	34				
SD2_TX[0:3]	Y25, AA28, AB26, AC28	0	SV _{DD}	—				
SD2_TX[4:7]	AE28, AG28, AJ28, AL28	0	SV _{DD}	34				
SD2_RX[0:3]	Y30, AA32, AB30, AC32	I	SV _{DD}	32				
SD2_RX[4:7]	AH30, AJ32, AK30, AL32	I	SV _{DD}	32, 35				
SD2_RX[0:3]	Y29, AA31, AB29, AC31	I	SV _{DD}	—				
SD2_RX[4:7]	AH29, AJ31, AK29, AL31	I	SV _{DD}	35				
SD2_REF_CLK	AE32	I	SV _{DD}	—				
SD2_REF_CLK	AE31	I	SV _{DD}	—				
SD2_IMP_CAL_TX	AM29	Analog	SV _{DD}	19				
SD2_IMP_CAL_RX	AA26	Analog	SV _{DD}	30				
SD2_PLL_TPD	AF29	0	SV _{DD}	13, 17				
SD2_PLL_TPA	AF31	Analog	SV _{DD}	13, 18				
SD2_DLL_TPD	AD29	0	SV _{DD}	13, 17				
SD2_DLL_TPA	AD30	Analog	SV _{DD}	13, 18				
	Special Connection Require	ement pins	·					
No Connects	K24, K25, P28, P29, W26, W27, AD25, AD26	_	-	13				
Reserved	H30, R32, V28, AG32	—	—	14				
Reserved	H29, R31, W28, AG31	—	—	15				
Reserved	AD24, AG26	—	—	16				
Ethernet Miscellaneous Signals ⁵								
EC1_GTX_CLK125	AL23	I	LV _{DD}	39				
EC2_GTX_CLK125	AM23	I	TV _{DD}	39				
EC_MDC	G31	0	OV _{DD}	_				
EC_MDIO	G32	I/O	OV _{DD}	_				
	eTSEC Port 1 Sign	als ⁵						

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Signal Listings

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
TSEC1_TXD[0:7]/ GPOUT[0:7]	AF25, AC23,AG24, AG23, AE24, AE23, AE22, AD22	0	LV _{DD}	6, 10
TSEC1_TX_EN	AB22	0	LV _{DD}	36
TSEC1_TX_ER	AH26	0	LV _{DD}	_
TSEC1_TX_CLK	AC22	I	LV _{DD}	40
TSEC1_GTX_CLK	AH25	0	LV _{DD}	41
TSEC1_CRS	AM24	I/O	LV _{DD}	37
TSEC1_COL	AM25	I	LV _{DD}	—
TSEC1_RXD[0:7]/ GPIN[0:7]	AL25, AL24, AK26, AK25, AM26, AF26, AH24, AG25	I	LV _{DD}	10
TSEC1_RX_DV	AJ24	I	LV _{DD}	_
TSEC1_RX_ER	AJ25	I	LV _{DD}	_
TSEC1_RX_CLK	AK24	I	LV _{DD}	40
	eTSEC Port 2 Signa	als ⁵	· · · · · ·	
TSEC2_TXD[0:3]/ GPOUT[8:15]	AB20, AJ23, AJ22, AD19	0	LV _{DD}	6, 10
TSEC2_TXD[4]/ GPOUT[12]	AH23	0	LV _{DD}	6,10, 38
TSEC2_TXD[5:7]/ GPOUT[13:15]	AH21, AG22, AG21	0	LV _{DD}	6, 10
TSEC2_TX_EN	AB21	0	LV _{DD}	36
TSEC2_TX_ER	AB19	0	LV _{DD}	6, 38
TSEC2_TX_CLK	AC21	I	LV _{DD}	40
TSEC2_GTX_CLK	AD20	0	LV _{DD}	41
TSEC2_CRS	AE20	I/O	LV _{DD}	37
TSEC2_COL	AE21	I	LV _{DD}	—
TSEC2_RXD[0:7]/ GPIN[8:15]	AL22, AK22, AM21, AH20, AG20, AF20, AF23, AF22	I	LV _{DD}	10
TSEC2_RX_DV	AC19	I	LV _{DD}	—
TSEC2_RX_ER	AD21	I	LV _{DD}	_
TSEC2_RX_CLK	AM22	I	LV _{DD}	40
eTSEC Port 3 Signals ⁵				
TSEC3_TXD[0:3]	AL21, AJ21, AM20, AJ20	0	TV _{DD}	6
TSEC3_TXD[4]/	AM19	0	TV _{DD}	_
TSEC3_TXD[5:7]	AK21, AL20, AL19	0	TV _{DD}	6

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
AGND_SRDS1	P30	SerDes Port 1 Ground pin for AV _{DD} _SRDS1	_	_
AGND_SRDS2	AF30	SerDes Port 2 Ground pin for AV _{DD} _SRDS2	_	_
SGND	H28, H32, J30, K31, L28, L29, M32, N30, R29, T32, U30, V31, W29,Y32 AA30, AB31, AC29, AD32, AE30, AG29, AH32, AJ30, AK31, AL29, AM32	Ground pins for SV _{DD}	_	
XGND	K27, L25, M26, N24, P27, R25, T26, U24, V27, W25, Y28, AA24, AB27, AC25, AD28, AE26, AF27, AH28, AJ26, AK27, AL26, AM28	Ground pins for XV _{DD} _SRDS <i>n</i>	_	
	Reset Configuration Si	gnals ²⁰		
TSEC1_TXD[0] / cfg_alt_boot_vec	AF25	—	LV _{DD}	
TSEC1_TXD[1]/ cfg_platform_freq	AC23	—	LV _{DD}	21
TSEC1_TXD[2:4]/ cfg_device_id[5:7]	AG24, AG23, AE24	—	LV _{DD}	_
TSEC1_TXD[5]/ cfg_tsec1_reduce	AE23	—	LV _{DD}	_
TSEC1_TXD[6:7]/ cfg_tsec1_prtcl[0:1]	AE22, AD22	—	LV _{DD}	_
TSEC2_TXD[0:3]/ cfg_rom_loc[0:3]	AB20, AJ23, AJ22, AD19	—	LV _{DD}	_
TSEC2_TXD[4], TSEC2_TX_ER/ cfg_dram_type[0:1]	AH23, AB19	—	LV _{DD}	38
TSEC2_TXD[5]/ cfg_tsec2_reduce	AH21	—	LV _{DD}	_
TSEC2_TXD[6:7]/ cfg_tsec2_prtcl[0:1]	AG22, AG21	—	LV _{DD}	_
TSEC3_TXD[0:1]/ cfg_spare[0:1]	AL21, AJ21	0	TV _{DD}	33
TSEC3_TXD[2]/ cfg_core1_enable	AM20	0	TV _{DD}	_
TSEC3_TXD[3]/ cfg_core1_lm_offset	AJ20	—	LV _{DD}	_
TSEC3_TXD[5]/ cfg_tsec3_reduce	AK21	—	LV _{DD}	

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Table 63. MPC8641 Signal Reference by Functional Block (continued)

	Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
--	-------------------	--------------------	----------	--------------	-------

Note:

- 1. Multi-pin signals such as D1_MDQ[0:63] and D2_MDQ[0:63] have their physical package pin numbers listed in order corresponding to the signal names.
- 2. Stub Series Terminated Logic (SSTL-18 and SSTL-25) type pins.
- 3. If a DDR port is not used, it is possible to leave the related power supply (Dn_GVDD, Dn_MVREF) turned off at reset. Note that these power supplies can only be powered up again at reset for functionality to occur on the DDR port.
- 4. Low Voltage Differential Signaling (LVDS) type pins.
- 5. Low Voltage Transistor-Transistor Logic (LVTTL) type pins.
- 6. This pin is a reset configuration pin and appears again in the Reset Configuration Signals section of this table. See the Reset Configuration Signals section of this table for config name and connection details.
- 7. Recommend a weak pull-up resistor $(1-10 \text{ k}\Omega)$ be placed from this pin to its power supply.
- 8. Recommend a weak pull-down resistor (2–10 k Ω) be placed from this pin to ground.
- 9. This multiplexed pin has input status in one mode and output in another
- 10. This pin is a multiplexed signal for different functional blocks and appears more than once in this table.
- 11. This pin is open drain signal.
- 12. Functional only on the MPC8641D.
- 13. These pins should be left floating.
- 14. These pins should be connected to SV_{DD} .
- 15. These pins should be pulled to ground with a strong resistor (270- Ω to 330- Ω).
- 16. These pins should be connected to OVDD.
- 17. This is a SerDes PLL/DLL digital test signal and is only for factory use.
- 18. This is a SerDes PLL/DLL analog test signal and is only for factory use.
- 19. This pin should be pulled to ground with a 100- $\!\Omega$ resistor.
- 20. The pins in this section are reset configuration pins. Each pin has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ pull-down resistor. However, if the signal is intended to be high after reset, and if there is any device on the net which might pull down the value of the net at reset, then a pullup or active driver is needed.
- 21. Should be pulled down at reset if platform frequency is at 400 MHz.
- 22. These pins require 4.7-kΩ pull-up or pull-down resistors and must be driven as they are used to determine PLL configuration ratios at reset.
- 23. This output is actively driven during reset rather than being tri-stated during reset.
- 24 These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 25. This pin should NOT be pulled down (or driven low) during reset.
- 26. These are test signals for factory use only and must be pulled up (100- Ω to 1- k Ω) to OVDD for normal machine operation.
- 27. Dn_MDIC[0] should be connected to ground with an 18-Ω resistor +/- 1-Ω and Dn_MDIC[1] should be connected Dn_GVDD with an 18-Ω resistor +/- 1-Ω. These pins are used for automatic calibration of the DDR IOs.
- 28. Pin N18 is recommended as a reference point for determining the voltage of V_{DD}_PLAT and is hence considered as the V_{DD}_PLAT sensing voltage and is called SENSEVDD_PLAT.
- 29. Pin P18 is recommended as the ground reference point for SENSEVDD_PLAT and is called SENSEVSS_PLAT.
- 30. This pin should be pulled to ground with a 200- Ω resistor.
- 31. These pins are connected to the power/ground planes internally and may be used by the core power supply to improve tracking and regulation.
- 32. Must be tied low if unused
- 33. These pins may be used as defined functional reset configuration pins in the future. Please include a resistor pull up/down option to allow flexibility of future designs.
- 34. Used as serial data output for SRIO 1x/4x link.
- 35. Used as serial data input for SRIO 1x/4x link.
- 36. This pin requires an external 4.7-kΩ pull-down resistor to pevent PHY from seeing a valid Transmit Enable before it is actively driven.

System Design Information

20 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8641.

20.1 System Clocking

This device includes six PLLs, as follows:

- 1. The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 18.2, "MPX to SYSCLK PLL Ratio."
- 2. The dual e600 Core PLLs generate the e600 clock from the externally supplied input.
- 3. The local bus PLL generates the clock for the local bus.
- 4. There are two internal PLLs for the SerDes block.

20.2 Power Supply Design and Sequencing

20.2.1 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits per PLL power supply as illustrated in Figure 64, one to each of the AV_{DD} type pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} type pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} type pin, which is on the periphery of the footprint, without the inductance of vias.

Figure 63 and Figure 64 show the PLL power supply filter circuits for the platform and cores, respectively.

Figure 63. MPC8641 PLL Power Supply Filter Circuit (for platform and Local Bus)

Document Revision History

21.2 Part Marking

Parts are marked as the example shown in Figure 70.

NOTE: TWLYYWW is the test code MMMMMM is the M00 (mask) number. YWWLAZ is the assembly traceability code.

Figure 70. Part Marking for FC-CBGA Device

22 Document Revision History

Table 76 provides a revision history for the MPC8641D hardware specification.

Table 76. Document Revision History

Revision	Date	Substantive Change(s)	
3	05/2014	 Updated the Serial RapidIO equation in Section 4.4, "Platform Frequency Requirements for PCI-Express and Serial RapidIO" Updated Section 19.2.4, "Temperature Diode," by removing the ideality factor value. Added VJ package type designator and footnotes to Table 74, "Part Numbering Nomenclature" and Section 16.1, "Package Parameters for the MPC8641." 	
2	07/2009	 Added note 8 to Table 49, "Differential Transmitter (TX) Output Specifications." Added Revision E to Table 74, "Part Numbering Nomenclature." 	
1	11/2008	 Added Section 4.4, "Platform Frequency Requirements for PCI-Express and Serial RapidIO." Removed the statement "Note that core processor speed of 1500 MHz is only available for the MPC8641D (dual core)" from Note 2 in Table 74 because a 1500 MHz core is offered for both MPC8641D (dual core) and MPC8641 (single core). Added Note 8 to Figure 57 and Figure 58. 	
0	07/2008	Initial Release	