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Electrical Characteristics

NOTE
There is no required order sequence between the individual rails for this 
item (# 1). However, VDD_PLAT, AVDD_PLAT rails must reach 90% of 
their recommended value before the rail for Dn_GVDD, and Dn_MVREF (in 
next step) reaches 10% of their recommended value. AVDD type supplies 
must be delayed with respect to their source supplies by the RC time 
constant of the PLL filter circuit described in Section 20.2.1, “PLL Power 
Supply Filtering.” 

2. Dn_GVDD, Dn_MVREF 

NOTE
It is possible to leave the related power supply (Dn_GVDD, Dn_MVREF) 
turned off at reset for a DDR port that will not be used. Note that these power 
supplies can only be powered up again at reset for functionality to occur on 
the DDR port.

3. SYSCLK

The recommended order of power down is as follows:
1. Dn_GVDD, Dn_MVREF
2. All power rails other than DDR I/O (Dn_GVDD, Dn_MVREF).

NOTE
SYSCLK may be powered down simultaneous to either of item # 1 or # 2 in 
the power down sequence. Beyond this, the power supplies may power 
down simultaneously if the preservation of DDRn memory is not a concern. 

See Figure 3 for more details on the Power and Reset Sequencing details.
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Electrical Characteristics

Figure 3 illustrates the Power Up sequence as described above.

Figure 3. MPC8641 Power-Up and Reset Sequence

VDD_PLAT, AVDD_PLAT

 

L/T/OVDD

Time 

2.5 V

3.3 V

1.2 V

0

D
C

 P
ow

er
 S

up
pl

y 
V

ol
ta

ge

 

Reset
Configuration Pins

HRESET (& TRST)

 
100 µs Platform PLL

 

Asserted for
100 μs after

Power Supply Ramp Up 2

Notes: 
1. Dotted waveforms correspond to optional supply values for a specified power supply. See Table 2.
2. The recommended maximum ramp up time for power supplies is 20 milliseconds.
3. Refer to Section 5, “RESET Initialization” for additional information on PLL relock and reset signal 

assertion timing requirements.
4. Refer to Table 11 for additional information on reset configuration pin setup timing requirements. In 

addition see Figure 68 regarding HRESET and JTAG connection details including TRST.
5. e600 PLL relock time is 100 microseconds maximum plus 255 MPX_clk cycles.
6.  Stable PLL configuration signals are required as stable SYSCLK is applied. All other POR configuration 

inputs are required 4 SYSCLK cycles before HRESET negation and are valid at least 2 SYSCLK cycles 
after HRESET has negated (hold requirement). See Section 5, “RESET Initialization” for more 
information on setup and hold time of reset configuration signals.

7.  VDD_PLAT, AVDD_PLAT must strictly reach 90% of their recommended voltage before the rail for 
Dn_GVDD, and Dn_MVREF reaches 10% of their recommended voltage.

8.  SYSCLK must be driven only AFTER the power for the various power supplies is stable.
9.  In device sleep mode, the reset configuration signals for DRAM types (TSEC2_TXD[4],TSEC2_TX_ER) 

must be valid BEFORE HRESET is asserted.
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DDR and DDR2 SDRAM

6.2 DDR SDRAM AC Electrical Characteristics
This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications
Table 18 provides the input AC timing specifications for the DDR2 SDRAM when Dn_GVDD(typ)=1.8 V.

Table 19 provides the input AC timing specifications for the DDR SDRAM when Dn_GVDD(typ)=2.5 V.

Table 20 provides the input AC timing specifications for the DDR SDRAM interface.

Table 18. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface
At recommended operating conditions

Parameter Symbol Min Max Unit Notes

AC input low voltage
400, 533 MHz

600 MHz

VIL
— Dn_MVREF – 0.25

Dn_MVREF – 0.20

V —

AC input high voltage
400, 533 MHz

600 MHz

VIH
Dn_MVREF + 0.25
Dn_MVREF + 0.20

—
V —

Table 19. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface
At recommended operating conditions.

Parameter Symbol Min Max Unit Notes

AC input low voltage VIL — Dn_MVREF – 0.31 V —

AC input high voltage VIH Dn_MVREF + 0.31 — V —

Table 20. DDR SDRAM Input AC Timing Specifications
At recommended operating conditions.

Parameter Symbol Min Max Unit Notes

Controller Skew for 
MDQS—MDQ/MECC

tCISKEW — ps 1, 2

600 MHz — –240 240 — 3

533 MHz — –300 300 — 3

400 MHz — –365 365 — —

Note:  
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding 

bit that will be captured with MDQS[n]. This should be subtracted from the total timing budget.
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW.This can be 

determined by the following equation: tDISKEW =+/–(T/4 – abs(tCISKEW)) where T is the clock period and 
abs(tCISKEW) is the absolute value of tCISKEW. 

3. Maximum DDR1 frequency is 400 MHz.
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Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2 FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing 
Specifications

The AC timing specifications for FIFO, GMII, MII, TBI, RGMII, RMII and RTBI are presented in this 
section. 

8.2.1 FIFO AC Specifications
The basis for the AC specifications for the eTSEC’s FIFO modes is the double data rate RGMII and RTBI 
specifications, since they have similar performance and are described in a source-synchronous fashion like 
FIFO modes. However, the FIFO interface provides deliberate skew between the transmitted data and 
source clock in GMII fashion.

When the eTSEC is configured for FIFO modes, all clocks are supplied from external sources to the 
relevant eTSEC interface. That is, the transmit clock must be applied to the eTSECn’s TSECn_TX_CLK, 
while the receive clock must be applied to pin TSECn_RX_CLK. The eTSEC internally uses the transmit 

Input low current
(VIN

 = GND)
IIL –600 — μA 3

Notes:

1 LVDD supports eTSECs 1 and 2.
2 TVDD supports eTSECs 3 and 4.
3 The symbol VIN, in this case, represents the LVIN and TVIN symbols referenced in Table 1 and Table 2.

Table 25. GMII, RGMII, RTBI, TBI and FIFO DC Electrical Characteristics

Parameters Symbol Min Max Unit Notes

Supply voltage 2.5 V LVDD/TVDD 2.375 2.625 V 1,2

1 LVDD supports eTSECs 1 and 2.
2 TVDD supports eTSECs 3 and 4.

Output high voltage
(LVDD/TVDD = Min, IOH = –1.0 mA)

VOH 2.00 — V —

Output low voltage
(LVDD/TVDD = Min, IOL = 1.0 mA)

VOL — 0.40 V —

Input high voltage VIH 1.70 — V —

Input low voltage VIL — 0.90 V —

Input high current
(VIN

 = LVDD, VIN = TVDD)
IIH — 10 μA 1, 2,3

3 Note that the symbol VIN, in this case, represents the LVIN and TVIN symbols referenced in Table 1 and Table 2.

Input low current
(VIN = GND)

IIL –15 — μA 3

Note:

Table 24. GMII, MII, RMII, TBI and FIFO DC Electrical Characteristics (continued)

Parameter Symbol Min Max Unit Notes
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Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

Figure 10 shows the GMII transmit AC timing diagram.

Figure 10. GMII Transmit AC Timing Diagram

8.2.2.2 GMII Receive AC Timing Specifications

Table 29 provides the GMII receive AC timing specifications.

GTX_CLK data clock fall time (80%-20%) tGTXF
2 — — 1.0 ns

Notes:
1.  The symbols used for timing specifications herein follow the pattern t(first two letters of functional block)(signal)(state) (reference)(state) 

for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGTKHDV symbolizes GMII 
transmit timing (GT) with respect to the tGTX clock reference (K) going to the high state (H) relative to the time date input 
signals (D) reaching the valid state (V) to state or setup time. Also, tGTKHDX symbolizes GMII transmit timing (GT) with respect 
to the tGTX clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold 
time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a 
particular functional. For example, the subscript of tGTX represents the GMII(G) transmit (TX) clock. For rise and fall times, 
the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

Table 29. GMII Receive AC Timing Specifications
At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

RX_CLK clock period tGRX
3 — 8.0 — ns

RX_CLK duty cycle tGRXH/tGRX 40 — 60 ns

RXD[7:0], RX_DV, RX_ER setup time to RX_CLK tGRDVKH 2.0 — — ns

RXD[7:0], RX_DV, RX_ER hold time to RX_CLK tGRDXKH 0.5 — — ns

RX_CLK clock rise time (20%-80%) tGRXR
2 — — 1.0 ns

Table 28. GMII Transmit AC Timing Specifications (continued)
At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

GTX_CLK

TXD[7:0]

tGTKHDX

tGTX

tGTXH

tGTXR

tGTXF

tGTKHDV

TX_EN
TX_ER
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Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2.4.2 TBI Receive AC Timing Specifications

Table 33 provides the TBI receive AC timing specifications.

Figure 17 shows the TBI receive AC timing diagram.

Figure 17. TBI Receive AC Timing Diagram

Table 33. TBI Receive AC Timing Specifications
At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

PMA_RX_CLK[0:1] clock period tTRX
3 — 16.0 — ns

PMA_RX_CLK[0:1] skew tSKTRX 7.5 — 8.5 ns

PMA_RX_CLK[0:1] duty cycle tTRXH/tTRX 40 — 60 %

RCG[9:0] setup time to rising PMA_RX_CLK tTRDVKH 2.5 — — ns

RCG[9:0] hold time to rising PMA_RX_CLK tTRDXKH 1.5 — — ns

PMA_RX_CLK[0:1] clock rise time (20%-80%) tTRXR
2 0.7 — 2.4 ns

PMA_RX_CLK[0:1] clock fall time (80%-20%) tTRXF
2 0.7 — 2.4 ns

Note:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) 

for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTRDVKH symbolizes TBI receive 
timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the tTRX clock reference (K) going 
to the high (H) state or setup time. Also, tTRDXKH symbolizes TBI receive timing (TR) with respect to the time data input signals 
(D) went invalid (X) relative to the tTRX clock reference (K) going to the high (H) state. Note that, in general, the clock reference 
symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of 
tTRX represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: 
R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).

2. Guaranteed by design.
3. ±100 ppm tolerance on PMA_RX_CLK[0:1] frequency

PMA_RX_CLK1

RCG[9:0]

tTRX

tTRXH

tTRXR

tTRXF

tTRDVKH

PMA_RX_CLK0

tTRDXKH

tTRDVKH

tTRDXKH

tSKTRX

tTRXH

Valid Data Valid Data
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11 JTAG
This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of 
the MPC8641/D.

11.1 JTAG DC Electrical Characteristics
Table 43 provides the DC electrical characteristics for the JTAG interface.

11.2 JTAG AC Electrical Specifications
Table 44 provides the JTAG AC timing specifications as defined in Figure 33 through Figure 35.

Table 43. JTAG DC Electrical Characteristics 

Parameter Symbol Min Max Unit

High-level input voltage VIH 2 OVDD + 0.3 V

Low-level input voltage VIL – 0.3 0.8 V

Input current
(VIN 1 = 0 V or VIN = VDD)

IIN — ±5 μA

High-level output voltage
(OVDD = min, IOH = –100 μA)

VOH OVDD – 0.2 — V

Low-level output voltage
(OVDD = min, IOL = 100 μA)

VOL — 0.2 V

Note:
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Table 44. JTAG AC Timing Specifications (Independent of SYSCLK) 1
At recommended operating conditions (see Table 3).

Parameter Symbol 2 Min Max Unit Notes

JTAG external clock frequency of operation fJTG 0 33.3 MHz —

JTAG external clock cycle time t JTG 30 — ns —

JTAG external clock pulse width measured at 1.4 V tJTKHKL 15 — ns —

JTAG external clock rise and fall times tJTGR & tJTGF 0 2 ns 6

TRST assert time tTRST 25 — ns 3

Input setup times:
Boundary-scan data

TMS, TDI
tJTDVKH
tJTIVKH

4
0

—
—

ns
4

Input hold times:
Boundary-scan data

TMS, TDI
tJTDXKH
tJTIXKH

20
25

—
—

ns
4

Valid times:
Boundary-scan data

TDO
tJTKLDV
tJTKLOV

4
4

20
25

ns
5
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Figure 48. Single-Ended Measurement Points for Rise and Fall Time Matching

The other detailed AC requirements of the SerDes Reference Clocks is defined by each interface protocol 
based on application usage. Refer to the following sections for detailed information:

• Section 14.2, “AC Requirements for PCI Express SerDes Clocks”
• Section 15.2, “AC Requirements for Serial RapidIO SDn_REF_CLK and SDn_REF_CLK”

13.3 SerDes Transmitter and Receiver Reference Circuits
Figure 49 shows the reference circuits for SerDes data lane’s transmitter and receiver.

Figure 49. SerDes Transmitter and Receiver Reference Circuits

The DC and AC specification of SerDes data lanes are defined in each interface protocol section below 
(PCI Express or Serial Rapid IO) in this document based on the application usage:”

• Section 14, “PCI Express”
• Section 15, “Serial RapidIO”

Note that external AC Coupling capacitor is required for the above two serial transmission protocols with 
the capacitor value defined in specification of each protocol section.

14 PCI Express
This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8641.

SDn_REF_CLK

SDn_REF_CLK

SDn_REF_CLK

SDn_REF_CLK

50 Ω

50 Ω
ReceiverTransmitter

SD1_TXn or
SD2_TXn

SD1_TXn or
SD2_TXn

SD1_RXn or
SD2_RXn

SD1_RXn or
SD2_RXn

50 Ω

50 Ω
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14.4.2 Transmitter Compliance Eye Diagrams
The TX eye diagram in Figure 50 is specified using the passive compliance/test measurement load (see 
Figure 52) in place of any real PCI Express interconnect + RX component. 

There are two eye diagrams that must be met for the transmitter. Both eye diagrams must be aligned in 
time using the jitter median to locate the center of the eye diagram. The different eye diagrams will differ 
in voltage depending whether it is a transition bit or a de-emphasized bit. The exact reduced voltage level 
of the de-emphasized bit will always be relative to the transition bit.

The eye diagram must be valid for any 250 consecutive UIs. 

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is 
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX 
UI.

NOTE
It is recommended that the recovered TX UI is calculated using all edges in 
the 3500 consecutive UI interval with a fit algorithm using a minimization 
merit function (that is, least squares and median deviation fits).

Figure 50. Minimum Transmitter Timing and Voltage Output Compliance Specifications

VTX-DIFF = 0 mV
(D+ D– Crossing Point)

[De-Emphasized Bit]

0.07 UI = UI – 0.3 UI (JTX-TOTAL-MAX)

566 mV (3 dB ) >= VTX-DIFFp-p-MIN >= 505 mV (4 dB )

[Transition Bit]
VTX-DIFFp-p-MIN = 800 mV

VRX-DIFF = 0 mV
(D+ D– Crossing Point)

[Transition Bit]
VTX-DIFFp-p-MIN = 800 mV
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15.4 Equalization
With the use of high speed serial links, the interconnect media will cause degradation of the signal at the 
receiver. Effects such as Inter-Symbol Interference (ISI) or data dependent jitter are produced. This loss 
can be large enough to degrade the eye opening at the receiver beyond what is allowed in the specification. 
To negate a portion of these effects, equalization can be used. The most common equalization techniques 
that can be used are:

• A passive high pass filter network placed at the receiver. This is often referred to as passive 
equalization.

• The use of active circuits in the receiver. This is often referred to as adaptive equalization.

15.5 Explanatory Note on Transmitter and Receiver Specifications
AC electrical specifications are given for transmitter and receiver. Long run and short run interfaces at 
three baud rates (a total of six cases) are described.

The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified 
in Clause 47 of IEEE 802.3ae-2002.

XAUI has similar application goals to serial RapidIO, as described in Section 8.1. The goal of this standard 
is that electrical designs for serial RapidIO can reuse electrical designs for XAUI, suitably modified for 
applications at the baud intervals and reaches described herein.

15.6 Transmitter Specifications
LP-Serial transmitter electrical and timing specifications are stated in the text and tables of this section.

The differential return loss, S11, of the transmitter in each case shall be better than
• –10 dB for (Baud Frequency)/10 < Freq(f) < 625 MHz, and
• –10 dB + 10log(f/625 MHz) dB for 625 MHz ≤ Freq(f) ≤ Baud Frequency

The reference impedance for the differential return loss measurements is 100 Ohm resistive. Differential 
return loss includes contributions from on-chip circuitry, chip packaging and any off-chip components 
related to the driver. The output impedance requirement applies to all valid output levels.

It is recommended that the 20%–80% rise/fall time of the transmitter, as measured at the transmitter output, 
in each case have a minimum value 60 ps.

It is recommended that the timing skew at the output of an LP-Serial transmitter between the two signals 
that comprise a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB and 15 ps at 3.125 GB.
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Table 60. Receiver AC Timing Specifications—2.5 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Input Voltage VIN 200 1600 mV p-p Measured at receiver

Deterministic Jitter Tolerance JD 0.37 — UI p-p Measured at receiver

Combined Deterministic and Random 
Jitter Tolerance

JDR 0.55 — UI p-p Measured at receiver

Total Jitter Tolerance1 JT 0.65 — UI p-p Measured at receiver

Multiple Input Skew SMI — 24 ns Skew at the receiver input 
between lanes of a multilane 
link

Bit Error Rate BER — 10–12 — —

Unit Interval UI 400 400 ps +/– 100 ppm

Note:  
1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The 

sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 55. The sinusoidal jitter component 
is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Table 61. Receiver AC Timing Specifications—3.125 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Input Voltage VIN 200 1600 mV p-p Measured at receiver

Deterministic Jitter Tolerance JD 0.37 — UI p-p Measured at receiver

Combined Deterministic and Random 
Jitter Tolerance

JDR 0.55 — UI p-p Measured at receiver

Total Jitter Tolerance1 JT 0.65 — UI p-p Measured at receiver

Multiple Input Skew SMI — 22 ns Skew at the receiver input 
between lanes of a multilane 
link

Bit Error Rate BER — 10-12 — —

Unit Interval UI 320 320 ps +/– 100 ppm

Note:  
1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The 

sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 55. The sinusoidal jitter component 
is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
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Figure 55. Single Frequency Sinusoidal Jitter Limits

15.8 Receiver Eye Diagrams
For each baud rate at which an LP-Serial receiver is specified to operate, the receiver shall meet the 
corresponding Bit Error Rate specification (Table 59, Table 60, Table 61) when the eye pattern of the 
receiver test signal (exclusive of sinusoidal jitter) falls entirely within the unshaded portion of the Receiver 
Input Compliance Mask shown in Figure 56 with the parameters specified in Table . The eye pattern of the 
receiver test signal is measured at the input pins of the receiving device with the device replaced with a 
100 Ω +/– 5% differential resistive load.

8.5 UI p-p

0.10 UI p-p

Sinusoidal

Jitter

Amplitude

22.1 kHz 1.875 MHz 20 MHz

Frequency
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16 Package
This section details package parameters and dimensions.

16.1 Package Parameters for the MPC8641
The package parameters are as provided in the following list. The package type is 33 mm × 33 mm, 1023 
pins. There are two package options: high-lead Flip Chip-Ceramic Ball Grid Array (FC-CBGA), and 
lead-free (FC-CBGA).

For all package types:
Die size 12.1 mm × 14.7 mm
Package outline 33 mm × 33 mm
Interconnects  1023
Pitch 1 mm
Total Capacitor count 43 caps; 100 nF each

For high-lead FC-CBGA (package option: HCTE1 HX)
Maximum module height  2.97 mm
Minimum module height 2.47 mm
Solder Balls 89.5% Pb 10.5% Sn
Ball diameter (typical2) 0.60 mm

For RoHS lead-free FC-CBGA (package option: HCTE1 VU) and lead-free FC-CBGA (package option: 
HCTE1 VJ)

Maximum module height  2.77 mm
Minimum module height 2.27 mm
Solder Balls 95.5% Sn 4.0% Ag 0.5% Cu
Ball diameter (typical2) 0.60 mm

1 High-coefficient of thermal expansion
2 Typical ball diameter is before reflow
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17 Signal Listings
Table 63 provides the pin assignments for the signals. Notes for the signal changes on the single core 
device (MPC8641) are italicized and prefixed by “S”.

Table 63. MPC8641 Signal Reference by Functional Block

Name1 Package Pin Number Pin Type Power Supply Notes

DDR Memory Interface 1 Signals2,3

D1_MDQ[0:63] D15, A14, B12, D12, A15, B15, B13, C13, 
C11, D11, D9, A8, A12, A11, A9, B9, F11, 
G12, K11, K12, E10, E9, J11, J10, G8, H10, 
L9, L7, F10, G9, K9, K8, AC6, AC7, AG8, 
AH9, AB6, AB8, AE9, AF9, AL8, AM8, 
AM10, AK11, AH8, AK8, AJ10, AK10, AL12, 
AJ12, AL14, AM14, AL11, AM11, AM13, 
AK14, AM15, AJ16, AK18, AL18, AJ15, 
AL15, AL17, AM17

I/O D1_GVDD —

D1_MECC[0:7] M8, M7, R8, T10, L11, L10, P9, R10 I/O D1_GVDD —

D1_MDM[0:8] C14, A10, G11, H9, AD7, AJ9, AM12, AK16, 
N10

O D1_GVDD —

D1_MDQS[0:8] A13, C10, H12, J7, AE8, AM9, AK13, AK17, 
N9

I/O D1_GVDD —

D1_MDQS[0:8] D14, B10, H13, J8, AD8, AL9, AJ13, AM16, 
P10

I/O D1_GVDD —

D1_MBA[0:2] AA8, AA10, T9 O D1_GVDD —

D1_MA[0:15] Y10, W8, W9, V7, V8, U6, V10, U9, U7, U10, 
Y9, T6, T8, AE12, R7, P6

O D1_GVDD —

D1_MWE AB11 O D1_GVDD —

D1_MRAS AB12 O D1_GVDD —

D1_MCAS AC10 O D1_GVDD —

D1_MCS[0:3] AB9, AD10, AC12, AD11 O D1_GVDD —

D1_MCKE[0:3] P7, M10, N8, M11 O D1_GVDD 23

D1_MCK[0:5] W6, E13, AH11, Y7, F14, AG10 O D1_GVDD —

D1_MCK[0:5] Y6, E12, AH12, AA7, F13, AG11 O D1_GVDD —

D1_MODT[0:3] AC9, AF12, AE11, AF10 O D1_GVDD —

D1_MDIC[0:1] E15, G14 IO D1_GVDD 27

D1_MVREF AM18 DDR Port 1 
reference 
voltage

D1_GVDD /2 3

DDR Memory Interface 2 Signals2,3
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18.4.1 SYSCLK to Platform Frequency Options

Table 70 shows some SYSCLK frequencies and the expected MPX frequency values based on the MPX 
clock to SYSCLK ratio. Note that frequencies between 400 MHz and 500 MHz are NOT supported on the 
platform. See note regarding cfg_platform_freq in Section 17, “Signal Listings,” because it is a reset 
configuration pin that is related to platform frequency.

18.4.2 Platform to FIFO Restrictions

Please note the following FIFO maximum speed restrictions based on platform speed.

For FIFO GMII mode: 
FIFO TX/RX clock frequency <= platform clock frequency/4.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency should be no more 
than 127 MHz

For FIFO encoded mode: 
FIFO TX/RX clock frequency <= platform clock frequency/3.2

 For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency should be no more 
than 167 MHz

Table 70. Frequency Options of SYSCLK with Respect to Platform/MPX Clock Speed

MPX to 
SYSCLK 

Ratio
SYSCLK (MHz)

66 83 100 111 133 167

Platform/MPX Frequency (MHz)1

1 SYSCLK frequency range is 66-167 MHz. Platform clock/ MPX frequency 
range is 400 MHz, 500-600 MHz.

2

3 400 500

4 400 533

5 500 555

6 400 500 600

8 533

9 600



MPC8641 and MPC8641D Integrated Host Processor Hardware Specifications, Rev. 3

Freescale Semiconductor 109
 

Thermal

Figure 59. FC-CBGA Package Exploded Cross-Sectional View with Several Heat Sink Options

There are several commercially-available heat sinks for the MPC8641 provided by the following vendors:
Aavid Thermalloy 603-224-9988
80 Commercial St.
Concord, NH 03301
Internet: www.aavidthermalloy.com
Advanced Thermal Solutions 781-769-2800
89 Access Road #27.
Norwood, MA02062
Internet: www.qats.com
Alpha Novatech 408-749-7601
473 Sapena Ct. #12
Santa Clara, CA 95054
Internet: www.alphanovatech.com
Calgreg Thermal Solutions 888-732-6100
60 Alhambra Road, Suite 1 
Warwick, RI 02886
Internet: www.calgreg.com
International Electronic Research Corporation (IERC)818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com
Millennium Electronics (MEI) 408-436-8770
Loroco Sites
671 East Brokaw Road
San Jose, CA 95112
Internet: www.mei-thermal.com

Thermal

Heat Sink
HCTE FC-CBGA Package

Heat Sink
Clip

Printed-Circuit Board

Interface Material
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19.2.2 Thermal Interface Materials
A thermal interface material is recommended at the package-to-heat sink interface to minimize the thermal 
contact resistance. Figure 61 shows the thermal performance of three thin-sheet thermal-interface 
materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function 
of contact pressure. As shown, the performance of these thermal interface materials improves with 
increasing contact pressure. The use of thermal grease significantly reduces the interface thermal 
resistance. That is, the bare joint results in a thermal resistance approximately seven times greater than the 
thermal grease joint. 

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board 
(see Figure 59). Therefore, synthetic grease offers the best thermal performance, considering the low 
interface pressure, and is recommended due to the high power dissipation of the MPC8641. Of course, the 
selection of any thermal interface material depends on many factors—thermal performance requirements, 
manufacturability, service temperature, dielectric properties, cost, and so on.

Figure 61. Thermal Performance of Select Thermal Interface Material

The board designer can choose between several types of thermal interface. Heat sink adhesive materials 
should be selected based on high conductivity and mechanical strength to meet equipment shock/vibration 
requirements. There are several commercially available thermal interfaces and adhesive materials 
provided by the following vendors:
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example, assuming a Ti of 30°C, a Tr of 5°C, a package RθJC = 0.1, and a typical power consumption (Pd) 
of 43.4 W, the following expression for Tj is obtained:

Die-junction temperature: Tj = 30°C + 5°C + (0.1°C/W + 0.2°C/W + θsa) × 43.4 W

For this example, a Rθsavalue of 1.32 °C/W or less is required to maintain the die junction temperature 
below the maximum value of Table 2.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common 
figure-of-merit used for comparing the thermal performance of various microelectronic packaging 
technologies, one should exercise caution when only using this metric in determining thermal management 
because no single parameter can adequately describe three-dimensional heat flow. The final die-junction 
operating temperature is not only a function of the component-level thermal resistance, but the 
system-level design and its operating conditions. In addition to the component's power consumption, a 
number of factors affect the final operating die-junction temperature—airflow, board population (local 
heat flux of adjacent components), heat sink efficiency, heat sink placement, next-level interconnect 
technology, system air temperature rise, altitude, and so on.

Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC8641 thermal model is shown in Figure 62. Four cuboids are used 
to represent this device. The die is modeled as 12.4x15.3 mm at a thickness of 0.86 mm. See Section 3, 
“Power Characteristics” for power dissipation details. The substrate is modeled as a single block 
33x33x1.2 mm with orthotropic conductivity: 13.5 W/(m • K) in the xy-plane and 5.3 W/(m • K) in the 
z-direction. The die is centered on the substrate. The bump/underfill layer is modeled as a collapsed 
thermal resistance between the die and substrate with a conductivity of 5.3 W/(m • K) in the thickness 
dimension of 0.07 mm. Because the bump/underfill is modeled with zero physical dimension (collapsed 
height), the die thickness was slightly enlarged to provide the correct height. The C5 solder layer is 
modeled as a cuboid with dimensions 33x33x0.4 mm and orthotropic thermal conductivity of 0.034 W/(m 
• K) in the xy-plane and 9.6 W/(m • K) in the z-direction. An LGA solder layer would be modeled as a 
collapsed thermal resistance with thermal conductivity of 9.6W/(m • K) and an effective height of 0.1 mm. 
The thermal model uses approximate dimensions to reduce grid. Please refer to the case outline for actual 
dimensions.
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Figure 62. Recommended Thermal Model of MPC8641

19.2.4 Temperature Diode
The MPC8641 has a temperature diode on the microprocessor that can be used in conjunction with other 
system temperature monitoring devices (such as Analog Devices, ADT7461™). These devices use the 
negative temperature coefficient of a diode operated at a constant current to determine the temperature of 
the microprocessor and its environment. It is recommended that each device be individually calibrated.

The following are the specifications of the MPC8641 on-board temperature diode:

Vf > 0.40 V 

Vf < 0.90 V

An approximate value of the ideality may be obtained by calibrating the device near the expected operating 
temperature. 

Ideality factor is defined as the deviation from the ideal diode equation:

Bump and Underfill

Die

Substrate

C5 solder layer

Die

Substrate

Side View of Model (Not to Scale)

Top View of Model (Not to Scale)

x

y

z

Conductivity Value Unit

Die (12.4x15.3x0.86 mm)

Silicon Temperature 
dependent

Bump and Underfill (12.4 × 15.3 × 0.07 mm)
Collapsed Resistance

kz 5.3 W/(m • K)

Substrate (33 × 33 × 1.2 mm)

kx 13.5 W/(m • K)

ky 13.5

kz 5.3

C5 Solder layer (33 × 33 × 0.4 mm)

kx 0.034 W/(m • K)

ky 0.034

kz 9.6

 Ifw = Is e  – 1 

 qVf___
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Figure 64. MPC8641 PLL Power Supply Filter Circuit (for cores)

The AVDD_SRDSn signals provide power for the analog portions of the SerDes PLL. To ensure stability 
of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in 
following figure. For maximum effectiveness, the filter circuit is placed as closely as possible to the 
AVDD_SRDSn balls to ensure it filters out as much noise as possible. The ground connection should be 
near the AVDD_SRDSn balls. The 0.003-µF capacitor is closest to the balls, followed by the two 2.2-µF 
capacitors, and finally the 1 Ω resistor to the board supply plane. The capacitors are connected from 
AVDD_SRDSn to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant 
frequency. All traces should be kept short, wide and direct.

Figure 65. SerDes PLL Power Supply Filter

Note the following:
• AVDD_SRDSn should be a filtered version of SVDD.
• Signals on the SerDes interface are fed from the SVDD power plan. 

20.2.2 PLL Power Supply Sequencing
For details on power sequencing for the AVDD type and supplies refer to Section 2.2, “Power Up/Down 
Sequence.”

20.3 Decoupling Recommendations
Due to large address and data buses, and high operating frequencies, the device can generate transient 
power surges and high frequency noise in its power supply, especially while driving large capacitive loads. 
This noise must be prevented from reaching other components in the MPC8641 system, and the device 
itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system 

 VDD_Core0/1 AVDD_Core0/1 
 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10 Ω

Filter Circuit (should not be used for Single core device)

Note: For single core device the filter circuit (in the dashed box) should
be removed and AVDD_Core1 should be tied to ground with a weak
(2-10 kΩ) pull-down resistor.

 

 2.2 µF 1 0.003 µF

 GND

1.0 Ω
AVDD_SRDSn

1. An 0805 sized capacitor is recommended for system initial bring-up.

SVDD

 2.2 µF 1


