

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e600
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	994-BCBGA, FCCBGA
Supplier Device Package	994-FCCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc8641hx1000nb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Recommended Operating Conditions (continued)

Characteristic	Symbol	Recommended Value	Unit	Notes
Junction temperature range	TJ	0 to 105	°C	

Notes:

- 1. Core 1 characteristics apply only to MPC8641D
- 2. If two separate power supplies are used for V_{DD}_Core0 and V_{DD}_Core1, they must be at the same nominal voltage and the individual power supplies must be tracked and kept within 100 mV of each other during normal run time.
- 3. Caution: Dn_MV_{IN} must meet the overshoot/undershoot requirements for Dn_GV_{DD} as shown in Figure 2.
- 4. Caution: L/TV_{IN} must meet the overshoot/undershoot requirements for L/TV_{DD} as shown in Figure 2 during regular run time.
- 5. Caution: OV_{IN} must meet the overshoot/undershoot requirements for OV_{DD} as shown in Figure 2 during regular run time.
- 6. Timing limitations for M,L,T,O)V_{IN} and Dn_MV_{REF} during regular run time is provided in Figure 2
- 7. Applies to devices marked with a core frequency of 1333 MHz and below. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for a core frequency of 1333 MHz and below.
- 8. Applies to devices marked with a core frequency above 1333 MHz. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for a core frequency above 1333 MHz.
- 9. The 2.5 V \pm 125 mV range is for DDR and 1.8 V \pm 90 mV range is for DDR2.
- 10. See Section 8.2, "FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications," for details on the recommended operating conditions per protocol.
- 11. The PCI Express interface of the device is expected to receive signals from 0.175 to 1.2 V. For more information refer to Section 14.4.3, "Differential Receiver (RX) Input Specifications."
- 12. Applies to Part Number MC8641xxx1000NX only. V_{DD} _Core n = 0.95 V and V_{DD} _PLAT = 1.05 V devices. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for V_{DD} _Core n = 0.95 V.
- 13. This voltage is the input to the filter discussed in Section 20.2, "Power Supply Design and Sequencing," and not necessarily the voltage at the AV_{DD}_Core*n* pin, which may be reduced from V_{DD}_Core*n* by the filter.

6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications

Table 18 provides the input AC timing specifications for the DDR2 SDRAM when $Dn GV_{DD}(typ)=1.8 V$.

Table 18. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage 400, 533 MHz 600 MHz	V _{IL}	_	D <i>n_</i> MV _{REF} – 0.25 D <i>n_</i> MV _{REF} – 0.20	V	_
AC input high voltage 400, 533 MHz 600 MHz	V _{IH}	D <i>n_</i> MV _{REF} + 0.25 D <i>n_</i> MV _{REF} + 0.20	_	V	

Table 19 provides the input AC timing specifications for the DDR SDRAM when $Dn_GV_{DD}(typ)=2.5$ V.

 Table 19. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

At recommended operating conditions.

Parameter	Symbol	Min	Min Max		Notes
AC input low voltage	V _{IL}	—	D <i>n</i> _MV _{REF} – 0.31	V	—
AC input high voltage	V _{IH}	D <i>n</i> _MV _{REF} + 0.31	_	V	—

Table 20 provides the input AC timing specifications for the DDR SDRAM interface.

Table 20. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions.

Parameter	Symbol	Min	Мах	Unit	Notes
Controller Skew for MDQS—MDQ/MECC	^t CISKEW	—		ps	1, 2
600 MHz	—	-240	240	_	3
533 MHz	—	-300	300	—	3
400 MHz	_	-365	365		_

Note:

1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that will be captured with MDQS[n]. This should be subtracted from the total timing budget.

- The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} =+/-(T/4 - abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.
- 3. Maximum DDR1 frequency is 400 MHz.

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

Timing diagrams for FIFO appear in Figure 8 and Figure 9.

Figure 9. FIFO Receive AC Timing Diagram

8.2.2 GMII AC Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.2.1 GMII Transmit AC Timing Specifications

Table 28 provides the GMII transmit AC timing specifications.

Table 28. GMII Transmit AC Timing Specifications

At recommended operating conditions with L/TV_DD of 3.3 V \pm 5% and 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
GMII data TXD[7:0], TX_ER, TX_EN setup time	t _{GTKHDV}	2.5	—	—	ns
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	t _{GTKHDX}	0.5	—	5.0	ns
GTX_CLK data clock rise time (20%-80%)	t _{GTXR} 2	_	_	1.0	ns

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2.4.2 TBI Receive AC Timing Specifications

Table 33 provides the TBI receive AC timing specifications.

Table 33. TBI Receive AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5% and 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
PMA_RX_CLK[0:1] clock period	t _{TRX} 3	—	16.0	_	ns
PMA_RX_CLK[0:1] skew	t _{SKTRX}	7.5	—	8.5	ns
PMA_RX_CLK[0:1] duty cycle	t _{TRXH} /t _{TRX}	40	—	60	%
RCG[9:0] setup time to rising PMA_RX_CLK	t _{TRDVKH}	2.5	—	—	ns
RCG[9:0] hold time to rising PMA_RX_CLK	t _{TRDXKH}	1.5	—	—	ns
PMA_RX_CLK[0:1] clock rise time (20%-80%)	t _{TRXR} ²	0.7	—	2.4	ns
PMA_RX_CLK[0:1] clock fall time (80%-20%)	t _{TRXF} 2	0.7	—	2.4	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).}}

2. Guaranteed by design.

3. ±100 ppm tolerance on PMA_RX_CLK[0:1] frequency

Figure 17 shows the TBI receive AC timing diagram.

Figure 17. TBI Receive AC Timing Diagram

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2.7.2 RMII Receive AC Timing Specifications

Table 37. RMII Receive AC Timing Specifications

At recommended operating conditions with L/TV_DD of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
REF_CLK clock period	t _{RMR}	15.0	20.0	25.0	ns
REF_CLK duty cycle	t _{RMRH} /t _{RMR}	35	50	65	%
REF_CLK peak-to-peak jitter	t _{RMRJ}	—	_	250	ps
Rise time REF_CLK (20%–80%)	t _{RMRR}	1.0	_	2.0	ns
Fall time REF_CLK (80%–20%)	t _{RMRF}	1.0	—	2.0	ns
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK rising edge	t _{RMRDV}	4.0	_	_	ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK rising edge	t _{RMRDX}	2.0	_	_	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 21 provides the AC test load for eTSEC.

Figure 21. eTSEC AC Test Load

Figure 22 shows the RMII receive AC timing diagram.

Figure 22. RMII Receive AC Timing Diagram

Local Bus

Figure 27. Local Bus Signals (PLL Bypass Mode)

NOTE

In PLL bypass mode, LCLK[n] is the inverted version of the internal clock with the delay of t_{LBKHKT} . In this mode, signals are launched at the rising edge of the internal clock and are captured at falling edge of the internal clock, with the exception of the LGTA/LUPWAIT signal, which is captured at the rising edge of the internal clock.

Figure 31. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 or 8 (clock ratio of 8 or 16) (PLL Bypass Mode)

To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic) transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing that goes between 2.5 V and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD or TD) is 500 mV p-p, which is referred as the single-ended swing for each signal. In this example, since the differential signaling environment is fully symmetrical, the transmitter output's differential swing (V_{OD}) has the same amplitude as each signal's single-ended swing. The differential output signal ranges between 500 mV and -500 mV, in other words, V_{OD} is 500 mV in one phase and -500 mV in the other phase. The peak differential voltage (V_{DIFFp}) is 500 mV. The peak-to-peak differential voltage (V_{DIFFp}-p) is 1000 mV p-p.

13.2 SerDes Reference Clocks

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clocks inputs are SDn_REF_CLK and SDn_REF_CLK for PCI Express and Serial RapidIO.

The following sections describe the SerDes reference clock requirements and some application information.

13.2.1 SerDes Reference Clock Receiver Characteristics

Figure 39 shows a receiver reference diagram of the SerDes reference clocks.

- The supply voltage requirements for XV_{DD} SRDS*n* are specified in Table 1 and Table 2.
- SerDes Reference Clock Receiver Reference Circuit Structure
 - The SDn_REF_CLK and SDn_REF_CLK are internally AC-coupled differential inputs as shown in Figure 39. Each differential clock input (SDn_REF_CLK or SDn_REF_CLK) has a 50-Ω termination to SGND followed by on-chip AC-coupling.
 - The external reference clock driver must be able to drive this termination.
 - The SerDes reference clock input can be either differential or single-ended. Refer to the Differential Mode and Single-ended Mode description below for further detailed requirements.
- The maximum average current requirement that also determines the common mode voltage range
 - When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA (refer to the following bullet for more detail), since the input is AC-coupled on-chip.
 - This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1 V above SGND. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
 - If the device driving the SD*n*_REF_CLK and $\overline{SDn_REF_CLK}$ inputs cannot drive 50 Ω to SGND DC, or it exceeds the maximum input current limitations, then it must be AC-coupled off-chip.

15.4 Equalization

With the use of high speed serial links, the interconnect media will cause degradation of the signal at the receiver. Effects such as Inter-Symbol Interference (ISI) or data dependent jitter are produced. This loss can be large enough to degrade the eye opening at the receiver beyond what is allowed in the specification. To negate a portion of these effects, equalization can be used. The most common equalization techniques that can be used are:

- A passive high pass filter network placed at the receiver. This is often referred to as passive equalization.
- The use of active circuits in the receiver. This is often referred to as adaptive equalization.

15.5 Explanatory Note on Transmitter and Receiver Specifications

AC electrical specifications are given for transmitter and receiver. Long run and short run interfaces at three baud rates (a total of six cases) are described.

The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified in Clause 47 of IEEE 802.3ae-2002.

XAUI has similar application goals to serial RapidIO, as described in Section 8.1. The goal of this standard is that electrical designs for serial RapidIO can reuse electrical designs for XAUI, suitably modified for applications at the baud intervals and reaches described herein.

15.6 Transmitter Specifications

LP-Serial transmitter electrical and timing specifications are stated in the text and tables of this section.

The differential return loss, S11, of the transmitter in each case shall be better than

- -10 dB for (Baud Frequency)/10 < Freq(f) < 625 MHz, and
- $-10 \text{ dB} + 10\log(f/625 \text{ MHz}) \text{ dB}$ for $625 \text{ MHz} \le \text{Freq}(f) \le \text{Baud}$ Frequency

The reference impedance for the differential return loss measurements is 100 Ohm resistive. Differential return loss includes contributions from on-chip circuitry, chip packaging and any off-chip components related to the driver. The output impedance requirement applies to all valid output levels.

It is recommended that the 20%–80% rise/fall time of the transmitter, as measured at the transmitter output, in each case have a minimum value 60 ps.

It is recommended that the timing skew at the output of an LP-Serial transmitter between the two signals that comprise a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB and 15 ps at 3.125 GB.

Characteristic	Symbol	Range		Unit	Notos	
Characteristic	Symbol	Min	Мах	Onit	Notes	
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair	
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	_	
Deterministic Jitter	J _D	—	0.17	UI p-p	—	
Total Jitter	J _T	—	0.35	UI p-p	—	
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit Interval	UI	320	320	ps	+/– 100 ppm	

For each baud rate at which an LP-Serial transmitter is specified to operate, the output eye pattern of the transmitter shall fall entirely within the unshaded portion of the Transmitter Output Compliance Mask shown in Figure 54 with the parameters specified in Table 58 when measured at the output pins of the device and the device is driving a $100 \Omega + -5\%$ differential resistive load. The output eye pattern of an LP-Serial transmitter that implements pre-emphasis (to equalize the link and reduce inter-symbol interference) need only comply with the Transmitter Output Compliance Mask when pre-emphasis is disabled or minimized.

8. Note that for MPC8641 (single core) the solder balls for the following signals/pins are not populated in the package: VDD_Core1 (R16, R18, R20, T17, T19, T21, T23, U16, U18, U22, V17, V19, V21, V23, W16, W18, W20, W22, Y17, Y19, Y21, Y23, AA16, AA18, AA20, AA22, AB23, AC24) and SENSEVDD_Core1 (U20).

Figure 58. MPC8641D Lead-Free FC-CBGA Dimensions

NOTES for Figure 58

- 1. All dimensions are in millimeters.
- 2. Dimensions and tolerances per ASME Y14.5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is defined by the spherical crowns of the solder balls.
- 5. Capacitors may not be present on all devices.
- 6. Caution must be taken not to short capacitors or expose metal capacitor pads on package top.
- 7. All dimensions symmetrical about centerlines unless otherwise specified.
- Note that for MPC8641 (single core) the solder balls for the following signals/pins are not populated in the package: VDD_Core1 (R16, R18, R20, T17, T19, T21, T23, U16, U18, U22, V17, V19, V21, V23, W16, W18, W20, W22, Y17, Y19, Y21, Y23, AA16, AA18, AA20, AA22, AB23, AC24) and SENSEVDD_Core1 (U20).

Signal Listings

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
TSEC1_TXD[0:7]/ GPOUT[0:7]	AF25, AC23,AG24, AG23, AE24, AE23, AE22, AD22	0	LV _{DD}	6, 10
TSEC1_TX_EN	AB22	0	LV _{DD}	36
TSEC1_TX_ER	AH26	0	LV _{DD}	_
TSEC1_TX_CLK	AC22	I	LV _{DD}	40
TSEC1_GTX_CLK	AH25	0	LV _{DD}	41
TSEC1_CRS	AM24	I/O	LV _{DD}	37
TSEC1_COL	AM25	I	LV _{DD}	—
TSEC1_RXD[0:7]/ GPIN[0:7]	AL25, AL24, AK26, AK25, AM26, AF26, AH24, AG25	I	LV _{DD}	10
TSEC1_RX_DV	AJ24	I	LV _{DD}	_
TSEC1_RX_ER	AJ25	I	LV _{DD}	_
TSEC1_RX_CLK	AK24	I	LV _{DD}	40
	eTSEC Port 2 Signa	als ⁵	· · · · · ·	
TSEC2_TXD[0:3]/ GPOUT[8:15]	AB20, AJ23, AJ22, AD19	0	LV _{DD}	6, 10
TSEC2_TXD[4]/ GPOUT[12]	AH23	0	LV _{DD}	6,10, 38
TSEC2_TXD[5:7]/ GPOUT[13:15]	AH21, AG22, AG21	0	LV _{DD}	6, 10
TSEC2_TX_EN	AB21	0	LV _{DD}	36
TSEC2_TX_ER	AB19	0	LV _{DD}	6, 38
TSEC2_TX_CLK	AC21	I	LV _{DD}	40
TSEC2_GTX_CLK	AD20	0	LV _{DD}	41
TSEC2_CRS	AE20	I/O	LV _{DD}	37
TSEC2_COL	AE21	I	LV _{DD}	—
TSEC2_RXD[0:7]/ GPIN[8:15]	AL22, AK22, AM21, AH20, AG20, AF20, AF23, AF22	I	LV _{DD}	10
TSEC2_RX_DV	AC19	I	LV _{DD}	—
TSEC2_RX_ER	AD21	I	LV _{DD}	_
TSEC2_RX_CLK	AM22	I	LV _{DD}	40
	eTSEC Port 3 Signa	als ⁵		
TSEC3_TXD[0:3]	AL21, AJ21, AM20, AJ20	0	TV _{DD}	6
TSEC3_TXD[4]/	AM19	0	TV _{DD}	_
TSEC3_TXD[5:7]	AK21, AL20, AL19	0	TV _{DD}	6

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
IRQ[9]/DMA_DREQ[3]	B30	I	OV _{DD}	10
IRQ[10]/DMA_DACK[3]	C30	I	OV _{DD}	9, 10
IRQ[11]/DMA_DDONE[3]	D30	I	OV _{DD}	9, 10
IRQ_OUT	J26	0	OV _{DD}	7, 11
	DUART Signals ⁵		- I I	
UART_SIN[0:1]	B32, C32	I	OV _{DD}	_
UART_SOUT[0:1]	D31, A32	0	OV _{DD}	_
UART_CTS[0:1]	A31, B31	I	OV _{DD}	_
UART_RTS[0:1]	C31, E30	0	OV _{DD}	_
	l ² C Signals			
IIC1_SDA	A16	I/O	OV _{DD}	7, 11
IIC1_SCL	B17	I/O	OV _{DD}	7, 11
IIC2_SDA	A21	I/O	OV _{DD}	7, 11
IIC2_SCL	B21	I/O	OV _{DD}	7, 11
	System Control Sigr	nals ⁵		
HRESET	B18	Ι	OV _{DD}	—
HRESET_REQ	K18	0	OV _{DD}	
SMI_0	L15	Ι	OV _{DD}	
SMI_1	L16	Ι	OV _{DD}	12, <i>S4</i>
SRESET_0	C20	-	OV _{DD}	—
SRESET_1	C21	I	OV _{DD}	12, <i>S4</i>
CKSTP_IN	L18	I	OV _{DD}	—
CKSTP_OUT	L17	0	OV _{DD}	7, 11
READY/TRIG_OUT	J13	0	OV _{DD}	10, 25
	Debug Signals ⁵			
TRIG_IN	J14	I	OV _{DD}	—
TRIG_OUT/READY	J13	0	OV _{DD}	10, 25
D1_MSRCID[0:1]/ LB_SRCID[0:1]	F15, K15	0	OV _{DD}	6, 10
D1_MSRCID[2]/ LB_SRCID[2]	K14	0	OV _{DD}	10, 25
D1_MSRCID[3:4]/ LB_SRCID[3:4]	H15, G15	0	OV _{DD}	10
D2_MSRCID[0:4]	E16, C17, F16, H16, K16	0	OV _{DD}	_

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Table 65. Memory Bus Clocking Specifications

Characteristic	Maximum Processor Core Frequency		Unit	Notes
	1000, 1250, 1333, 1500MHz			
	Min	Мах		
Memory bus clock frequency	200	300	MHz	1, 2

Notes:

1. Caution: The MPX clock to SYSCLK ratio and e600 core to MPX clock ratio settings must be chosen such that the resulting SYSCLK frequency, e600 (core) frequency, and MPX clock frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 18.2, "MPX to SYSCLK PLL Ratio," and Section 18.3, "e600 to MPX clock PLL Ratio," for ratio settings.

2. The memory bus clock speed is half the DDR/DDR2 data rate, hence, half the MPX clock frequency.

Table 66.	Platform/MPX	bus Clocking	Specifications	

	Maximum Processor Core Frequency		Unit	Notes
Characteristic	1000, 1250, 1333, 1500MHz			
	Min	Мах		
Platform/MPX bus clock frequency	400	500-600	MHz	1, 2

Notes:

1. **Caution:** The MPX clock to SYSCLK ratio and e600 core to MPX clock ratio settings must be chosen such that the resulting SYSCLK frequency, e600 (core) frequency, and MPX clock frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 18.2, "MPX to SYSCLK PLL Ratio," and Section 18.3, "e600 to MPX clock PLL Ratio," for ratio settings.

2. Platform/MPX frequencies between 400 and 500 MHz are not supported.

Table 67. Local Bus Clocking Specifications

	Maximum Processor Core Frequency		Unit	Notes
Characteristic	1000, 1250, 1333, 1500MHz			
	Min	Мах		
Local bus clock speed (for Local Bus Controller)	25	133	MHz	1

Notes:

1. The Local bus clock speed on LCLK[0:2] is determined by MPX clock divided by the Local Bus PLL ratio programmed in LCRR[CLKDIV]. See the reference manual for the MPC8641D for more information on this.

18.2 MPX to SYSCLK PLL Ratio

The MPX clock is the clock that drives the MPX bus, and is also called the platform clock. The frequency of the MPX is set using the following reset signals, as shown in Table 68:

• SYSCLK input signal

• Binary value on LA[28:31] at power up

Note that there is no default for this PLL ratio; these signals must be pulled to the desired values. Also note that the DDR data rate is the determining factor in selecting the MPX bus frequency, since the MPX frequency must equal the DDR data rate.

Binary Value of LA[28:31] Signals	MPX:SYSCLK Ratio
0000	Reserved
0001	Reserved
0010	2:1
0011	3:1
0100	4:1
0101	5:1
0110	6:1
0111	Reserved
1000	8:1
1001	9:1

|--|

18.3 e600 to MPX clock PLL Ratio

Table 69 describes the clock ratio between the platform and the e600 core clock. This ratio is determined by the binary value of LDP[0:3], LA[27](cfg_core_pll[0:4] - reset config name) at power up, as shown in Table 69.

Binary Value of LDP[0:3], LA[27] Signals	e600 core: MPX Clock Ratio
01000	2:1
01100	2.5:1
10000	3:1
11100	3.5:1
10100	4:1
01110	4.5:1

Table 69. e600 Core to MPX Clock Ratio

18.4 Frequency Options

Top View of Model (Not to Scale)

Figure 62. Recommended Thermal Model of MPC8641

19.2.4 Temperature Diode

The MPC8641 has a temperature diode on the microprocessor that can be used in conjunction with other system temperature monitoring devices (such as Analog Devices, ADT7461TM). These devices use the negative temperature coefficient of a diode operated at a constant current to determine the temperature of the microprocessor and its environment. It is recommended that each device be individually calibrated.

The following are the specifications of the MPC8641 on-board temperature diode:

 $V_{f} > 0.40 V$

 $V_{f} < 0.90 V$

An approximate value of the ideality may be obtained by calibrating the device near the expected operating temperature.

Ideality factor is defined as the deviation from the ideal diode equation:

$$I_{fw} = I_s \left[e^{\frac{qV_f}{nKT}} - 1 \right]$$

System Design Information

designer place at least one decoupling capacitor at each OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , V_{DD}_{DD} . Coren, and $V_{DD}_{DD}_{PLAT}$ pin of the device. These decoupling capacitors should receive their power from separate OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , $V_{DD}_{DD}_{DD}_{PLAT}$ and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , V_{DD} . Coren, and V_{DD} _PLAT planes, to enable quick recharging of the smaller chip capacitors. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo OSCON).

20.4 SerDes Block Power Supply Decoupling Recommendations

The SerDes block requires a clean, tightly regulated source of power (SV_{DD} and XV_{DD} _SRDS*n*) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below.

Only surface mount technology (SMT) capacitors should be used to minimize inductance. Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance.

- First, the board should have at least 10 x 10-nF SMT ceramic chip capacitors as close as possible to the supply balls of the device. Where the board has blind vias, these capacitors should be placed directly below the chip supply and ground connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the device as close to the supply and ground connections as possible.
- Second, there should be a $1-\mu F$ ceramic chip capacitor on each side of the device. This should be done for all SerDes supplies.
- Third, between the device and any SerDes voltage regulator there should be a $10-\mu$ F, low equivalent series resistance (ESR) SMT tantalum chip capacitor and a $100-\mu$ F, low ESR SMT tantalum chip capacitor. This should be done for all SerDes supplies.

20.5 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. In general all unused active low inputs should be tied to OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , V_{DD} _Coren, and V_{DD}_{DD} _PLAT, XV_{DD}_{DD} _SRDSn, and SV_{DD} as required and unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Special cases:

DDR - If one of the DDR ports is not being used the power supply pins for that port can be connected to ground so that there is no need to connect the individual unused inputs of that port to ground. Note that these power supplies can only be powered up again at reset for functionality to occur on the DDR port. Power supplies for other functional buses should remain powered.

System Design Information

The following pins must be connected to GND:

- SD*n*_RX[7:0]
- $\overline{\text{SD}n \text{ RX}}[7:0]$
- SD*n*_REF_CLK
- SDn_REF_CLK

NOTE

It is recommended to power down the unused lane through SRDS1CR1[0:7] register (offset = $0xE_0F08$) and SRDS2CR1[0:7] register (offset = $0xE_0F44$.) (This prevents the oscillations and holds the receiver output in a fixed state.) that maps to SERDES lane 0 to lane 7 accordingly.

For other directions on reserved or no-connects pins see Section 17, "Signal Listings."

20.6 Pull-Up and Pull-Down Resistor Requirements

The MPC8641 requires weak pull-up resistors (2–10 k Ω is recommended) on all open drain type pins.

The following pins must NOT be pulled down during power-on reset: TSEC4_TXD[4], LGPL0/LSDA10, LGPL1/LSDWE, TRIG_OUT/READY, and D1_MSRCID[2].

The following are factory test pins and require strong pull up resistors (100 Ω –1 k Ω) to OVDD

LSSD_MODE, TEST_MODE[0:3]. The following pins require weak pull up resistors (2–10 kΩ) to their specific power supplies: LCS[0:4], LCS[5]/DMA_DREQ2, LCS[6]/DMA_DACK[2], LCS[7]/DMA_DDONE[2], IRQ_OUT, IIC1_SDA, IIC1_SCL, IIC2_SDA, IIC2_SCL, and CKSTP_OUT.

The following pins should be pulled to ground with a 100- Ω resistor: SD1_IMP_CAL_TX, SD2_IMP_CAL_TX. The following pins should be pulled to ground with a 200- Ω resistor: SD1_IMP_CAL_RX, SD2_IMP_CAL_RX.

TSEC*n*_TX_EN signals require an external 4.7-k Ω pull down resistor to prevent PHY from seeing a valid Transmit Enable before it is actively driven.

When the platform frequency is 400 MHz, TSEC1_TXD[1] must be pulled down at reset.

TSEC2_TXD[4] and TSEC2_TX_ER pins function as cfg_dram_type[0 or 1] at reset and MUST BE VALID BEFORE HRESET ASSERTION when coming out of device sleep mode.

20.6.1 Special instructions for Single Core device

The mechanical drawing for the single core device does not have all the solder balls that exist on the single core device. This includes all the balls for VDD_Core1 and SENSEV_{DD}_Core1 which exist on the package for the dual core device, but not on the single core package. A solder ball is present for SENSEV_{SS}_Core1 and needs to be connected to ground with a weak (2-10 k Ω) pull down resistor. Likewise, AV_{DD}_Core1 needs to be pulled to ground as shown in Figure 64.

The mechanical drawing for the single core device is located in Section 16.2, "Mechanical Dimensions of the MPC8641 FC-CBGA."

The COP interface has a standard header, shown in Figure 67, for connection to the target system, and is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header shown in Figure 67; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 67 is common to all known emulators.

For a multi-processor non-daisy chain configuration, Figure 68, can be duplicated for each processor. The recommended daisy chain configuration is shown in Figure 69. Please consult with your tool vendor to determine which configuration is supported by their emulator.

20.9.1 Termination of Unused Signals

If the JTAG interface and COP header will not be used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0 k Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 68. If this is not possible, the isolation resistor will allow future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- Tie TCK to OV_{DD} through a 10 k Ω resistor. This will prevent TCK from changing state and reading incorrect data into the device.
- No connection is required for TDI, TMS, or TDO.

Figure 67. COP Connector Physical Pinout

Table 75 shows the parts that are available for ordering and their operating conditions.

Part Offerings ¹	Operating Conditions
MC8641Dxx1500KX	Dual core Max CPU speed = 1500 MHz, Max DDR = 600 MHz Core Voltage = 1.1 volts
MC8641Dxx1333JX	Dual core Max CPU speed = 1333 MHz, Max DDR = 533 MHz Core Voltage = 1.05 volts
MC8641Dxx1250HX	Dual core Max CPU speed = 1250 MHz, Max DDR = 500 MHz Core Voltage = 1.05 volts
MC8641Dxx1000GX	Dual core Max CPU speed = 1000 MHz, Max DDR = 400 MHz Core Voltage = 1.05 volts
MC8641Dxx1000NX	Dual core MAX CPU speed = 1000 MHz, MAX DDR = 500 MHz Core Voltage = 0.95 volts
MC8641xx1500KX	Single core Max CPU speed = 1500 MHz, Max DDR = 600 MHz Core Voltage = 1.1 volts
MC8641xx1333JX	Single core Max CPU speed = 1333 MHz, Max DDR = 533 MHz Core Voltage = 1.05 volts
MC8641xx1250HX	Single core Max CPU speed = 1250 MHz, Max DDR = 500 MHz Core Voltage = 1.05 volts
MC8641xx1000HX	Single core Max CPU speed = 1000 MHz, Max DDR = 400 MHz Core Voltage = 1.05 volts
MC8641xx1000NX	Single core Max CPU speed = 1000 MHz, Max DDR = 500 MHz Core Voltage = 0.95 volts

Table 75. Part Offerings and Operating Conditions

Note that the "xx" in the part marking represents the package option. The upper case "X" represents the revision letter. For more information see Table 74.

MPC8641 and MPC8641D Integrated Host Processor Hardware Specifications, Rev. 3

1