E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e600
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.333GHz
Co-Processors/DSP	·
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100/1000Mbps (4)
SATA	·
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	1023-BCBGA, FCCBGA
Supplier Device Package	1023-FCCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc8641dvu1333jb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Recommended Operating Conditions (continued)

Characteristic	Symbol	Recommended Value	Unit	Notes
Junction temperature range	TJ	0 to 105	°C	

Notes:

- 1. Core 1 characteristics apply only to MPC8641D
- 2. If two separate power supplies are used for V_{DD}_Core0 and V_{DD}_Core1, they must be at the same nominal voltage and the individual power supplies must be tracked and kept within 100 mV of each other during normal run time.
- 3. Caution: Dn_MV_{IN} must meet the overshoot/undershoot requirements for Dn_GV_{DD} as shown in Figure 2.
- 4. Caution: L/TV_{IN} must meet the overshoot/undershoot requirements for L/TV_{DD} as shown in Figure 2 during regular run time.
- 5. Caution: OV_{IN} must meet the overshoot/undershoot requirements for OV_{DD} as shown in Figure 2 during regular run time.
- 6. Timing limitations for M,L,T,O)V_{IN} and Dn_MV_{REF} during regular run time is provided in Figure 2
- 7. Applies to devices marked with a core frequency of 1333 MHz and below. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for a core frequency of 1333 MHz and below.
- 8. Applies to devices marked with a core frequency above 1333 MHz. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for a core frequency above 1333 MHz.
- 9. The 2.5 V \pm 125 mV range is for DDR and 1.8 V \pm 90 mV range is for DDR2.
- 10. See Section 8.2, "FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications," for details on the recommended operating conditions per protocol.
- 11. The PCI Express interface of the device is expected to receive signals from 0.175 to 1.2 V. For more information refer to Section 14.4.3, "Differential Receiver (RX) Input Specifications."
- 12. Applies to Part Number MC8641xxx1000NX only. V_{DD} _Core n = 0.95 V and V_{DD} _PLAT = 1.05 V devices. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for V_{DD} _Core n = 0.95 V.
- 13. This voltage is the input to the filter discussed in Section 20.2, "Power Supply Design and Sequencing," and not necessarily the voltage at the AV_{DD}_Core*n* pin, which may be reduced from V_{DD}_Core*n* by the filter.

Electrical Characteristics

NOTE

There is no required order sequence between the individual rails for this item (# 1). However, V_{DD} _PLAT, AV_{DD} _PLAT rails must reach 90% of their recommended value before the rail for Dn_GV_DD, and Dn_MV_{REF} (in next step) reaches 10% of their recommended value. AV_{DD} type supplies must be delayed with respect to their source supplies by the RC time constant of the PLL filter circuit described in Section 20.2.1, "PLL Power Supply Filtering."

2. Dn_GV_{DD} , Dn_MV_{REF}

NOTE

It is possible to leave the related power supply $(Dn_GV_{DD}, Dn_MV_{REF})$ turned off at reset for a DDR port that will not be used. Note that these power supplies can only be powered up again at reset for functionality to occur on the DDR port.

3. SYSCLK

The recommended order of power down is as follows:

- 1. Dn_GV_{DD}, Dn_MV_{REF}
- 2. All power rails other than DDR I/O (Dn_GV_{DD} , Dn_MV_{REF}).

NOTE

SYSCLK may be powered down simultaneous to either of item # 1 or # 2 in the power down sequence. Beyond this, the power supplies may power down simultaneously if the preservation of DDRn memory is not a concern.

See Figure 3 for more details on the Power and Reset Sequencing details.

Notes:

- 1. Dotted waveforms correspond to optional supply values for a specified power supply. See Table 2.
- 2. The recommended maximum ramp up time for power supplies is 20 milliseconds.
- 3. Refer to Section 5, "RESET Initialization" for additional information on PLL relock and reset signal assertion timing requirements.
- 4. Refer to Table 11 for additional information on reset configuration pin setup timing requirements. In addition see Figure 68 regarding HRESET and JTAG connection details including TRST.
- 5. e600 PLL relock time is 100 microseconds maximum plus 255 MPX_clk cycles.
- 6. Stable PLL configuration signals are required as stable SYSCLK is applied. All other POR configuration inputs are required 4 SYSCLK cycles before HRESET negation and are valid at least 2 SYSCLK cycles after HRESET has negated (hold requirement). See Section 5, "RESET Initialization" for more information on setup and hold time of reset configuration signals.
- V_{DD}_PLAT, AV_{DD}_PLAT must strictly reach 90% of their recommended voltage before the rail for Dn_GV_{DD}, and Dn_MV_{REF} reaches 10% of their recommended voltage.
- 8. SYSCLK must be driven only AFTER the power for the various power supplies is stable.
- In device sleep mode, the reset configuration signals for DRAM types (TSEC2_TXD[4],TSEC2_TX_ER) must be valid BEFORE HRESET is asserted.

Figure 3. MPC8641 Power-Up and Reset Sequence

RESET Initialization

5 **RESET** Initialization

This section describes the AC electrical specifications for the RESET initialization timing requirements of the MPC8641. Table 11 provides the RESET initialization AC timing specifications.

Parameter/Condition	Min	Мах	Unit	Notes
Required assertion time of HRESET	100	—	μs	—
Minimum assertion time for $\overline{\text{SRESET}_0}$ & $\overline{\text{SRESET}_1}$	3	—	SYSCLKs	1
Platform PLL input setup time with stable SYSCLK before HRESET negation	100	—	μs	2
Input setup time for POR configs (other than PLL config) with respect to negation of HRESET	4	—	SYSCLKs	1
Input hold time for all POR configs (including PLL config) with respect to negation of HRESET	2	—	SYSCLKs	1
Maximum valid-to-high impedance time for actively driven POR configs with respect to negation of HRESET	_	5	SYSCLKs	1

Table 11. RESET Initialization Timing Specifications

Notes:

1. SYSCLK is the primary clock input for the MPC8641.

2 This is related to HRESET assertion time. Stable PLL configuration inputs are required when a stable SYSCLK is applied. See the *MPC8641D Integrated Host Processor Reference Manual* for more details on the power-on reset sequence.

Table 12 provides the PLL lock times.

Table 12. PLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
(Platform and E600) PLL lock times	—	100	μs	1
Local bus PLL	—	50	μs	

Note:

1. The PLL lock time for e600 PLLs require an additional 255 MPX_CLK cycles.

DDR and DDR2 SDRAM

Table 21. DDR SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MDQS epilogue end	t _{DDKHME}	-0.6	0.6	ns	6

Note:

- The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.

3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS.

- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQS override bits (called WR_DATA_DELAY) in the TIMING_CFG_2 register. This will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the *MPC8641 Integrated Processor Reference Manual* for a description and understanding of the timing modifications enabled by use of these bits.
- Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.
- 7. Maximum DDR1 frequency is 400 MHz
- Per the JEDEC spec the DDR2 duty cycle at 600 MHz is the average low and high cycle time values that are defined as the average pulse widths calculated across any consecutive 200 pulses. Jitter can sometimes force single low and high cycle times to drift from the average values. t_{JIT} = ±125 ps.
- 9. Per the JEDEC spec the DDR2 duty cycle at 400 and 533 MHz is the low and high cycle time values.

NOTE

For the ADDR/CMD setup and hold specifications in Table 21, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle.

8.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.4.1 TBI Transmit AC Timing Specifications

Table 32 provides the TBI transmit AC timing specifications.

Table 32. TBI Transmit AC Timing Specifications

At recommended operating conditions with L/TV_DD of 3.3 V \pm 5% and 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TCG[9:0] setup time GTX_CLK going high	t _{TTKHDV}	2.0	—	—	ns
TCG[9:0] hold time from GTX_CLK going high	t _{TTKHDX}	1.0	—	—	ns
GTX_CLK rise time (20%-80%)	t _{TTXR} ²	—	—	1.0	ns
GTX_CLK fall time (80%–20%)	t _{TTXF} 2	—	—	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

Figure 16 shows the TBI transmit AC timing diagram.

Figure 16. TBI Transmit AC Timing Diagram

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2.7.2 RMII Receive AC Timing Specifications

Table 37. RMII Receive AC Timing Specifications

At recommended operating conditions with L/TV_DD of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
REF_CLK clock period	t _{RMR}	15.0	20.0	25.0	ns
REF_CLK duty cycle	t _{RMRH} /t _{RMR}	35	50	65	%
REF_CLK peak-to-peak jitter	t _{RMRJ}	—	_	250	ps
Rise time REF_CLK (20%–80%)	t _{RMRR}	1.0	_	2.0	ns
Fall time REF_CLK (80%–20%)	t _{RMRF}	1.0	—	2.0	ns
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK rising edge	t _{RMRDV}	4.0	_	_	ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK rising edge	t _{RMRDX}	2.0	_	_	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 21 provides the AC test load for eTSEC.

Figure 21. eTSEC AC Test Load

Figure 22 shows the RMII receive AC timing diagram.

Figure 22. RMII Receive AC Timing Diagram

Figure 26 to Figure 31 show the local bus signals.

Figure 26. Local Bus Signals (PLL Enabled)

NOTE

PLL bypass mode is recommended when LBIU frequency is at or below 83 MHz. When LBIU operates above 83 MHz, LBIU PLL is recommended to be enabled.

Table 42 describes the general timing parameters of the local bus interface at $OV_{DD} = 3.3$ V with PLL bypassed.

Table 42. Local Bus	Timing Parameters—F	LL Bypassed
---------------------	---------------------	-------------

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	12	_	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	45	55	%	—
Internal launch/capture clock to LCLK delay	t _{LBKHKT}	2.3	3.9	ns	8
Input setup to local bus clock (except LGTA/LUPWAIT)	t _{LBIVKH1}	5.7	_	ns	4, 5
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKL2}	5.6	_	ns	4, 5
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	-1.8	_	ns	4, 5

Figure 31. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 or 8 (clock ratio of 8 or 16) (PLL Bypass Mode)

l²C

Table 46. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 45).

Parameter	Symbol ¹	Min	Мах	Unit
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	_	V

Note:

- 1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the low (L) state or hold time. Also, t_{12PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 2. As a transmitter, the MPC8641 provides a delay time of at least 300 ns for the SDA signal (referred to the Vihmin of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of Start or Stop condition. When MPC8641 acts as the I²C bus master while transmitting, MPC8641 drives both SCL and SDA. As long as the load on SCL and SDA are balanced, MPC8641 would not cause unintended generation of Start or Stop condition. Therefore, the 300 ns SDA output delay time is not a concern. If, under some rare condition, the 300 ns SDA output delay time is required for MPC8641 as transmitter, the following setting is recommended for the FDR bit field of the I2CFDR register to ensure both the desired I²C SCL clock frequency and SDA output delay time are achieved, assuming that the desired I²C SCL clock frequency is 400 KHz and the Digital Filter Sampling Rate Register (I2CDFSRR) is programmed with its default setting of 0x10 (decimal 16):

I ² C Source Clock Frequency	333 MHz	266 MHz	200 MHz	133 MHz
FDR Bit Setting	0x2A	0x05	0x26	0x00
Actual FDR Divider Selected	896	704	512	384
Actual I ² C SCL Frequency Generated	371 KHz	378 KHz	390 KHz	346 KHz

For the detail of I²C frequency calculation, refer to the application note AN2919 "Determining the I²C Frequency Divider Ratio for SCL". Note that the I²C Source Clock Frequency is half of the MPX clock frequency for MPC8641.

- 3. The maximum t_{I2DXKL} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. Guaranteed by design.
- 5. C_B = capacitance of one bus line in pF.

Figure 32 provides the AC test load for the I^2C .

Figure 36. I²C AC Test Load

Figure 37 shows the AC timing diagram for the I^2C bus.

Figure 37. I²C Bus AC Timing Diagram

13 High-Speed Serial Interfaces (HSSI)

The MPC8641D features two Serializer/Deserializer (SerDes) interfaces to be used for high-speed serial interconnect applications. The SerDes1 interface is dedicated for PCI Express data transfers. The SerDes2 can be used for PCI Express and/or Serial RapidIO data transfers.

This section describes the common portion of SerDes DC electrical specifications, which is the DC requirement for SerDes Reference Clocks. The SerDes data lane's transmitter and receiver reference circuits are also shown.

13.1 Signal Terms Definition

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals.

Figure 38 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for description. The figure shows waveform for either a transmitter output (SD*n*_TX and $\overline{SDn}_T\overline{X}$) or a receiver input (SD*n*_RX and $\overline{SDn}_R\overline{X}$). Each signal swings between A Volts and B Volts where A > B.

Using this waveform, the definitions are as follows. To simplify illustration, the following definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment.

1. Single-Ended Swing

The transmitter output signals and the receiver input signals SDn_TX , $\overline{SDn_TX}$, SDn_RX and $\overline{SDn_RX}$ each have a peak-to-peak swing of A – B Volts. This is also referred as each signal wire's Single-Ended Swing.

2. Differential Output Voltage, V_{OD} (or Differential Output Swing):

The Differential Output Voltage (or Swing) of the transmitter, V_{OD} , is defined as the difference of the two complimentary output voltages: $V_{SDn_TX} - V_{\overline{SDn_TX}}$. The V_{OD} value can be either positive or negative.

3. Differential Input Voltage, V_{ID} (or Differential Input Swing):

Figure 48. Single-Ended Measurement Points for Rise and Fall Time Matching

The other detailed AC requirements of the SerDes Reference Clocks is defined by each interface protocol based on application usage. Refer to the following sections for detailed information:

- Section 14.2, "AC Requirements for PCI Express SerDes Clocks"
- Section 15.2, "AC Requirements for Serial RapidIO SDn_REF_CLK and SDn_REF_CLK"

13.3 SerDes Transmitter and Receiver Reference Circuits

Figure 49 shows the reference circuits for SerDes data lane's transmitter and receiver.

Figure 49. SerDes Transmitter and Receiver Reference Circuits

The DC and AC specification of SerDes data lanes are defined in each interface protocol section below (PCI Express or Serial Rapid IO) in this document based on the application usage:"

- Section 14, "PCI Express"
- Section 15, "Serial RapidIO"

Note that external AC Coupling capacitor is required for the above two serial transmission protocols with the capacitor value defined in specification of each protocol section.

14 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8641.

17 Signal Listings

Table 63 provides the pin assignments for the signals. Notes for the signal changes on the single core device (MPC8641) are italicized and prefixed by "*S*".

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes			
	DDR Memory Interface 1 S	Signals ^{2,3}					
D1_MDQ[0:63]	D15, A14, B12, D12, A15, B15, B13, C13, C11, D11, D9, A8, A12, A11, A9, B9, F11, G12, K11, K12, E10, E9, J11, J10, G8, H10, L9, L7, F10, G9, K9, K8, AC6, AC7, AG8, AH9, AB6, AB8, AE9, AF9, AL8, AM8, AM10, AK11, AH8, AK8, AJ10, AK10, AL12, AJ12, AL14, AM14, AL11, AM11, AM13, AK14, AM15, AJ16, AK18, AL18, AJ15, AL15, AL17, AM17	I/O	D1_GV _{DD}				
D1_MECC[0:7]	M8, M7, R8, T10, L11, L10, P9, R10	I/O	D1_GV _{DD}	_			
D1_MDM[0:8]	C14, A10, G11, H9, AD7, AJ9, AM12, AK16, N10	0	D1_GV _{DD}	_			
D1_MDQS[0:8]	A13, C10, H12, J7, AE8, AM9, AK13, AK17, N9	I/O	D1_GV _{DD}	_			
D1_MDQS[0:8]	D14, B10, H13, J8, AD8, AL9, AJ13, AM16, P10	I/O	D1_GV _{DD}	_			
D1_MBA[0:2]	AA8, AA10, T9	0	D1_GV _{DD}	_			
D1_MA[0:15]	Y10, W8, W9, V7, V8, U6, V10, U9, U7, U10, Y9, T6, T8, AE12, R7, P6	0	D1_GV _{DD}	_			
D1_MWE	AB11	0	D1_GV _{DD}	_			
D1_MRAS	AB12	0	D1_GV _{DD}	_			
D1_MCAS	AC10	0	D1_GV _{DD}	_			
D1_MCS[0:3]	AB9, AD10, AC12, AD11	0	D1_GV _{DD}	—			
D1_MCKE[0:3]	P7, M10, N8, M11	0	D1_GV _{DD}	23			
D1_MCK[0:5]	W6, E13, AH11, Y7, F14, AG10	0	D1_GV _{DD}	—			
D1_MCK[0:5]	Y6, E12, AH12, AA7, F13, AG11	0	D1_GV _{DD}	—			
D1_MODT[0:3]	AC9, AF12, AE11, AF10	0	D1_GV _{DD}	—			
D1_MDIC[0:1]	E15, G14	IO	D1_GV _{DD}	27			
D1_MV _{REF}	AM18	DDR Port 1 reference voltage	D1_GV _{DD} /2	3			
	DDR Memory Interface 2 Signals ^{2,3}						

Table 63. MPC8641 Signal Reference by Functional Block

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
TSEC3_TX_EN	AH19	0	TV _{DD}	36
TSEC3_TX_ER	AH17	0	TV _{DD}	_
TSEC3_TX_CLK	AH18	I	TV _{DD}	40
TSEC3_GTX_CLK	AG19	0	TV _{DD}	41
TSEC3_CRS	AE15	I/O	TV _{DD}	37
TSEC3_COL	AF15	I	TV _{DD}	_
TSEC3_RXD[0:7]	AJ17, AE16, AH16, AH14, AJ19, AH15, AG16, AE19	I	TV _{DD}	
TSEC3_RX_DV	AG15	I	TV _{DD}	_
TSEC3_RX_ER	AF16	I	TV _{DD}	_
TSEC3_RX_CLK	AJ18	I	TV _{DD}	40
eTSEC Port 4 Signals ⁵				
TSEC4_TXD[0:3]	AC18, AC16, AD18, AD17	0	TV _{DD}	6
TSEC4_TXD[4]	AD16	0	TV _{DD}	25
TSEC4_TXD[5:7]	AB18, AB17, AB16	0	TV _{DD}	6
TSEC4_TX_EN	AF17	0	TV _{DD}	36
TSEC4_TX_ER	AF19	0	TV _{DD}	—
TSEC4_TX_CLK	AF18	I	TV _{DD}	40
TSEC4_GTX_CLK	AG17	0	TV _{DD}	41
TSEC4_CRS	AB14	I/O	TV _{DD}	37
TSEC4_COL	AC13	I	TV _{DD}	_
TSEC4_RXD[0:7]	AG14, AD13, AF13, AD14, AE14, AB15, AC14, AE17	I	TV _{DD}	
TSEC4_RX_DV	AC15	I	TV _{DD}	_
TSEC4_RX_ER	AF14	I	TV _{DD}	_
TSEC4_RX_CLK	AG13	I	TV _{DD}	40
Local Bus Signals ⁵				
LAD[0:31]	A30, E29, C29, D28, D29, H25, B29, A29, C28, L22, M22, A28, C27, H26, G26, B27, B26, A27, E27, G25, D26, E26, G24, F27, A26, A25, C25, H23, K22, D25, F25, H22	I/O	OV _{DD}	6
LDP[0:3]	A24, E24, C24, B24	I/O	OV _{DD}	6, 22
LA[27:31]	J21, K21, G22, F24, G21	0	OV _{DD}	6, 22
LCS[0:4]	A22, C22, D23, E22, A23	0	OV _{DD}	7
LCS[5]/DMA_DREQ[2]	B23	0	OV _{DD}	7, 9, 10

Table 63. MPC8641 Signal Reference by Functional Block (continued)

example, assuming a T_i of 30°C, a T_r of 5°C, a package $R_{\theta JC} = 0.1$, and a typical power consumption (P_d) of 43.4 W, the following expression for T_i is obtained:

Die-junction temperature: $T_i = 30^{\circ}C + 5^{\circ}C + (0.1^{\circ}C/W + 0.2^{\circ}C/W + \theta_{sa}) \times 43.4 W$

For this example, a $R_{\theta sa}$ value of 1.32 °C/W or less is required to maintain the die junction temperature below the maximum value of Table 2.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common figure-of-merit used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system-level design and its operating conditions. In addition to the component's power consumption, a number of factors affect the final operating die-junction temperature—airflow, board population (local heat flux of adjacent components), heat sink efficiency, heat sink placement, next-level interconnect technology, system air temperature rise, altitude, and so on.

Due to the complexity and variety of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as well as system-level designs.

For system thermal modeling, the MPC8641 thermal model is shown in Figure 62. Four cuboids are used to represent this device. The die is modeled as 12.4x15.3 mm at a thickness of 0.86 mm. See Section 3, "Power Characteristics" for power dissipation details. The substrate is modeled as a single block 33x33x1.2 mm with orthotropic conductivity: $13.5 \text{ W/(m} \cdot \text{K})$ in the xy-plane and $5.3 \text{ W/(m} \cdot \text{K})$ in the z-direction. The die is centered on the substrate. The bump/underfill layer is modeled as a collapsed thermal resistance between the die and substrate with a conductivity of $5.3 \text{ W/(m} \cdot \text{K})$ in the thickness dimension of 0.07 mm. Because the bump/underfill is modeled with zero physical dimension (collapsed height), the die thickness was slightly enlarged to provide the correct height. The C5 solder layer is modeled as a cuboid with dimensions 33x33x0.4 mm and orthotropic thermal conductivity of $0.034 \text{ W/(m} \cdot \text{K})$ in the xy-plane and $9.6 \text{ W/(m} \cdot \text{K})$ in the z-direction. An LGA solder layer would be modeled as a collapsed thermal resistance with thermal conductivity of $9.6 \text{W/(m} \cdot \text{K})$ and an effective height of 0.1 mm. The thermal model uses approximate dimensions to reduce grid. Please refer to the case outline for actual dimensions.

System Design Information

The following pins must be connected to GND:

- SD*n*_RX[7:0]
- $\overline{\text{SD}n \text{ RX}}[7:0]$
- SD*n*_REF_CLK
- SDn_REF_CLK

NOTE

It is recommended to power down the unused lane through SRDS1CR1[0:7] register (offset = $0xE_0F08$) and SRDS2CR1[0:7] register (offset = $0xE_0F44$.) (This prevents the oscillations and holds the receiver output in a fixed state.) that maps to SERDES lane 0 to lane 7 accordingly.

For other directions on reserved or no-connects pins see Section 17, "Signal Listings."

20.6 Pull-Up and Pull-Down Resistor Requirements

The MPC8641 requires weak pull-up resistors (2–10 k Ω is recommended) on all open drain type pins.

The following pins must NOT be pulled down during power-on reset: TSEC4_TXD[4], LGPL0/LSDA10, LGPL1/LSDWE, TRIG_OUT/READY, and D1_MSRCID[2].

The following are factory test pins and require strong pull up resistors (100 Ω –1 k Ω) to OVDD

LSSD_MODE, TEST_MODE[0:3]. The following pins require weak pull up resistors (2–10 kΩ) to their specific power supplies: LCS[0:4], LCS[5]/DMA_DREQ2, LCS[6]/DMA_DACK[2], LCS[7]/DMA_DDONE[2], IRQ_OUT, IIC1_SDA, IIC1_SCL, IIC2_SDA, IIC2_SCL, and CKSTP_OUT.

The following pins should be pulled to ground with a 100- Ω resistor: SD1_IMP_CAL_TX, SD2_IMP_CAL_TX. The following pins should be pulled to ground with a 200- Ω resistor: SD1_IMP_CAL_RX, SD2_IMP_CAL_RX.

TSEC*n*_TX_EN signals require an external 4.7-k Ω pull down resistor to prevent PHY from seeing a valid Transmit Enable before it is actively driven.

When the platform frequency is 400 MHz, TSEC1_TXD[1] must be pulled down at reset.

TSEC2_TXD[4] and TSEC2_TX_ER pins function as cfg_dram_type[0 or 1] at reset and MUST BE VALID BEFORE HRESET ASSERTION when coming out of device sleep mode.

20.6.1 Special instructions for Single Core device

The mechanical drawing for the single core device does not have all the solder balls that exist on the single core device. This includes all the balls for VDD_Core1 and SENSEV_{DD}_Core1 which exist on the package for the dual core device, but not on the single core package. A solder ball is present for SENSEV_{SS}_Core1 and needs to be connected to ground with a weak (2-10 k Ω) pull down resistor. Likewise, AV_{DD}_Core1 needs to be pulled to ground as shown in Figure 64.

The mechanical drawing for the single core device is located in Section 16.2, "Mechanical Dimensions of the MPC8641 FC-CBGA."

The COP interface has a standard header, shown in Figure 67, for connection to the target system, and is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header shown in Figure 67; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 67 is common to all known emulators.

For a multi-processor non-daisy chain configuration, Figure 68, can be duplicated for each processor. The recommended daisy chain configuration is shown in Figure 69. Please consult with your tool vendor to determine which configuration is supported by their emulator.

20.9.1 Termination of Unused Signals

If the JTAG interface and COP header will not be used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0 k Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 68. If this is not possible, the isolation resistor will allow future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- Tie TCK to OV_{DD} through a 10 k Ω resistor. This will prevent TCK from changing state and reading incorrect data into the device.
- No connection is required for TDI, TMS, or TDO.

Figure 67. COP Connector Physical Pinout

System Design Information

Notes:

- 1. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.

Figure 68. JTAG/COP Interface Connection for one MPC8641 device

Document Revision History

21.2 Part Marking

Parts are marked as the example shown in Figure 70.

NOTE: TWLYYWW is the test code MMMMMM is the M00 (mask) number. YWWLAZ is the assembly traceability code.

Figure 70. Part Marking for FC-CBGA Device

22 Document Revision History

Table 76 provides a revision history for the MPC8641D hardware specification.

Table 76. Document Revision History

Revision	Date	Substantive Change(s)		
3	05/2014	 Updated the Serial RapidIO equation in Section 4.4, "Platform Frequency Requirements for PCI-Express and Serial RapidIO" Updated Section 19.2.4, "Temperature Diode," by removing the ideality factor value. Added VJ package type designator and footnotes to Table 74, "Part Numbering Nomenclature" and Section 16.1, "Package Parameters for the MPC8641." 		
2	07/2009	 Added note 8 to Table 49, "Differential Transmitter (TX) Output Specifications." Added Revision E to Table 74, "Part Numbering Nomenclature." 		
1	11/2008	 Added Section 4.4, "Platform Frequency Requirements for PCI-Express and Serial RapidIO." Removed the statement "Note that core processor speed of 1500 MHz is only available for the MPC8641D (dual core)" from Note 2 in Table 74 because a 1500 MHz core is offered for both MPC8641D (dual core) and MPC8641 (single core). Added Note 8 to Figure 57 and Figure 58. 		
0	07/2008	Initial Release		

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and PowerQUICC, are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2008-2014 Freescale Semiconductor, Inc.

Document Number: MPC8641D Rev. 3 05/2014

