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Overview

Figure 1. MPC8641 and MPC8641D
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— Support for PCI-Express message-shared interrupts (MSIs)
• Local bus controller (LBC)

— Multiplexed 32-bit address and data operating at up to 133 MHz
— Eight chip selects support eight external slaves

• Integrated DMA controller
— Four-channel controller
— All channels accessible by both the local and the remote masters
— Supports transfers to or from any local memory or I/O port
— Ability to start and flow control each DMA channel from external 3-pin interface

• Device performance monitor 
— Supports eight 32-bit counters that count the occurrence of selected events
— Ability to count up to 512 counter-specific events
— Supports 64 reference events that can be counted on any of the 8 counters
— Supports duration and quantity threshold counting 
— Burstiness feature that permits counting of burst events with a programmable time between 

bursts
— Triggering and chaining capability
— Ability to generate an interrupt on overflow

• Dual I2C controllers
— Two-wire interface
— Multiple master support
— Master or slave I2C mode support
— On-chip digital filtering rejects spikes on the bus

• Boot sequencer
— Optionally loads configuration data from serial ROM at reset via the I2C interface
— Can be used to initialize configuration registers and/or memory
— Supports extended I2C addressing mode
— Data integrity checked with preamble signature and CRC

• DUART
— Two 4-wire interfaces (SIN, SOUT, RTS, CTS)
— Programming model compatible with the original 16450 UART and the PC16550D

• IEEE 1149.1-compatible, JTAG boundary scan
• Available as 1023 pin Hi-CTE flip chip ceramic ball grid array (FC-CBGA)
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DDR and DDR2 SDRAM

Table 15 provides the recommended operating conditions for the DDR SDRAM component(s) when 
Dn_GVDD(typ) = 2.5 V.

Table 16 provides the DDR capacitance when Dn_GVDD (typ)=2.5 V.

Table 17 provides the current draw characteristics for MVREF.

Table 15. DDR SDRAM DC Electrical Characteristics for Dn_GVDD (typ) = 2.5 V

Parameter/Condition Symbol Min Max Unit Notes

I/O supply voltage Dn_GVDD 2.375 2.625 V 1

I/O reference voltage Dn_MVREF 0.49 × Dn_GVDD 0.51 × Dn_GVDD V 2

I/O termination voltage VTT Dn_MVREF – 0.04 Dn_MVREF + 0.04 V 3

Input high voltage VIH Dn_MVREF + 0.15 Dn_GVDD + 0.3 V —

Input low voltage VIL –0.3 Dn_MVREF– 0.15 V —

Output leakage current IOZ –50 50 μA 4

Output high current (VOUT = 1.95 V) IOH –16.2 — mA —

Output low current (VOUT = 0.35 V) IOL 16.2 — mA —

Notes:
1. Dn_GVDD is expected to be within 50 mV of the DRAM Dn_GVDD at all times.
2. MVREF is expected to be equal to 0.5 × Dn_GVDD, and to track Dn_GVDD DC variations as measured at the receiver. 

Peak-to-peak noise on Dn_MVREF may not exceed ±2% of the DC value.
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be 

equal to Dn_MVREF. This rail should track variations in the DC level of Dn_MVREF.
4. Output leakage is measured with all outputs disabled, 0 V ≤ VOUT ≤ Dn_GVDD.

Table 16. DDR SDRAM Capacitance for Dn_GVDD (typ) = 2.5 V

Parameter/Condition Symbol Min Max Unit Notes

Input/output capacitance: DQ, DQS CIO 6 8 pF 1

Delta input/output capacitance: DQ, DQS CDIO — 0.5 pF 1

Note:
1. This parameter is sampled. Dn_GVDD =  2.5 V ± 0.125 V, f = 1 MHz, TA = 25°C, VOUT = Dn_GVDD/2, 

VOUT (peak-to-peak) = 0.2 V.

Table 17. Current Draw Characteristics for MVREF

Parameter / Condition Symbol Min Max Unit Note

Current draw for MVREF IMVREF — 500 μA 1

1. The voltage regulator for MVREF must be able to supply up to 500 μA current.
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DDR and DDR2 SDRAM

Figure 4 shows the DDR SDRAM input timing for the MDQS to MDQ skew measurement (tDISKEW).

Figure 4. DDR Input Timing Diagram for tDISKEW

6.2.2 DDR SDRAM Output AC Timing Specifications
Table 21. DDR SDRAM Output AC Timing Specifications

At recommended operating conditions.

Parameter Symbol 1 Min Max Unit Notes

MCK[n] cycle time, MCK[n]/MCK[n] crossing tMCK 3 10 ns 2

MCK duty cycle
600 MHz
533 MHz
400 MHz

tMCKH/tMCK
47.5
47
47

52.5
53
53

%
8
9
9

ADDR/CMD output setup with respect to MCK tDDKHAS ns 3

600 MHz 1.10 — 7

533 MHz 1.48 — 7

400 MHz 1.95 —

ADDR/CMD output hold with respect to MCK tDDKHAX ns 3

600 MHz 1.10 — 7

533 MHz 1.48 — 7

400 MHz 1.95 —

MCS[n] output setup with respect to MCK tDDKHCS ns 3

600 MHz 1.10 — 7

533 MHz 1.48 — 7

400 MHz 1.95 —

MCK[n]

MCK[n]
tMCK

MDQ[x]

MDQS[n]

tDISKEW

D1D0

tDISKEW
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Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

Timing diagrams for FIFO appear in Figure 8 and Figure 9.
.

Figure 8. FIFO Transmit AC Timing Diagram

Figure 9. FIFO Receive AC Timing Diagram

8.2.2 GMII AC Timing Specifications
This section describes the GMII transmit and receive AC timing specifications.

8.2.2.1 GMII Transmit AC Timing Specifications

Table 28 provides the GMII transmit AC timing specifications.
Table 28. GMII Transmit AC Timing Specifications

At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

GMII data TXD[7:0], TX_ER, TX_EN setup time tGTKHDV 2.5 — — ns

GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay  tGTKHDX 0.5 — 5.0 ns

GTX_CLK data clock rise time (20%-80%) tGTXR
2 — — 1.0 ns

tFIT

tFITH

tFITF

tFITDX

TXD[7:0]
TX_EN

GTX_CLK

TX_ER

tFITDV

tFITR

tFIR

tFIRH
tFIRF

tFIRR

RX_CLK

RXD[7:0]
RX_DV
RX_ER

valid data

tFIRDXtFIRDV
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Local Bus

LGTA/LUPWAIT input hold from local bus clock tLBIXKL2 –1.3 — ns 4, 5

LALE output transition to LAD/LDP output transition (LATCH 
hold time)

tLBOTOT 1.5 — ns 6

Local bus clock to output valid (except LAD/LDP and LALE) tLBKLOV1 — –0.3 ns

Local bus clock to data valid for LAD/LDP tLBKLOV2 — –0.1 ns 4

Local bus clock to address valid for LAD tLBKLOV3 — 0 ns 4

Local bus clock to LALE assertion tLBKLOV4 — 0 ns 4

Output hold from local bus clock (except LAD/LDP and LALE) tLBKLOX1 –3.2 — ns 4

Output hold from local bus clock for LAD/LDP tLBKLOX2 –3.2 — ns 4

Local bus clock to output high Impedance (except LAD/LDP 
and LALE)

tLBKLOZ1 — 0.2 ns 7

Local bus clock to output high impedance for LAD/LDP tLBKLOZ2 — 0.2 ns 7

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of functional block)(signal)(state) (reference)(state) 

for inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus 
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case 
for clock one(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect 
to the output (O) going invalid (X) or output hold time. 

2. All timings are in reference to local bus clock for PLL bypass mode. Timings may be negative with respect to the local bus 
clock because the actual launch and capture of signals is done with the internal launch/capture clock, which precedes LCLK 
by tLBKHKT.

3. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between 
complementary signals at BVDD/2.

4. All signals are measured from BVDD/2 of the rising edge of local bus clock for PLL bypass mode to 0.4 x BVDD of the signal 
in question for 3.3-V signaling levels.

5. Input timings are measured at the pin.
6. The value of tLBOTOT is the measurement of the minimum time between the negation of LALE and any change in LAD
7. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
8. Guaranteed by characterization.

Table 42. Local Bus Timing Parameters—PLL Bypassed (continued)

Parameter Symbol 1 Min Max Unit Notes
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High-Speed Serial Interfaces (HSSI)

To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic) 
transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing 
that goes between 2.5 V and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD 
or TD) is 500 mV p-p, which is referred as the single-ended swing for each signal. In this example, since 
the differential signaling environment is fully symmetrical, the transmitter output’s differential swing 
(VOD) has the same amplitude as each signal’s single-ended swing. The differential output signal ranges 
between 500 mV and –500 mV, in other words, VOD is 500 mV in one phase and –500 mV in the other 
phase. The peak differential voltage (VDIFFp) is 500 mV. The peak-to-peak differential voltage (VDIFFp-p) 
is 1000 mV p-p.

13.2 SerDes Reference Clocks
The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by 
the corresponding SerDes lanes. The SerDes reference clocks inputs are SDn_REF_CLK and 
SDn_REF_CLK for PCI Express and Serial RapidIO.

The following sections describe the SerDes reference clock requirements and some application 
information.

13.2.1 SerDes Reference Clock Receiver Characteristics
Figure 39 shows a receiver reference diagram of the SerDes reference clocks.

• The supply voltage requirements for XVDD_SRDSn are specified in Table 1 and Table 2.
• SerDes Reference Clock Receiver Reference Circuit Structure

— The SDn_REF_CLK and SDn_REF_CLK are internally AC-coupled differential inputs as 
shown in Figure 39. Each differential clock input (SDn_REF_CLK or SDn_REF_CLK) has a 
50-Ω termination to SGND followed by on-chip AC-coupling. 

— The external reference clock driver must be able to drive this termination.
— The SerDes reference clock input can be either differential or single-ended. Refer to the 

Differential Mode and Single-ended Mode description below for further detailed requirements.
• The maximum average current requirement that also determines the common mode voltage range

— When the SerDes reference clock differential inputs are DC coupled externally with the clock 
driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the 
exact common mode input voltage is not critical as long as it is within the range allowed by the 
maximum average current of 8 mA (refer to the following bullet for more detail), since the 
input is AC-coupled on-chip.

— This current limitation sets the maximum common mode input voltage to be less than 0.4 V 
(0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1 V above SGND. For 
example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven 
by its current source from 0 mA to 16 mA (0–0.8 V), such that each phase of the differential 
input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.

— If the device driving the SDn_REF_CLK and SDn_REF_CLK inputs cannot drive 50 Ω to 
SGND DC, or it exceeds the maximum input current limitations, then it must be AC-coupled 
off-chip.
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PCI Express

TTX-EYE Minimum TX Eye 
Width

0.70 — — UI The maximum Transmitter jitter can be derived as 
TTX-MAX-JITTER = 1 – TTX-EYE= 0.3 UI.
See Notes 2 and 3.

TTX-EYE-MEDIAN-to-

MAX-JITTER

Maximum time 
between the jitter 
median and 
maximum 
deviation from 
the median.

— — 0.15 UI Jitter is defined as the measurement variation of the 
crossing points (VTX-DIFFp-p = 0 V) in relation to a 
recovered TX UI. A recovered TX UI is calculated over 
3500 consecutive unit intervals of sample data. Jitter 
is measured using all edges of the 250 consecutive UI 
in the center of the 3500 UI used for calculating the TX 
UI. See Notes 2 and 3.

TTX-RISE, TTX-FALL D+/D– TX Output 
Rise/Fall Time

0.125 — — UI See Notes 2 and 5

VTX-CM-ACp RMS AC Peak 
Common Mode 
Output Voltage

— — 20 mV VTX-CM-ACp = RMS(|VTXD+ + VTXD-|/2 – VTX-CM-DC)
VTX-CM-DC = DC(avg) of |VTX-D+ + VTX-D-|/2 
See Note 2

VTX-CM-DC-ACTIVE-

IDLE-DELTA

Absolute Delta of 
DC Common 
Mode Voltage 
During L0 and 
Electrical Idle

0 — 100 mV |VTX-CM-DC (during L0) – VTX-CM-Idle-DC (During Electrical 

Idle)|<=100 mV
VTX-CM-DC = DC(avg) of |VTX-D+ + VTX-D-|/2 [L0]
VTX-CM-Idle-DC = DC(avg) of |VTX-D+ + VTX-D-|/2 
[Electrical Idle] 
See Note 2.

VTX-CM-DC-LINE-DELTA Absolute Delta of 
DC Common 
Mode between 
D+ and D–

0 — 25 mV |VTX-CM-DC-D+ – VTX-CM-DC-D-| <= 25 mV
VTX-CM-DC-D+ = DC(avg) of |VTX-D+|
VTX-CM-DC-D- = DC(avg) of |VTX-D-|
See Note 2.

VTX-IDLE-DIFFp Electrical Idle 
differential Peak 
Output Voltage

0 — 20 mV VTX-IDLE-DIFFp = |VTX-IDLE-D+ –VTX-IDLE-D-| <= 20 mV
See Note 2. 

VTX-RCV-DETECT The amount of 
voltage change 
allowed during 
Receiver 
Detection

— — 600 mV The total amount of voltage change that a transmitter 
can apply to sense whether a low impedance 
Receiver is present. See Note 6.

VTX-DC-CM The TX DC 
Common Mode 
Voltage

0 — 3.6 V The allowed DC Common Mode voltage under any 
conditions. See Note 6.

ITX-SHORT TX Short Circuit 
Current Limit

— — 90 mA The total current the Transmitter can provide when 
shorted to its ground

TTX-IDLE-MIN Minimum time 
spent in 
Electrical Idle

50 — — UI Minimum time a Transmitter must be in Electrical Idle 
Utilized by the Receiver to start looking for an 
Electrical Idle Exit after successfully receiving an 
Electrical Idle ordered set

Table 49. Differential Transmitter (TX) Output Specifications (continued)

Symbol Parameter Min Nom Max Units Comments
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TTX-IDLE-SET-TO-IDLE Maximum time to 
transition to a 
valid Electrical 
idle after sending 
an Electrical Idle 
ordered set

— — 20 UI After sending an Electrical Idle ordered set, the 
Transmitter must meet all Electrical Idle Specifications 
within this time. This is considered a debounce time 
for the Transmitter to meet Electrical Idle after 
transitioning from L0.

TTX-IDLE-TO-DIFF-DATA Maximum time to 
transition to valid 
TX specifications 
after leaving an 
Electrical idle 
condition

— — 20 UI Maximum time to meet all TX specifications when 
transitioning from Electrical Idle to sending differential 
data. This is considered a debounce time for the TX to 
meet all TX specifications after leaving Electrical Idle

RLTX-DIFF Differential 
Return Loss

12 — — dB Measured over 50 MHz to 1.25 GHz. See Note 4

RLTX-CM Common Mode 
Return Loss

6 — — dB Measured over 50 MHz to 1.25 GHz. See Note 4

ZTX-DIFF-DC DC Differential 
TX Impedance

80 100 120 Ω TX DC Differential mode Low Impedance

ZTX-DC Transmitter DC 
Impedance

40 — — Ω Required TX D+ as well as D- DC Impedance during 
all states

LTX-SKEW Lane-to-Lane 
Output Skew

— — 500 + 
2 UI

ps Static skew between any two Transmitter Lanes within 
a single Link

CTX AC Coupling 
Capacitor

75 — — nF All Transmitters shall be AC coupled. The AC coupling 
is required either within the media or within the 
transmitting component itself. See Note 8.

Tcrosslink Crosslink 
Random 
Timeout

0 — — ms This random timeout helps resolve conflicts in 
crosslink configuration by eventually resulting in only 
one Downstream and one Upstream Port. See Note 7.

Notes:
1. No test load is necessarily associated with this value.
2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 52 and measured over 

any 250 consecutive TX UIs. (Also refer to the transmitter compliance eye diagram shown in Figure 50)
3. A TTX-EYE = 0.70 UI provides for a total sum of deterministic and random jitter budget of TTX-JITTER-MAX = 0.30 UI for the 

Transmitter collected over any 250 consecutive TX UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total 
TX jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. 
The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed 
to the averaged time value.

4. The Transmitter input impedance shall result in a differential return loss greater than or equal to 12 dB and a common mode 
return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement 
applies to all valid input levels. The reference impedance for return loss measurements is 50 Ω to ground for both the D+ and 
D- line (that is, as measured by a Vector Network Analyzer with 50 ohm probes—see Figure 52). Note that the series 
capacitors CTX is optional for the return loss measurement. 

5. Measured between 20-80% at transmitter package pins into a test load as shown in Figure 52 for both VTX-D+ and VTX-D-. 
6. See Section 4.3.1.8 of the PCI Express Base Specifications Rev 1.0a
7. See Section 4.2.6.3 of the PCI Express Base Specifications Rev 1.0a
8. MPC8641D SerDes transmitter does not have CTX built-in. An external AC Coupling capacitor is required.

Table 49. Differential Transmitter (TX) Output Specifications (continued)

Symbol Parameter Min Nom Max Units Comments
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14.4.2 Transmitter Compliance Eye Diagrams
The TX eye diagram in Figure 50 is specified using the passive compliance/test measurement load (see 
Figure 52) in place of any real PCI Express interconnect + RX component. 

There are two eye diagrams that must be met for the transmitter. Both eye diagrams must be aligned in 
time using the jitter median to locate the center of the eye diagram. The different eye diagrams will differ 
in voltage depending whether it is a transition bit or a de-emphasized bit. The exact reduced voltage level 
of the de-emphasized bit will always be relative to the transition bit.

The eye diagram must be valid for any 250 consecutive UIs. 

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is 
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX 
UI.

NOTE
It is recommended that the recovered TX UI is calculated using all edges in 
the 3500 consecutive UI interval with a fit algorithm using a minimization 
merit function (that is, least squares and median deviation fits).

Figure 50. Minimum Transmitter Timing and Voltage Output Compliance Specifications

VTX-DIFF = 0 mV
(D+ D– Crossing Point)

[De-Emphasized Bit]

0.07 UI = UI – 0.3 UI (JTX-TOTAL-MAX)

566 mV (3 dB ) >= VTX-DIFFp-p-MIN >= 505 mV (4 dB )

[Transition Bit]
VTX-DIFFp-p-MIN = 800 mV

VRX-DIFF = 0 mV
(D+ D– Crossing Point)

[Transition Bit]
VTX-DIFFp-p-MIN = 800 mV
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provide additional margin to adequately compensate for the degraded minimum Receiver eye diagram 
(shown in Figure 51) expected at the input Receiver based on some adequate combination of system 
simulations and the Return Loss measured looking into the RX package and silicon. The RX eye diagram 
must be aligned in time using the jitter median to locate the center of the eye diagram. 

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is 
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX 
UI.

NOTE
The reference impedance for return loss measurements is 50Ω to ground for 
both the D+ and D- line (that is, as measured by a Vector Network Analyzer 
with 50Ω probes—see Figure 52). Note that the series capacitors, CTX, are 
optional for the return loss measurement.

Figure 51. Minimum Receiver Eye Timing and Voltage Compliance Specification

14.5.1 Compliance Test and Measurement Load
The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 
inches of the package pins, into a test/measurement load shown in Figure 52.

NOTE
The allowance of the measurement point to be within 0.2 inches of the 
package pins is meant to acknowledge that package/board routing may 
benefit from D+ and D– not being exactly matched in length at the package 
pin boundary.

VRX-DIFF = 0 mV
(D+ D– Crossing Point)

VRX-DIFF = 0 mV
(D+ D– Crossing Point)

VRX-DIFFp-p-MIN > 175 mV

0.4 UI = TRX-EYE-MIN
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Serial RapidIO

Figure 52. Compliance Test/Measurement Load

15 Serial RapidIO
This section describes the DC and AC electrical specifications for the RapidIO interface of the MPC8641, 
for the LP-Serial physical layer. The electrical specifications cover both single and multiple-lane links. 
Two transmitter types (short run and long run) on a single receiver are specified for each of three baud 
rates, 1.25, 2.50, and 3.125 GBaud.

Two transmitter specifications allow for solutions ranging from simple board-to-board interconnect to 
driving two connectors across a backplane. A single receiver specification is given that will accept signals 
from both the short run and long run transmitter specifications.

The short run transmitter specifications should be used mainly for chip-to-chip connections on either the 
same printed circuit board or across a single connector. This covers the case where connections are made 
to a mezzanine (daughter) card. The minimum swings of the short run specification reduce the overall 
power used by the transceivers.

The long run transmitter specifications use larger voltage swings that are capable of driving signals across 
backplanes. This allows a user to drive signals across two connectors and a backplane. The specifications 
allow a distance of at least 50 cm at all baud rates.

All unit intervals are specified with a tolerance of +/– 100 ppm. The worst case frequency difference 
between any transmit and receive clock will be 200 ppm.

To ensure interoperability between drivers and receivers of different vendors and technologies, AC 
coupling at the receiver input must be used.

15.1 DC Requirements for Serial RapidIO SDn_REF_CLK and 
SDn_REF_CLK 

For more information, see Section 13.2, “SerDes Reference Clocks.”

15.2 AC Requirements for Serial RapidIO SDn_REF_CLK and 
SDn_REF_CLK

Table 51 lists AC requirements.
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Table 52. Short Run Transmitter AC Timing Specifications—1.25 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Output Voltage, VO –0.40 2.30 Volts Voltage relative to COMMON 
of either signal comprising a 
differential pair

Differential Output Voltage VDIFFPP 500 1000 mV p-p —

Deterministic Jitter JD — 0.17 UI p-p —

Total Jitter JT — 0.35 UI p-p —

Multiple output skew SMO — 1000 ps Skew at the transmitter output 
between lanes of a multilane 
link

Unit Interval UI 800 800 ps  +/– 100 ppm

Table 53. Short Run Transmitter AC Timing Specifications—2.5 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Output Voltage, VO –0.40 2.30 Volts Voltage relative to COMMON 
of either signal comprising a 
differential pair

Differential Output Voltage VDIFFPP 500 1000 mV p-p —

Deterministic Jitter JD — 0.17 UI p-p —

Total Jitter JT — 0.35 UI p-p —

Multiple Output skew SMO — 1000 ps Skew at the transmitter output 
between lanes of a multilane 
link

Unit Interval UI 400 400 ps  +/– 100 ppm

Table 54. Short Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Output Voltage, VO –0.40 2.30 Volts Voltage relative to COMMON 
of either signal comprising a 
differential pair

Differential Output Voltage VDIFFPP 500 1000 mV p-p —

Deterministic Jitter JD — 0.17 UI p-p —

Total Jitter JT — 0.35 UI p-p —
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Figure 55. Single Frequency Sinusoidal Jitter Limits

15.8 Receiver Eye Diagrams
For each baud rate at which an LP-Serial receiver is specified to operate, the receiver shall meet the 
corresponding Bit Error Rate specification (Table 59, Table 60, Table 61) when the eye pattern of the 
receiver test signal (exclusive of sinusoidal jitter) falls entirely within the unshaded portion of the Receiver 
Input Compliance Mask shown in Figure 56 with the parameters specified in Table . The eye pattern of the 
receiver test signal is measured at the input pins of the receiving device with the device replaced with a 
100 Ω +/– 5% differential resistive load.

8.5 UI p-p

0.10 UI p-p

Sinusoidal

Jitter

Amplitude

22.1 kHz 1.875 MHz 20 MHz

Frequency



MPC8641 and MPC8641D Integrated Host Processor Hardware Specifications, Rev. 3

Freescale Semiconductor 87
 

Serial RapidIO

Continuous Jitter Test Pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial 
link shall be active in both the transmit and receive directions, and opposite ends of the links shall use 
asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane 
implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The 
amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10-12. 
The eye pattern shall be measured with AC coupling and the compliance template centered at 0 Volts 
differential. The left and right edges of the template shall be aligned with the mean zero crossing points of 
the measured data eye. The load for this test shall be 100 Ω resistive +/– 5% differential to 2.5 GHz. 

15.9.2 Jitter Test Measurements
For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (Baud 
Frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter 
Test Pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial link shall 
be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous 
clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations 
shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured 
with AC coupling and at 0 Volts differential. Jitter measurement for the transmitter (or for calibration of a 
jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that 
described in Annex 48B of IEEE 802.3ae.

15.9.3 Transmit Jitter
Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive +/– 5% 
differential to 2.5 GHz. 

15.9.4 Jitter Tolerance
Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first 
producing the sum of deterministic and random jitter defined in Section 8.6 and then adjusting the signal 
amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template 
shown in Figure 8-4 and Table 8-11. Note that for this to occur, the test signal must have vertical waveform 
symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero 
crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using 
a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The 
required sinusoidal jitter specified in Section 8.6 is then added to the signal and the test load is replaced 
by the receiver being tested. 
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IRQ[9]/DMA_DREQ[3] B30 I OVDD 10

IRQ[10]/DMA_DACK[3] C30 I OVDD 9, 10

IRQ[11]/DMA_DDONE[3] D30 I OVDD 9, 10

IRQ_OUT J26 O OVDD 7, 11

DUART Signals5

UART_SIN[0:1] B32, C32 I OVDD —

UART_SOUT[0:1] D31, A32 O OVDD —

UART_CTS[0:1] A31, B31 I OVDD —

UART_RTS[0:1] C31, E30 O OVDD —

I2C Signals

IIC1_SDA A16 I/O OVDD 7, 11

IIC1_SCL B17 I/O OVDD 7, 11

IIC2_SDA A21 I/O OVDD 7, 11

IIC2_SCL B21 I/O OVDD 7, 11

System Control Signals5

HRESET B18 I OVDD —

HRESET_REQ K18 O OVDD —

SMI_0 L15 I OVDD —

SMI_1 L16 I OVDD 12, S4

SRESET_0 C20 I OVDD —

SRESET_1 C21 I OVDD 12, S4

CKSTP_IN L18 I OVDD —

CKSTP_OUT L17 O OVDD 7, 11

READY/TRIG_OUT J13 O OVDD 10, 25

Debug Signals5

TRIG_IN J14 I OVDD —

TRIG_OUT/READY J13 O OVDD 10, 25

D1_MSRCID[0:1]/
LB_SRCID[0:1]

F15, K15 O OVDD 6, 10

D1_MSRCID[2]/
LB_SRCID[2]

 K14 O OVDD 10, 25

D1_MSRCID[3:4]/
LB_SRCID[3:4]

H15, G15 O OVDD 10

D2_MSRCID[0:4] E16, C17, F16, H16, K16 O OVDD —

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Name1 Package Pin Number Pin Type Power Supply Notes
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SENSEVSS_Core0 P14 Core0 GND 
sensing pin

— 31

SENSEVSS_Core1 V20  Core1 GND 
sensing pin

— 12, 31, S3

SENSEVDD_PLAT N18  VDD_PLAT 
sensing pin

— 28

SENSEVSS_PLAT P18 Platform GND 
sensing pin

— 29

D1_GVDD B11, B14, D10, D13, F9, F12, H8, H11, 
H14, K10, K13, L8, P8, R6, U8, V6, W10, 
Y8, AA6, AB10, AC8, AD12, AE10, AF8, 
AG12, AH10, AJ8, AJ14, AK12, AL10, AL16

SDRAM 1 I/O 
supply

D1_GVDD
2.5 - DDR
1.8 DDR2

—

D2_GVDD B2, B5, B8, D4, D7, E2, F6, G4, H2, J6, K4, 
L2, M6, N4, P2, T4, U2, W4, Y2, AB4, AC2, 
AD6, AE4, AF2, AG6, AH4, AJ2, AK6, AL4, 
AM2

SDRAM 2 I/O 
supply

D2_GVDD
2.5 V - DDR
1.8 V - DDR2

—

OVDD B22, B25, B28, D17, D24, D27, F19, F22, 
F26, F29, G17, H21, H24, K19, K23, M21, 
AM30

DUART, Local 
Bus, DMA, 
Multiprocessor 
Interrupts, 
System Control 
& Clocking, 
Debug, Test, 
JTAG, Power 
management, 
I2C, JTAG and 
Miscellaneous 
I/O voltage 

OVDD

3.3 V

—

LVDD AC20, AD23, AH22 TSEC1 and 
TSEC2 I/O 

voltage

LVDD
2.5/3.3 V

—

TVDD AC17, AG18, AK20 TSEC3 and 
TSEC4 I/O 

voltage

TVDD
2.5/3.3 V

—

SVDD H31, J29, K28, K32, L30, M28, M31, N29, 
R30, T31, U29, V32, W30, Y31, AA29, 
AB32, AC30, AD31, AE29, AG30, AH31, 
AJ29, AK32, AL30, AM31

 Transceiver 
Power Supply 

SerDes
SVDD

1.05/1.1 V

—

XVDD_SRDS1 K26, L24, M27, N25, P26, R24, R28, T27, 
U25, V26 

 Serial I/O 
Power Supply 

for SerDes
Port 1

XVDD_SRDS1

1.05/1.1 V

—

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Name1 Package Pin Number Pin Type Power Supply Notes
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Tyco Electronics 800-522-6752
Chip Coolers™
P.O. Box 3668
Harrisburg, PA 17105-3668
Internet: www.chipcoolers.com
Wakefield Engineering 603-635-5102
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal 
performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. 

19.2.1 Internal Package Conduction Resistance
For the exposed-die packaging technology described in Table 71, the intrinsic conduction thermal 
resistance paths are as follows:

• The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)
• The die junction-to-board thermal resistance

Figure 60 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 60. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach 
material (or thermal interface material), and finally to the heat sink where it is removed by forced-air 
convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected 
for a first-order analysis. Thus the thermal interface material and the heat sink conduction/convective 
thermal resistances are the dominant terms.
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designer place at least one decoupling capacitor at each OVDD, Dn_GVDD, LVDD, TVDD, VDD_Coren, 
and VDD_PLAT pin of the device. These decoupling capacitors should receive their power from separate 
OVDD, Dn_GVDD, LVDD, TVDD, VDD_Coren, and VDD_PLAT and GND power planes in the PCB, 
utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a 
standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology) 
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, 
feeding the OVDD, Dn_GVDD, LVDD, TVDD, VDD_Coren, and VDD_PLAT planes, to enable quick 
recharging of the smaller chip capacitors. They should also be connected to the power and ground planes 
through two vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum 
or Sanyo OSCON).

20.4 SerDes Block Power Supply Decoupling Recommendations
The SerDes block requires a clean, tightly regulated source of power (SVDD and XVDD_SRDSn) to ensure 
low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is 
outlined below.

Only surface mount technology (SMT) capacitors should be used to minimize inductance. Connections 
from all capacitors to power and ground should be done with multiple vias to further reduce inductance.

• First, the board should have at least 10 x 10-nF SMT ceramic chip capacitors as close as possible 
to the supply balls of the device. Where the board has blind vias, these capacitors should be placed 
directly below the chip supply and ground connections. Where the board does not have blind vias, 
these capacitors should be placed in a ring around the device as close to the supply and ground 
connections as possible.

• Second, there should be a 1-µF ceramic chip capacitor on each side of the device. This should be 
done for all SerDes supplies.

• Third, between the device and any SerDes voltage regulator there should be a 10-µF, low 
equivalent series resistance (ESR) SMT tantalum chip capacitor and a 100-µF, low ESR SMT 
tantalum chip capacitor. This should be done for all SerDes supplies.

20.5 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal 
level. In general all unused active low inputs should be tied to OVDD, Dn_GVDD, LVDD, TVDD, 
VDD_Coren, and VDD_PLAT, XVDD_SRDSn, and SVDD as required and unused active high inputs should 
be connected to GND. All NC (no-connect) signals must remain unconnected.

Special cases:
DDR - If one of the DDR ports is not being used the power supply pins for that port can be 
connected to ground so that there is no need to connect the individual unused inputs of that port to 
ground. Note that these power supplies can only be powered up again at reset for functionality to 
occur on the DDR port. Power supplies for other functional buses should remain powered.
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20.8 Configuration Pin Muxing
The MPC8641 provides the user with power-on configuration options which can be set through the use of 
external pull-up or pull-down resistors of 4.7 kΩ on certain output pins (see customer visible configuration 
pins). These pins are generally used as output only pins in normal operation. 

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins 
while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled 
and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped 
with an on-chip gated resistor of approximately 20 kΩ. This value should permit the 4.7-kΩ resistor to pull 
the configuration pin to a valid logic low level. The pull-up resistor is enabled only during HRESET (and 
for platform /system clocks after HRESET deassertion to ensure capture of the reset value). When the input 
receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with 
minimal signal quality or delay disruption. The default value for all configuration bits treated this way has 
been encoded such that a high voltage level puts the device into the default state and external resistors are 
needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value 
of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus 
configured.

The platform PLL ratio and e600 PLL ratio configuration pins are not equipped with these default pull-up 
devices.

20.9 JTAG Configuration Signals
Correct operation of the JTAG interface requires configuration of a group of system control pins as 
demonstrated in Figure 68. Care must be taken to ensure that these pins are maintained at a valid deasserted 
state under normal operating conditions as most have asynchronous behavior and spurious assertion will 
give unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the 
IEEE 1149.1 specification, but is provided on all processors that implement the Power Architecture 
technology. The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary 
logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the 
reset state using only the TCK and TMS signals, more reliable power-on reset performance will be 
obtained if the TRST signal is asserted during power-on reset. Because the JTAG interface is also used for 
accessing the common on-chip processor (COP) function, simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically a PC with dedicated 
hardware and debugging software) to access and control the internal operations of the processor. The COP 
port connects primarily through the JTAG interface of the processor, with some additional status 
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order 
to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 67 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. 


