

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e600
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.25GHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	994-BCBGA, FCCBGA
Supplier Device Package	994-FCCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc8641hx1250hb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

Figure 1. MPC8641 and MPC8641D

- Support for PCI-Express message-shared interrupts (MSIs)
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Eight chip selects support eight external slaves
- Integrated DMA controller
 - Four-channel controller
 - All channels accessible by both the local and the remote masters
 - Supports transfers to or from any local memory or I/O port
 - Ability to start and flow control each DMA channel from external 3-pin interface
- Device performance monitor
 - Supports eight 32-bit counters that count the occurrence of selected events
 - Ability to count up to 512 counter-specific events
 - Supports 64 reference events that can be counted on any of the 8 counters
 - Supports duration and quantity threshold counting
 - Burstiness feature that permits counting of burst events with a programmable time between bursts
 - Triggering and chaining capability
 - Ability to generate an interrupt on overflow
- Dual I²C controllers
 - Two-wire interface
 - Multiple master support
 - Master or slave I^2C mode support
 - On-chip digital filtering rejects spikes on the bus
- Boot sequencer
 - Optionally loads configuration data from serial ROM at reset via the I^2C interface
 - Can be used to initialize configuration registers and/or memory
 - Supports extended I^2C addressing mode
 - Data integrity checked with preamble signature and CRC
- DUART
 - Two 4-wire interfaces (SIN, SOUT, $\overline{\text{RTS}}$, $\overline{\text{CTS}}$)
 - Programming model compatible with the original 16450 UART and the PC16550D
- IEEE 1149.1-compatible, JTAG boundary scan
- Available as 1023 pin Hi-CTE flip chip ceramic ball grid array (FC-CBGA)

DDR and DDR2 SDRAM

Table 15 provides the recommended operating conditions for the DDR SDRAM component(s) when $Dn_GV_{DD}(typ) = 2.5 \text{ V}.$

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	D <i>n_</i> GV _{DD}	2.375	2.625	V	1
I/O reference voltage	Dn_MV _{REF}	$0.49 \times Dn_GV_{DD}$	$0.51 \times Dn_GV_{DD}$	V	2
I/O termination voltage	V _{TT}	D <i>n</i> _MV _{REF} – 0.04	D <i>n</i> _MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	D <i>n</i> _MV _{REF} + 0.15	D <i>n</i> _GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	D <i>n</i> _MV _{REF} - 0.15	V	—
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-16.2	—	mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	16.2	_	mA	—

Table	15 DDR	SDRAM DC	Electrical	Characteristics	for Dn	GV	(tvn)	- 251	/
lable	15. DDn	SURAW DC	Electrical	Characteristics			(LYP)	= 2.5	

Notes:

1. Dn_GV_{DD} is expected to be within 50 mV of the DRAM Dn_GV_{DD} at all times.

2. MV_{REF} is expected to be equal to $0.5 \times Dn_{GV_{DD}}$, and to track $Dn_{GV_{DD}}$ DC variations as measured at the receiver. Peak-to-peak noise on $Dn_{MV_{REF}}$ may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to Dn_MV_{REF}. This rail should track variations in the DC level of Dn_MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq D*n*_GV_{DD}.

Table 16 provides the DDR capacitance when $Dn \text{ } \text{GV}_{DD}$ (typ)=2.5 V.

Table 16. DDR SDRAM Capacitance for Dn_GV_{DD} (typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $Dn_GV_{DD} = 2.5 V \pm 0.125 V$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = Dn_GVDD/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 17 provides the current draw characteristics for MV_{REF} .

Table 17. Current Draw Characteristics for MV_{REF}

Parameter / Condition	Symbol	Min	Max	Unit	Note
Current draw for MV _{REF}	I _{MVREF}	—	500	μA	1

1. The voltage regulator for MV_{REF} must be able to supply up to 500 μA current.

DDR and DDR2 SDRAM

Figure 4 shows the DDR SDRAM input timing for the MDQS to MDQ skew measurement (tDISKEW).

Figure 4. DDR Input Timing Diagram for tDISKEW

6.2.2 DDR SDRAM Output AC Timing Specifications

Table 21. DDR SDRAM Output AC Timing Specifications

At recommended operating conditions.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, MCK[n]/MCK[n] crossing	t _{MCK}	3	10	ns	2
MCK duty cycle 600 MHz 533 MHz 400 MHz	^t мскн/t _М ск	47.5 47 47	52.5 53 53	%	8 9 9
ADDR/CMD output setup with respect to MCK	t _{DDKHAS}			ns	3
600 MHz		1.10	—		7
533 MHz		1.48	—		7
400 MHz		1.95	—		
ADDR/CMD output hold with respect to MCK	t _{DDKHAX}			ns	3
600 MHz		1.10	—		7
533 MHz		1.48	—		7
400 MHz		1.95	—		
MCS[n] output setup with respect to MCK	t _{DDKHCS}			ns	3
600 MHz		1.10	—		7
533 MHz		1.48	—		7
400 MHz		1.95	—		

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

Timing diagrams for FIFO appear in Figure 8 and Figure 9.

Figure 9. FIFO Receive AC Timing Diagram

8.2.2 GMII AC Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.2.1 GMII Transmit AC Timing Specifications

Table 28 provides the GMII transmit AC timing specifications.

Table 28. GMII Transmit AC Timing Specifications

At recommended operating conditions with L/TV_DD of 3.3 V \pm 5% and 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
GMII data TXD[7:0], TX_ER, TX_EN setup time	t _{GTKHDV}	2.5	_	—	ns
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	t _{GTKHDX}	0.5	_	5.0	ns
GTX_CLK data clock rise time (20%-80%)	t _{GTXR} 2	_	_	1.0	ns

Parameter	Symbol ¹	Min	Мах	Unit	Notes
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKL2}	-1.3	—	ns	4, 5
LALE output transition to LAD/LDP output transition (LATCH hold time)	t _{LBOTOT}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKLOV1}		-0.3	ns	
Local bus clock to data valid for LAD/LDP	t _{LBKLOV2}		-0.1	ns	4
Local bus clock to address valid for LAD	t _{LBKLOV3}	_	0	ns	4
Local bus clock to LALE assertion	t _{LBKLOV4}		0	ns	4
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKLOX1}	-3.2	—	ns	4
Output hold from local bus clock for LAD/LDP	t _{LBKLOX2}	-3.2	—	ns	4
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{lbkloz1}	_	0.2	ns	7
Local bus clock to output high impedance for LAD/LDP	t _{LBKLOZ2}	_	0.2	ns	7

Table 42. Local Bus Timing Parameters—PLL Bypassed (continued)

Notes:

The symbols used for timing specifications herein follow the pattern of t<sub>(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(First two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKH0X} symbolizes local bus timing (LB) for the output (O) going invalid (X) or output hold time.
</sub>

 All timings are in reference to local bus clock for PLL bypass mode. Timings may be negative with respect to the local bus clock because the actual launch and capture of signals is done with the internal launch/capture clock, which precedes LCLK by t_{LBKHKT}.

 Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.

4. All signals are measured from BVDD/2 of the rising edge of local bus clock for PLL bypass mode to 0.4 x BVDD of the signal in question for 3.3-V signaling levels.

- 5. Input timings are measured at the pin.
- 6. The value of t_{LBOTOT} is the measurement of the minimum time between the negation of LALE and any change in LAD

7. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

8. Guaranteed by characterization.

To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic) transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing that goes between 2.5 V and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD or TD) is 500 mV p-p, which is referred as the single-ended swing for each signal. In this example, since the differential signaling environment is fully symmetrical, the transmitter output's differential swing (V_{OD}) has the same amplitude as each signal's single-ended swing. The differential output signal ranges between 500 mV and -500 mV, in other words, V_{OD} is 500 mV in one phase and -500 mV in the other phase. The peak differential voltage (V_{DIFFp}) is 500 mV. The peak-to-peak differential voltage (V_{DIFFp}-p) is 1000 mV p-p.

13.2 SerDes Reference Clocks

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clocks inputs are SDn_REF_CLK and SDn_REF_CLK for PCI Express and Serial RapidIO.

The following sections describe the SerDes reference clock requirements and some application information.

13.2.1 SerDes Reference Clock Receiver Characteristics

Figure 39 shows a receiver reference diagram of the SerDes reference clocks.

- The supply voltage requirements for XV_{DD} SRDS*n* are specified in Table 1 and Table 2.
- SerDes Reference Clock Receiver Reference Circuit Structure
 - The SDn_REF_CLK and SDn_REF_CLK are internally AC-coupled differential inputs as shown in Figure 39. Each differential clock input (SDn_REF_CLK or SDn_REF_CLK) has a 50-Ω termination to SGND followed by on-chip AC-coupling.
 - The external reference clock driver must be able to drive this termination.
 - The SerDes reference clock input can be either differential or single-ended. Refer to the Differential Mode and Single-ended Mode description below for further detailed requirements.
- The maximum average current requirement that also determines the common mode voltage range
 - When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA (refer to the following bullet for more detail), since the input is AC-coupled on-chip.
 - This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1 V above SGND. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
 - If the device driving the SD*n*_REF_CLK and $\overline{SDn_REF_CLK}$ inputs cannot drive 50 Ω to SGND DC, or it exceeds the maximum input current limitations, then it must be AC-coupled off-chip.

Symbol	Parameter	Min	Nom	Max	Units	Comments
T _{TX-EYE}	Minimum TX Eye Width	0.70	_	_	UI	The maximum Transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} = 0.3$ UI. See Notes 2 and 3.
T _{TX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median.	_	_	0.15	UI	Jitter is defined as the measurement variation of the crossing points ($V_{TX-DIFFp-p} = 0$ V) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2 and 3.
T _{TX-RISE} , T _{TX-FALL}	D+/D-TX Output Rise/Fall Time	0.125	_	_	UI	See Notes 2 and 5
V _{TX-CM-ACp}	RMS AC Peak Common Mode Output Voltage	_	_	20	mV	
V _{TX-CM-DC-ACTIVE-} IDLE-DELTA	Absolute Delta of DC Common Mode Voltage During L0 and Electrical Idle	0	_	100	mV	$eq:logical_lo$
V _{TX-CM} -DC-LINE-DELTA	Absolute Delta of DC Common Mode between D+ and D-	0	_	25	mV	$\begin{split} & V_{\text{TX-CM-DC-D+}} - V_{\text{TX-CM-DC-D-}} <= 25 \text{ mV} \\ &V_{\text{TX-CM-DC-D+}} = DC_{(\text{avg})} \text{ of } V_{\text{TX-D+}} \\ &V_{\text{TX-CM-DC-D-}} = DC_{(\text{avg})} \text{ of } V_{\text{TX-D-}} \\ &\text{See Note 2.} \end{split}$
V _{TX-IDLE} -DIFFp	Electrical Idle differential Peak Output Voltage	0	_	20	mV	$V_{TX-IDLE-DIFFp} = V_{TX-IDLE-D+} - V_{TX-IDLE-D-} \le 20 \text{ mV}$ See Note 2.
V _{TX-RCV-DETECT}	The amount of voltage change allowed during Receiver Detection		_	600	mV	The total amount of voltage change that a transmitter can apply to sense whether a low impedance Receiver is present. See Note 6.
V _{TX-DC-CM}	The TX DC Common Mode Voltage	0	_	3.6	V	The allowed DC Common Mode voltage under any conditions. See Note 6.
I _{TX-SHORT}	TX Short Circuit Current Limit	—	_	90	mA	The total current the Transmitter can provide when shorted to its ground
T _{TX-IDLE-MIN}	Minimum time spent in Electrical Idle	50			UI	Minimum time a Transmitter must be in Electrical Idle Utilized by the Receiver to start looking for an Electrical Idle Exit after successfully receiving an Electrical Idle ordered set

PCI Express

Table 49. Differential Transmitter	(TX) Output Spe	ecifications (continued)
------------------------------------	-----------------	--------------------------

Symbol	Parameter	Min	Nom	Мах	Units	Comments
T _{TX-IDLE-SET-TO-IDLE}	Maximum time to transition to a valid Electrical idle after sending an Electrical Idle ordered set		_	20	UI	After sending an Electrical Idle ordered set, the Transmitter must meet all Electrical Idle Specifications within this time. This is considered a debounce time for the Transmitter to meet Electrical Idle after transitioning from L0.
T _{TX-IDLE-TO-DIFF-DATA}	Maximum time to transition to valid TX specifications after leaving an Electrical idle condition			20	UI	Maximum time to meet all TX specifications when transitioning from Electrical Idle to sending differential data. This is considered a debounce time for the TX to meet all TX specifications after leaving Electrical Idle
RL _{TX-DIFF}	Differential Return Loss	12	—	—	dB	Measured over 50 MHz to 1.25 GHz. See Note 4
RL _{TX-CM}	Common Mode Return Loss	6	—	—	dB	Measured over 50 MHz to 1.25 GHz. See Note 4
Z _{TX-DIFF-DC}	DC Differential TX Impedance	80	100	120	Ω	TX DC Differential mode Low Impedance
Z _{TX-DC}	Transmitter DC Impedance	40	—	—	Ω	Required TX D+ as well as D- DC Impedance during all states
L _{TX-SKEW}	Lane-to-Lane Output Skew	_	—	500 + 2 UI	ps	Static skew between any two Transmitter Lanes within a single Link
C _{TX}	AC Coupling Capacitor	75	—	—	nF	All Transmitters shall be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See Note 8.
T _{crosslink}	Crosslink Random Timeout	0			ms	This random timeout helps resolve conflicts in crosslink configuration by eventually resulting in only one Downstream and one Upstream Port. See Note 7.

Notes:

1. No test load is necessarily associated with this value.

- 2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 52 and measured over any 250 consecutive TX UIs. (Also refer to the transmitter compliance eye diagram shown in Figure 50)
- 3. A T_{TX-EYE} = 0.70 UI provides for a total sum of deterministic and random jitter budget of T_{TX-JITTER-MAX} = 0.30 UI for the Transmitter collected over any 250 consecutive TX UIs. The T_{TX-EYE-MEDIAN-to-MAX-JITTER} median is less than half of the total TX jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.
- 4. The Transmitter input impedance shall result in a differential return loss greater than or equal to 12 dB and a common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements is 50 Ω to ground for both the D+ and D- line (that is, as measured by a Vector Network Analyzer with 50 ohm probes—see Figure 52). Note that the series capacitors C_{TX} is optional for the return loss measurement.
- 5. Measured between 20-80% at transmitter package pins into a test load as shown in Figure 52 for both V_{TX-D+} and V_{TX-D-} .
- 6. See Section 4.3.1.8 of the PCI Express Base Specifications Rev 1.0a
- 7. See Section 4.2.6.3 of the PCI Express Base Specifications Rev 1.0a
- 8. MPC8641D SerDes transmitter does not have C_{TX} built-in. An external AC Coupling capacitor is required.

14.4.2 Transmitter Compliance Eye Diagrams

The TX eye diagram in Figure 50 is specified using the passive compliance/test measurement load (see Figure 52) in place of any real PCI Express interconnect + RX component.

There are two eye diagrams that must be met for the transmitter. Both eye diagrams must be aligned in time using the jitter median to locate the center of the eye diagram. The different eye diagrams will differ in voltage depending whether it is a transition bit or a de-emphasized bit. The exact reduced voltage level of the de-emphasized bit will always be relative to the transition bit.

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function (that is, least squares and median deviation fits).

Figure 50. Minimum Transmitter Timing and Voltage Output Compliance Specifications

PCI Express

provide additional margin to adequately compensate for the degraded minimum Receiver eye diagram (shown in Figure 51) expected at the input Receiver based on some adequate combination of system simulations and the Return Loss measured looking into the RX package and silicon. The RX eye diagram must be aligned in time using the jitter median to locate the center of the eye diagram.

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

The reference impedance for return loss measurements is 50Ω to ground for both the D+ and D- line (that is, as measured by a Vector Network Analyzer with 50Ω probes—see Figure 52). Note that the series capacitors, C_{TX} , are optional for the return loss measurement.

Figure 51. Minimum Receiver Eye Timing and Voltage Compliance Specification

14.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package pins, into a test/measurement load shown in Figure 52.

NOTE

The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary.

Figure 52. Compliance Test/Measurement Load

15 Serial RapidIO

This section describes the DC and AC electrical specifications for the RapidIO interface of the MPC8641, for the LP-Serial physical layer. The electrical specifications cover both single and multiple-lane links. Two transmitter types (short run and long run) on a single receiver are specified for each of three baud rates, 1.25, 2.50, and 3.125 GBaud.

Two transmitter specifications allow for solutions ranging from simple board-to-board interconnect to driving two connectors across a backplane. A single receiver specification is given that will accept signals from both the short run and long run transmitter specifications.

The short run transmitter specifications should be used mainly for chip-to-chip connections on either the same printed circuit board or across a single connector. This covers the case where connections are made to a mezzanine (daughter) card. The minimum swings of the short run specification reduce the overall power used by the transceivers.

The long run transmitter specifications use larger voltage swings that are capable of driving signals across backplanes. This allows a user to drive signals across two connectors and a backplane. The specifications allow a distance of at least 50 cm at all baud rates.

All unit intervals are specified with a tolerance of +/-100 ppm. The worst case frequency difference between any transmit and receive clock will be 200 ppm.

To ensure interoperability between drivers and receivers of different vendors and technologies, AC coupling at the receiver input must be used.

15.1 DC Requirements for Serial RapidIO SD*n*_REF_CLK and SD*n*_REF_CLK

For more information, see Section 13.2, "SerDes Reference Clocks."

15.2 AC Requirements for Serial RapidIO SD*n*_REF_CLK and SD*n*_REF_CLK

Table 51 lists AC requirements.

Serial RapidIO

Characteristic	Symbol	Range		Unit	Notos
Characteristic		Min	Мах	onit	notes
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	500	1000	mV p-p	_
Deterministic Jitter	J _D	—	0.17	UI p-p	—
Total Jitter	J _T	—	0.35	UI p-p	—
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	800	800	ps	+/– 100 ppm

Table 52. Short Run Transmitter AC Timing Specifications—1.25 GBaud

Table 53. Short Run Transmitter AC Timing Specifications—2.5 GBaud

Characteristic	Symbol	Range		Unit	Notoo	
Characteristic	Symbol	Min	Мах	onit	notes	
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair	
Differential Output Voltage	V _{DIFFPP}	500	1000	mV p-p	_	
Deterministic Jitter	J _D	—	0.17	UI p-p	—	
Total Jitter	J _T	—	0.35	UI p-p	—	
Multiple Output skew	S _{MO}	—	1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit Interval	UI	400	400	ps	+/– 100 ppm	

Table 54. Short Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic	Symbol	Range		Unit	Notes
Unaracteristic		Min	Max	Onic	
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	500	1000	mV p-p	_
Deterministic Jitter	J _D	—	0.17	UI p-p	—
Total Jitter	J _T	—	0.35	UI p-p	—

15.8 Receiver Eye Diagrams

For each baud rate at which an LP-Serial receiver is specified to operate, the receiver shall meet the corresponding Bit Error Rate specification (Table 59, Table 60, Table 61) when the eye pattern of the receiver test signal (exclusive of sinusoidal jitter) falls entirely within the unshaded portion of the Receiver Input Compliance Mask shown in Figure 56 with the parameters specified in Table . The eye pattern of the receiver test signal is measured at the input pins of the receiving device with the device replaced with a $100 \Omega + -5\%$ differential resistive load.

Continuous Jitter Test Pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10^{-12} . The eye pattern shall be measured with AC coupling and the compliance template centered at 0 Volts differential. The left and right edges of the template shall be aligned with the mean zero crossing points of the measured data eye. The load for this test shall be 100Ω resistive +/- 5% differential to 2.5 GHz.

15.9.2 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (Baud Frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter Test Pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured with AC coupling and at 0 Volts differential. Jitter measurement for the transmitter (or for calibration of a jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described in Annex 48B of IEEE 802.3ae.

15.9.3 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive +/- 5% differential to 2.5 GHz.

15.9.4 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first producing the sum of deterministic and random jitter defined in Section 8.6 and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template shown in Figure 8-4 and Table 8-11. Note that for this to occur, the test signal must have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter specified in Section 8.6 is then added to the signal and the test load is replaced by the receiver being tested.

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes	
IRQ[9]/DMA_DREQ[3]	B30	I	OV _{DD}	10	
IRQ[10]/DMA_DACK[3]	C30	I	OV _{DD}	9, 10	
IRQ[11]/DMA_DDONE[3]	D30	I	OV _{DD}	9, 10	
IRQ_OUT	J26	0	OV _{DD}	7, 11	
	DUART Signals ⁵		- I I		
UART_SIN[0:1]	B32, C32	I	OV _{DD}	_	
UART_SOUT[0:1]	D31, A32	0	OV _{DD}	_	
UART_CTS[0:1]	A31, B31	I	OV _{DD}	_	
UART_RTS[0:1]	C31, E30	0	OV _{DD}	_	
	l ² C Signals				
IIC1_SDA	A16	I/O	OV _{DD}	7, 11	
IIC1_SCL	B17	I/O	OV _{DD}	7, 11	
IIC2_SDA	A21	I/O	OV _{DD}	7, 11	
IIC2_SCL	B21	I/O	OV _{DD}	7, 11	
System Control Signals ⁵					
HRESET	B18	Ι	OV _{DD}	—	
HRESET_REQ	K18	0	OV _{DD}		
SMI_0	L15	Ι	OV _{DD}		
SMI_1	L16	Ι	OV _{DD}	12, <i>S4</i>	
SRESET_0	C20	-	OV _{DD}	—	
SRESET_1	C21	I	OV _{DD}	12, <i>S4</i>	
CKSTP_IN	L18	I	OV _{DD}	—	
CKSTP_OUT	L17	0	OV _{DD}	7, 11	
READY/TRIG_OUT	J13	0	OV _{DD}	10, 25	
Debug Signals ⁵					
TRIG_IN	J14	I	OV _{DD}	—	
TRIG_OUT/READY	J13	0	OV _{DD}	10, 25	
D1_MSRCID[0:1]/ LB_SRCID[0:1]	F15, K15	0	OV _{DD}	6, 10	
D1_MSRCID[2]/ LB_SRCID[2]	K14	0	OV _{DD}	10, 25	
D1_MSRCID[3:4]/ LB_SRCID[3:4]	H15, G15	0	OV _{DD}	10	
D2_MSRCID[0:4]	E16, C17, F16, H16, K16	0	OV _{DD}	_	

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
SENSEV _{SS} _Core0	P14	Core0 GND sensing pin	_	31
SENSEV _{SS} _Core1	V20	Core1 GND sensing pin	_	12, 31, <i>S3</i>
SENSEV _{DD} PLAT	N18	V _{DD} _PLAT sensing pin	_	28
SENSEV _{SS} _PLAT	P18	Platform GND sensing pin	—	29
D1_GV _{DD}	B11, B14, D10, D13, F9, F12, H8, H11, H14, K10, K13, L8, P8, R6, U8, V6, W10, Y8, AA6, AB10, AC8, AD12, AE10, AF8, AG12, AH10, AJ8, AJ14, AK12, AL10, AL16	SDRAM 1 I/O supply	D1_GV _{DD} 2.5 - DDR 1.8 DDR2	_
D2_GV _{DD}	B2, B5, B8, D4, D7, E2, F6, G4, H2, J6, K4, L2, M6, N4, P2, T4, U2, W4, Y2, AB4, AC2, AD6, AE4, AF2, AG6, AH4, AJ2, AK6, AL4, AM2	SDRAM 2 I/O supply	D2_GV _{DD} 2.5 V - DDR 1.8 V - DDR2	_
OV _{DD}	B22, B25, B28, D17, D24, D27, F19, F22, F26, F29, G17, H21, H24, K19, K23, M21, AM30	DUART, Local Bus, DMA, Multiprocessor Interrupts, System Control & Clocking, Debug, Test, JTAG, Power management, I ² C, JTAG and Miscellaneous I/O voltage	OV _{DD} 3.3 V	
LV _{DD}	AC20, AD23, AH22	TSEC1 and TSEC2 I/O voltage	LV _{DD} 2.5/3.3 V	_
TV _{DD}	AC17, AG18, AK20	TSEC3 and TSEC4 I/O voltage	TV _{DD} 2.5/3.3 V	_
SV _{DD}	H31, J29, K28, K32, L30, M28, M31, N29, R30, T31, U29, V32, W30, Y31, AA29, AB32, AC30, AD31, AE29, AG30, AH31, AJ29, AK32, AL30, AM31	Transceiver Power Supply SerDes	SV _{DD} 1.05/1.1 V	_
XV _{DD} _SRDS1	K26, L24, M27, N25, P26, R24, R28, T27, U25, V26	Serial I/O Power Supply for SerDes Port 1	XV _{DD} _SRDS1 1.05/1.1 V	

Table 63. MPC864	1 Signal Reference	by Functional	Block (continued)
------------------	--------------------	---------------	-------------------

Tyco Electronics800-522-6752Chip CoolersTMP.O. Box 3668Harrisburg, PA 17105-3668Internet: www.chipcoolers.comWakefield Engineering603-635-510233 Bridge St.Pelham, NH 03076Internet: www.wakefield.comInternet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost.

19.2.1 Internal Package Conduction Resistance

For the exposed-die packaging technology described in Table 71, the intrinsic conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)
- The die junction-to-board thermal resistance

Figure 60 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

Figure 60. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach material (or thermal interface material), and finally to the heat sink where it is removed by forced-air convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected for a first-order analysis. Thus the thermal interface material and the heat sink conduction/convective thermal resistances are the dominant terms.

System Design Information

designer place at least one decoupling capacitor at each OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , V_{DD}_{DD} . Coren, and $V_{DD}_{DD}_{PLAT}$ pin of the device. These decoupling capacitors should receive their power from separate OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , $V_{DD}_{DD}_{DD}_{PLAT}$ and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , V_{DD} . Coren, and V_{DD} _PLAT planes, to enable quick recharging of the smaller chip capacitors. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo OSCON).

20.4 SerDes Block Power Supply Decoupling Recommendations

The SerDes block requires a clean, tightly regulated source of power (SV_{DD} and XV_{DD} _SRDS*n*) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below.

Only surface mount technology (SMT) capacitors should be used to minimize inductance. Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance.

- First, the board should have at least 10 x 10-nF SMT ceramic chip capacitors as close as possible to the supply balls of the device. Where the board has blind vias, these capacitors should be placed directly below the chip supply and ground connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the device as close to the supply and ground connections as possible.
- Second, there should be a $1-\mu F$ ceramic chip capacitor on each side of the device. This should be done for all SerDes supplies.
- Third, between the device and any SerDes voltage regulator there should be a $10-\mu$ F, low equivalent series resistance (ESR) SMT tantalum chip capacitor and a $100-\mu$ F, low ESR SMT tantalum chip capacitor. This should be done for all SerDes supplies.

20.5 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. In general all unused active low inputs should be tied to OV_{DD} , Dn_GV_{DD} , LV_{DD} , TV_{DD} , V_{DD} _Coren, and V_{DD}_{DD} _PLAT, XV_{DD}_{DD} _SRDSn, and SV_{DD} as required and unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Special cases:

DDR - If one of the DDR ports is not being used the power supply pins for that port can be connected to ground so that there is no need to connect the individual unused inputs of that port to ground. Note that these power supplies can only be powered up again at reset for functionality to occur on the DDR port. Power supplies for other functional buses should remain powered.

System Design Information

20.8 Configuration Pin Muxing

The MPC8641 provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While $\overline{\text{HRESET}}$ is asserted however, these pins are treated as inputs. The value presented on these pins while $\overline{\text{HRESET}}$ is asserted, is latched when $\overline{\text{HRESET}}$ deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped with an on-chip gated resistor of approximately 20 k Ω . This value should permit the 4.7-k Ω resistor to pull the configuration pin to a valid logic low level. The pull-up resistor is enabled only during $\overline{\text{HRESET}}$ (and for platform /system clocks after $\overline{\text{HRESET}}$ deassertion to ensure capture of the reset value). When the input receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with minimal signal quality or delay disruption. The default value for all configuration bits treated this way has been encoded such that a high voltage level puts the device into the default state and external resistors are needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

The platform PLL ratio and e600 PLL ratio configuration pins are not equipped with these default pull-up devices.

20.9 JTAG Configuration Signals

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 68. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors that implement the Power Architecture technology. The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, more reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP port connects primarily through the JTAG interface of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 67 allows the COP port to independently assert $\overline{\text{HRESET}}$ or $\overline{\text{TRST}}$, while ensuring that the target can drive $\overline{\text{HRESET}}$ as well.