

#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                               |
|---------------------------------|------------------------------------------------------------------------|
| Core Processor                  | PowerPC e600                                                           |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                         |
| Speed                           | 1.25GHz                                                                |
| Co-Processors/DSP               | -                                                                      |
| RAM Controllers                 | DDR, DDR2                                                              |
| Graphics Acceleration           | No                                                                     |
| Display & Interface Controllers | -                                                                      |
| Ethernet                        | 10/100/1000Mbps (4)                                                    |
| SATA                            | -                                                                      |
| USB                             | -                                                                      |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                                       |
| Operating Temperature           | 0°C ~ 105°C (TA)                                                       |
| Security Features               | -                                                                      |
| Package / Case                  | 994-BCBGA, FCCBGA                                                      |
| Supplier Device Package         | 994-FCCBGA (33x33)                                                     |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc8641hx1250hc |
|                                 |                                                                        |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Electrical Characteristics

# 2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8641. The MPC8641 is currently targeted to these specifications.

# 2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

# 2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

| Characteristic                                                                                                                                                         | Symbol                                              | Absolute Maximum<br>Value | Unit | Notes |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------|------|-------|
| Cores supply voltages                                                                                                                                                  | V <sub>DD</sub> _Core0,<br>V <sub>DD</sub> _Core1   | -0.3 to 1.21 V            | V    | 2     |
| Cores PLL supply                                                                                                                                                       | AV <sub>DD</sub> _Core0,<br>AV <sub>DD</sub> _Core1 | –0.3 to 1.21 V            | V    | _     |
| SerDes Transceiver Supply (Ports 1 and 2)                                                                                                                              | SV <sub>DD</sub>                                    | –0.3 to 1.21 V            | V    | _     |
| SerDes Serial I/O Supply Port 1                                                                                                                                        | XV <sub>DD</sub> _SRDS1                             | –0.3 to 1.21V             | V    | _     |
| SerDes Serial I/O Supply Port 2                                                                                                                                        | XV <sub>DD</sub> _SRDS2                             | -0.3 to 1.21 V            | V    |       |
| SerDes DLL and PLL supply voltage for Port 1 and Port 2                                                                                                                | AV <sub>DD</sub> _SRDS1,<br>AV <sub>DD</sub> _SRDS2 | -0.3 to 1.21V             | V    | —     |
| Platform Supply voltage                                                                                                                                                | V <sub>DD</sub> _PLAT                               | –0.3 to 1.21V             | V    |       |
| Local Bus and Platform PLL supply voltage                                                                                                                              | AV <sub>DD</sub> _LB,<br>AV <sub>DD</sub> _PLAT     | -0.3 to 1.21V             | V    | —     |
| DDR and DDR2 SDRAM I/O supply voltages                                                                                                                                 | D1_GV <sub>DD,</sub>                                | –0.3 to 2.75 V            | V    | 3     |
|                                                                                                                                                                        | D2_GV <sub>DD</sub>                                 | –0.3 to 1.98 V            | V    | 3     |
| eTSEC 1 and 2 I/O supply voltage                                                                                                                                       | LV <sub>DD</sub>                                    | –0.3 to 3.63 V            | V    | 4     |
|                                                                                                                                                                        |                                                     | -0.3 to 2.75 V            | V    | 4     |
| eTSEC 3 and 4 I/O supply voltage                                                                                                                                       | TV <sub>DD</sub>                                    | -0.3 to 3.63 V            | V    | 4     |
|                                                                                                                                                                        |                                                     | -0.3 to 2.75 V            | V    | 4     |
| Local Bus, DUART, DMA, Multiprocessor Interrupts, System<br>Control & Clocking, Debug, Test, Power management, I <sup>2</sup> C, JTAG<br>and Miscellaneous I/O voltage | OV <sub>DD</sub>                                    | –0.3 to 3.63 V            | V    | —     |







#### Notes:

- 1. Dotted waveforms correspond to optional supply values for a specified power supply. See Table 2.
- 2. The recommended maximum ramp up time for power supplies is 20 milliseconds.
- 3. Refer to Section 5, "RESET Initialization" for additional information on PLL relock and reset signal assertion timing requirements.
- 4. Refer to Table 11 for additional information on reset configuration pin setup timing requirements. In addition see Figure 68 regarding HRESET and JTAG connection details including TRST.
- 5. e600 PLL relock time is 100 microseconds maximum plus 255 MPX\_clk cycles.
- 6. Stable PLL configuration signals are required as stable SYSCLK is applied. All other POR configuration inputs are required 4 SYSCLK cycles before HRESET negation and are valid at least 2 SYSCLK cycles after HRESET has negated (hold requirement). See Section 5, "RESET Initialization" for more information on setup and hold time of reset configuration signals.
- V<sub>DD</sub>\_PLAT, AV<sub>DD</sub>\_PLAT must strictly reach 90% of their recommended voltage before the rail for Dn\_GV<sub>DD</sub>, and Dn\_MV<sub>REF</sub> reaches 10% of their recommended voltage.
- 8. SYSCLK must be driven only AFTER the power for the various power supplies is stable.
- In device sleep mode, the reset configuration signals for DRAM types (TSEC2\_TXD[4],TSEC2\_TX\_ER) must be valid BEFORE HRESET is asserted.

#### Figure 3. MPC8641 Power-Up and Reset Sequence



### Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

### Table 24. GMII, MII, RMII, TBI and FIFO DC Electrical Characteristics (continued)

| Parameter                                    | Symbol          | Min  | Мах | Unit | Notes |
|----------------------------------------------|-----------------|------|-----|------|-------|
| Input low current<br>(V <sub>IN</sub> = GND) | Ι <sub>ΙL</sub> | -600 | _   | μA   | 3     |

Notes:

<sup>1</sup> LV<sub>DD</sub> supports eTSECs 1 and 2.

<sup>2</sup> TV<sub>DD</sub> supports eTSECs 3 and 4.

<sup>3</sup> The symbol V<sub>IN</sub>, in this case, represents the LV<sub>IN</sub> and TV<sub>IN</sub> symbols referenced in Table 1 and Table 2.

### Table 25. GMII, RGMII, RTBI, TBI and FIFO DC Electrical Characteristics

| Parameters                                                         | Symbol                             | Min   | Мах   | Unit | Notes  |
|--------------------------------------------------------------------|------------------------------------|-------|-------|------|--------|
| Supply voltage 2.5 V                                               | LV <sub>DD</sub> /TV <sub>DD</sub> | 2.375 | 2.625 | V    | 1,2    |
| Output high voltage $(LV_{DD}/TV_{DD} = Min, I_{OH} = -1.0 mA)$    | V <sub>OH</sub>                    | 2.00  | _     | V    | _      |
| Output low voltage<br>( $LV_{DD}/TV_{DD} = Min, I_{OL} = 1.0 mA$ ) | V <sub>OL</sub>                    | —     | 0.40  | V    | —      |
| Input high voltage                                                 | V <sub>IH</sub>                    | 1.70  | —     | V    | —      |
| Input low voltage                                                  | V <sub>IL</sub>                    | —     | 0.90  | V    | —      |
| Input high current $(V_{IN} = LV_{DD}, V_{IN} = TV_{DD})$          | IIH                                | —     | 10    | μA   | 1, 2,3 |
| Input low current<br>(V <sub>IN</sub> = GND)                       | I <sub>IL</sub>                    | -15   | —     | μA   | 3      |

Note:

 $^1\,$  LV\_{DD} supports eTSECs 1 and 2.

<sup>2</sup> TV<sub>DD</sub> supports eTSECs 3 and 4.

<sup>3</sup> Note that the symbol V<sub>IN</sub>, in this case, represents the LV<sub>IN</sub> and TV<sub>IN</sub> symbols referenced in Table 1 and Table 2.

# 8.2 FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications

The AC timing specifications for FIFO, GMII, MII, TBI, RGMII, RMII and RTBI are presented in this section.

# 8.2.1 FIFO AC Specifications

The basis for the AC specifications for the eTSEC's FIFO modes is the double data rate RGMII and RTBI specifications, since they have similar performance and are described in a source-synchronous fashion like FIFO modes. However, the FIFO interface provides deliberate skew between the transmitted data and source clock in GMII fashion.

When the eTSEC is configured for FIFO modes, all clocks are supplied from external sources to the relevant eTSEC interface. That is, the transmit clock must be applied to the eTSEC*n*'s TSEC*n*\_TX\_CLK, while the receive clock must be applied to pin TSEC*n*\_RX\_CLK. The eTSEC internally uses the transmit



#### Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

### Table 29. GMII Receive AC Timing Specifications (continued)

At recommended operating conditions with L/TV<sub>DD</sub> of 3.3 V  $\pm$  5% and 2.5 V  $\pm$  5%.

| Parameter/Condition              | Symbol <sup>1</sup> | Min | Тур | Мах | Unit |
|----------------------------------|---------------------|-----|-----|-----|------|
| RX_CLK clock fall time (80%-20%) | t <sub>GRXF</sub> 2 |     | _   | 1.0 | ns   |

Note:

1. The symbols used for timing specifications herein follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>GRDVKH</sub> symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t<sub>RX</sub> clock reference (K) going to the high state (H) or setup time. Also, t<sub>GRDXKL</sub> symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t<sub>GRX</sub> clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t<sub>GRX</sub> represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

2. Guaranteed by design.

3. ±100 ppm tolerance on RX\_CLK frequency

Figure 11 provides the AC test load for eTSEC.



Figure 11. eTSEC AC Test Load

Figure 12 shows the GMII receive AC timing diagram.



Figure 12. GMII Receive AC Timing Diagram



## 8.2.3 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

### 8.2.3.1 MII Transmit AC Timing Specifications

Table 30 provides the MII transmit AC timing specifications.

### Table 30. MII Transmit AC Timing Specifications

At recommended operating conditions with L/TV<sub>DD</sub> of 3.3 V  $\pm$  5%.

| Parameter/Condition                             | Symbol <sup>1</sup>                 | Min | Тур | Мах | Unit |
|-------------------------------------------------|-------------------------------------|-----|-----|-----|------|
| TX_CLK clock period 10 Mbps                     | t <sub>MTX</sub> 2                  | —   | 400 | —   | ns   |
| TX_CLK clock period 100 Mbps                    | t <sub>MTX</sub>                    | —   | 40  | —   | ns   |
| TX_CLK duty cycle                               | t <sub>MTXH/</sub> t <sub>MTX</sub> | 35  | —   | 65  | %    |
| TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay | t <sub>MTKHDX</sub>                 | 1   | 5   | 15  | ns   |
| TX_CLK data clock rise time (20%-80%)           | t <sub>MTXR</sub> 2                 | 1.0 | —   | 4.0 | ns   |
| TX_CLK data clock fall time (80%-20%)           | t <sub>MTXF</sub> 2                 | 1.0 | _   | 4.0 | ns   |

Note:

1. The symbols used for timing specifications herein follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>MTKHDX</sub> symbolizes MII transmit timing (MT) for the time t<sub>MTX</sub> clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t<sub>MTX</sub> represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

2. Guaranteed by design.

Figure 13 shows the MII transmit AC timing diagram.



Figure 13. MII Transmit AC Timing Diagram



# 8.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

### 8.2.4.1 TBI Transmit AC Timing Specifications

Table 32 provides the TBI transmit AC timing specifications.

### Table 32. TBI Transmit AC Timing Specifications

At recommended operating conditions with L/TV\_DD of 3.3 V  $\pm$  5% and 2.5 V  $\pm$  5%.

| Parameter/Condition                        | Symbol <sup>1</sup>            | Min | Тур | Мах | Unit |
|--------------------------------------------|--------------------------------|-----|-----|-----|------|
| TCG[9:0] setup time GTX_CLK going high     | t <sub>TTKHDV</sub>            | 2.0 | —   | —   | ns   |
| TCG[9:0] hold time from GTX_CLK going high | t <sub>TTKHDX</sub>            | 1.0 | —   | —   | ns   |
| GTX_CLK rise time (20%-80%)                | t <sub>TTXR</sub> <sup>2</sup> | —   | —   | 1.0 | ns   |
| GTX_CLK fall time (80%–20%)                | t <sub>TTXF</sub> 2            | —   | —   | 1.0 | ns   |

### Notes:

1. The symbols used for timing specifications herein follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state)</sub> for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>TTKHDV</sub> symbolizes the TBI transmit timing (TT) with respect to the time from t<sub>TTX</sub> (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t<sub>TTKHDX</sub> symbolizes the TBI transmit timing (TT) with respect to the time from t<sub>TTX</sub> (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t<sub>TTKHDX</sub> symbolizes the TBI transmit timing (TT) with respect to the time from t<sub>TTX</sub> (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t<sub>TTX</sub> represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

Figure 16 shows the TBI transmit AC timing diagram.



Figure 16. TBI Transmit AC Timing Diagram



Figure 26 to Figure 31 show the local bus signals.



Figure 26. Local Bus Signals (PLL Enabled)

NOTE

PLL bypass mode is recommended when LBIU frequency is at or below 83 MHz. When LBIU operates above 83 MHz, LBIU PLL is recommended to be enabled.

Table 42 describes the general timing parameters of the local bus interface at  $OV_{DD} = 3.3$  V with PLL bypassed.

| Table 42. Local Bus | Timing Parameters—F | LL Bypassed |
|---------------------|---------------------|-------------|
|---------------------|---------------------|-------------|

| Parameter                                             | Symbol <sup>1</sup>                 | Min  | Мах | Unit | Notes |
|-------------------------------------------------------|-------------------------------------|------|-----|------|-------|
| Local bus cycle time                                  | t <sub>LBK</sub>                    | 12   | _   | ns   | 2     |
| Local bus duty cycle                                  | t <sub>LBKH/</sub> t <sub>LBK</sub> | 45   | 55  | %    | —     |
| Internal launch/capture clock to LCLK delay           | t <sub>LBKHKT</sub>                 | 2.3  | 3.9 | ns   | 8     |
| Input setup to local bus clock (except LGTA/LUPWAIT)  | t <sub>LBIVKH1</sub>                | 5.7  | _   | ns   | 4, 5  |
| LGTA/LUPWAIT input setup to local bus clock           | t <sub>LBIVKL2</sub>                | 5.6  | _   | ns   | 4, 5  |
| Input hold from local bus clock (except LGTA/LUPWAIT) | t <sub>LBIXKH1</sub>                | -1.8 | _   | ns   | 4, 5  |



Local Bus



Figure 27. Local Bus Signals (PLL Bypass Mode)

### NOTE

In PLL bypass mode, LCLK[n] is the inverted version of the internal clock with the delay of  $t_{LBKHKT}$ . In this mode, signals are launched at the rising edge of the internal clock and are captured at falling edge of the internal clock, with the exception of the LGTA/LUPWAIT signal, which is captured at the rising edge of the internal clock.



### Table 45. I<sup>2</sup>C DC Electrical Characteristics (continued)

At recommended operating conditions with  $OV_{DD}$  of 3.3 V ± 5%.

| Parameter                    | Symbol | Min | Max | Unit | Notes |
|------------------------------|--------|-----|-----|------|-------|
| Capacitance for each I/O pin | CI     | _   | 10  | pF   |       |

### Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. Refer to the MPC8641 Integrated Host Processor Reference Manual for information on the digital filter used.

3. I/O pins will obstruct the SDA and SCL lines if  $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$  is switched off.

# 12.2 I<sup>2</sup>C AC Electrical Specifications

Table 46 provides the AC timing parameters for the  $I^2C$  interfaces.

### Table 46. I<sup>2</sup>C AC Electrical Specifications

All values refer to  $V_{IH}$  (min) and  $V_{IL}$  (max) levels (see Table 45).

| Parameter                                                                                    | Symbol <sup>1</sup>   | Min                                  | Мах              | Unit |
|----------------------------------------------------------------------------------------------|-----------------------|--------------------------------------|------------------|------|
| SCL clock frequency                                                                          | f <sub>I2C</sub>      | 0                                    | 400              | kHz  |
| Low period of the SCL clock                                                                  | t <sub>I2CL</sub> 4   | 1.3                                  | —                | μS   |
| High period of the SCL clock                                                                 | t <sub>I2CH</sub> 4   | 0.6                                  | —                | μS   |
| Setup time for a repeated START condition                                                    | t <sub>I2SVKH</sub> 4 | 0.6                                  | —                | μS   |
| Hold time (repeated) START condition (after this period, the first clock pulse is generated) | t <sub>I2SXKL</sub> 4 | 0.6                                  | —                | μS   |
| Data setup time                                                                              | t <sub>I2DVKH</sub> 4 | 100                                  | _                | ns   |
| Data input hold time:<br>CBUS compatible masters<br>I <sup>2</sup> C bus devices             | t <sub>i2DXKL</sub>   | 0 <sup>2</sup>                       | _                | μs   |
| Rise time of both SDA and SCL signals                                                        | t <sub>I2CR</sub>     | 20 + 0.1 C <sub>B</sub> <sup>5</sup> | 300              | ns   |
| Fall time of both SDA and SCL signals                                                        | t <sub>I2CF</sub>     | 20 + 0.1 C <sub>b</sub> <sup>5</sup> | 300              | ns   |
| Data output delay time                                                                       | t <sub>I2OVKL</sub>   | —                                    | 0.9 <sup>3</sup> | μS   |
| Set-up time for STOP condition                                                               | <sup>t</sup> I2PVKH   | 0.6                                  | —                | μS   |
| Bus free time between a STOP and START condition                                             | t <sub>I2KHDX</sub>   | 1.3                                  | —                | μS   |
| Noise margin at the LOW level for each connected device (including hysteresis)               | V <sub>NL</sub>       | $0.1 \times OV_{DD}$                 |                  | V    |



 The SDn\_REF\_CLK input average voltage must be between 200 and 400 mV. Figure 42 shows the SerDes reference clock input requirement for single-ended signaling mode.

— To meet the input amplitude requirement, the reference clock inputs might need to be DC or AC-coupled externally. For the best noise performance, the reference of the clock could be DC or AC-coupled into the unused phase (SDn\_REF\_CLK) through the same source impedance as the clock input (SDn\_REF\_CLK) in use.



SDn\_REF\_CLK

### Figure 40. Differential Reference Clock Input DC Requirements (External DC-Coupled)











# 15.4 Equalization

With the use of high speed serial links, the interconnect media will cause degradation of the signal at the receiver. Effects such as Inter-Symbol Interference (ISI) or data dependent jitter are produced. This loss can be large enough to degrade the eye opening at the receiver beyond what is allowed in the specification. To negate a portion of these effects, equalization can be used. The most common equalization techniques that can be used are:

- A passive high pass filter network placed at the receiver. This is often referred to as passive equalization.
- The use of active circuits in the receiver. This is often referred to as adaptive equalization.

# 15.5 Explanatory Note on Transmitter and Receiver Specifications

AC electrical specifications are given for transmitter and receiver. Long run and short run interfaces at three baud rates (a total of six cases) are described.

The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified in Clause 47 of IEEE 802.3ae-2002.

XAUI has similar application goals to serial RapidIO, as described in Section 8.1. The goal of this standard is that electrical designs for serial RapidIO can reuse electrical designs for XAUI, suitably modified for applications at the baud intervals and reaches described herein.

# 15.6 Transmitter Specifications

LP-Serial transmitter electrical and timing specifications are stated in the text and tables of this section.

The differential return loss, S11, of the transmitter in each case shall be better than

- -10 dB for (Baud Frequency)/10 < Freq(f) < 625 MHz, and
- $-10 \text{ dB} + 10\log(f/625 \text{ MHz}) \text{ dB}$  for  $625 \text{ MHz} \le \text{Freq}(f) \le \text{Baud}$  Frequency

The reference impedance for the differential return loss measurements is 100 Ohm resistive. Differential return loss includes contributions from on-chip circuitry, chip packaging and any off-chip components related to the driver. The output impedance requirement applies to all valid output levels.

It is recommended that the 20%–80% rise/fall time of the transmitter, as measured at the transmitter output, in each case have a minimum value 60 ps.

It is recommended that the timing skew at the output of an LP-Serial transmitter between the two signals that comprise a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB and 15 ps at 3.125 GB.



Serial RapidIO

| Characteristic              | Symbol              | Range      |      | Unit   | Notos                                                                            |  |
|-----------------------------|---------------------|------------|------|--------|----------------------------------------------------------------------------------|--|
|                             | Symbol              | Min        | Мах  | Onit   | Notes                                                                            |  |
| Output Voltage,             | Vo                  | -0.40 2.30 |      | Volts  | Voltage relative to COMMON<br>of either signal comprising a<br>differential pair |  |
| Differential Output Voltage | V <sub>DIFFPP</sub> | 500        | 1000 | mV p-p | _                                                                                |  |
| Deterministic Jitter        | J <sub>D</sub>      | —          | 0.17 | UI p-p | —                                                                                |  |
| Total Jitter                | J <sub>T</sub>      | —          | 0.35 | UI p-p | —                                                                                |  |
| Multiple output skew        | S <sub>MO</sub>     | _          | 1000 | ps     | Skew at the transmitter output<br>between lanes of a multilane<br>link           |  |
| Unit Interval               | UI                  | 800        | 800  | ps     | +/– 100 ppm                                                                      |  |

### Table 52. Short Run Transmitter AC Timing Specifications—1.25 GBaud

### Table 53. Short Run Transmitter AC Timing Specifications—2.5 GBaud

| Characteristic              | Symbol              | Range |      | Unit   | Notos                                                                            |  |
|-----------------------------|---------------------|-------|------|--------|----------------------------------------------------------------------------------|--|
|                             | Symbol              | Min   | Мах  | onit   | notes                                                                            |  |
| Output Voltage,             | Vo                  | -0.40 | 2.30 | Volts  | Voltage relative to COMMON<br>of either signal comprising a<br>differential pair |  |
| Differential Output Voltage | V <sub>DIFFPP</sub> | 500   | 1000 | mV p-p | _                                                                                |  |
| Deterministic Jitter        | J <sub>D</sub>      | —     | 0.17 | UI p-p | —                                                                                |  |
| Total Jitter                | J <sub>T</sub>      | —     | 0.35 | UI p-p | —                                                                                |  |
| Multiple Output skew        | S <sub>MO</sub>     | —     | 1000 | ps     | Skew at the transmitter output<br>between lanes of a multilane<br>link           |  |
| Unit Interval               | UI                  | 400   | 400  | ps     | +/– 100 ppm                                                                      |  |

### Table 54. Short Run Transmitter AC Timing Specifications—3.125 GBaud

| Characteristic              | Symbol              | Range |      | Unit   | Notos                                                                            |  |
|-----------------------------|---------------------|-------|------|--------|----------------------------------------------------------------------------------|--|
| Unaracteristic              |                     | Min   | Max  | onic   |                                                                                  |  |
| Output Voltage,             | Vo                  | -0.40 | 2.30 | Volts  | Voltage relative to COMMON<br>of either signal comprising a<br>differential pair |  |
| Differential Output Voltage | V <sub>DIFFPP</sub> | 500   | 1000 | mV p-p | _                                                                                |  |
| Deterministic Jitter        | J <sub>D</sub>      | —     | 0.17 | UI p-p | —                                                                                |  |
| Total Jitter                | J <sub>T</sub>      | —     | 0.35 | UI p-p | —                                                                                |  |



Serial RapidIO



Figure 56. Receiver Input Compliance Mask

| Receiver Type | V <sub>DIFF</sub> min (mV) | V <sub>DIFF</sub> max (mV) | A (UI) | B (UI) |
|---------------|----------------------------|----------------------------|--------|--------|
| 1.25 GBaud    | 100                        | 800                        | 0.275  | 0.400  |
| 2.5 GBaud     | 100                        | 800                        | 0.275  | 0.400  |
| 3.125 GBaud   | 100                        | 800                        | 0.275  | 0.400  |

Table 62. Receiver Input Compliance Mask Parameters Exclusive of Sinusoidal Jitter

# **15.9 Measurement and Test Requirements**

Since the LP-Serial electrical specification are guided by the XAUI electrical interface specified in Clause 47 of IEEE 802.3ae-2002, the measurement and test requirements defined here are similarly guided by Clause 47. In addition, the CJPAT test pattern defined in Annex 48A of IEEE 802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter measurements. Annex 48B of IEEE 802.3ae-2002 is recommended as a reference for additional information on jitter test methods.

# 15.9.1 Eye Template Measurements

For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point at (Baud Frequency)/1667 is applied to the jitter. The data pattern for template measurements is the



| Name <sup>1</sup>                           | Package Pin Number                          | Pin Type               | Power Supply     | Notes  |  |
|---------------------------------------------|---------------------------------------------|------------------------|------------------|--------|--|
| SD1_PLL_TPA                                 | T28                                         | Analog                 | SV <sub>DD</sub> | 13, 18 |  |
| SD1_DLL_TPD                                 | N28                                         | 0                      | SV <sub>DD</sub> | 13, 17 |  |
| SD1_DLL_TPA                                 | P31                                         | Analog                 | SV <sub>DD</sub> | 13, 18 |  |
|                                             | High Speed I/O Interface 2 (                | SERDES 2) <sup>4</sup> | -                |        |  |
| SD2_TX[0:3]                                 | Y24, AA27, AB25, AC27                       | 0                      | SV <sub>DD</sub> | —      |  |
| SD2_TX[4:7]                                 | AE27, AG27, AJ27, AL27                      | 0                      | SV <sub>DD</sub> | 34     |  |
| SD2_TX[0:3]                                 | Y25, AA28, AB26, AC28                       | 0                      | SV <sub>DD</sub> | —      |  |
| SD2_TX[4:7]                                 | AE28, AG28, AJ28, AL28                      | 0                      | SV <sub>DD</sub> | 34     |  |
| SD2_RX[0:3]                                 | Y30, AA32, AB30, AC32                       | I                      | SV <sub>DD</sub> | 32     |  |
| SD2_RX[4:7]                                 | AH30, AJ32, AK30, AL32                      | I                      | SV <sub>DD</sub> | 32, 35 |  |
| SD2_RX[0:3]                                 | Y29, AA31, AB29, AC31                       | I                      | SV <sub>DD</sub> | —      |  |
| SD2_RX[4:7]                                 | AH29, AJ31, AK29, AL31                      | I                      | SV <sub>DD</sub> | 35     |  |
| SD2_REF_CLK                                 | AE32                                        | I                      | SV <sub>DD</sub> | —      |  |
| SD2_REF_CLK                                 | AE31                                        | I                      | SV <sub>DD</sub> | —      |  |
| SD2_IMP_CAL_TX                              | AM29                                        | Analog                 | SV <sub>DD</sub> | 19     |  |
| SD2_IMP_CAL_RX                              | AA26                                        | Analog                 | SV <sub>DD</sub> | 30     |  |
| SD2_PLL_TPD                                 | AF29                                        | 0                      | SV <sub>DD</sub> | 13, 17 |  |
| SD2_PLL_TPA                                 | AF31                                        | Analog                 | SV <sub>DD</sub> | 13, 18 |  |
| SD2_DLL_TPD                                 | AD29                                        | 0                      | SV <sub>DD</sub> | 13, 17 |  |
| SD2_DLL_TPA                                 | AD30                                        | Analog                 | SV <sub>DD</sub> | 13, 18 |  |
| Special Connection Requirement pins         |                                             |                        |                  |        |  |
| No Connects                                 | K24, K25, P28, P29, W26, W27, AD25,<br>AD26 | _                      | -                | 13     |  |
| Reserved                                    | H30, R32, V28, AG32                         | —                      | —                | 14     |  |
| Reserved                                    | H29, R31, W28, AG31                         | —                      | —                | 15     |  |
| Reserved                                    | AD24, AG26                                  | —                      | —                | 16     |  |
| Ethernet Miscellaneous Signals <sup>5</sup> |                                             |                        |                  |        |  |
| EC1_GTX_CLK125                              | AL23                                        | I                      | LV <sub>DD</sub> | 39     |  |
| EC2_GTX_CLK125                              | AM23                                        | I                      | TV <sub>DD</sub> | 39     |  |
| EC_MDC                                      | G31                                         | 0                      | OV <sub>DD</sub> | _      |  |
| EC_MDIO                                     | G32                                         | I/O                    | OV <sub>DD</sub> |        |  |
| eTSEC Port 1 Signals <sup>5</sup>           |                                             |                        |                  |        |  |

### Table 63. MPC8641 Signal Reference by Functional Block (continued)



Signal Listings

| Name <sup>1</sup>       | Package Pin Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pin Type                                           | Power Supply                                  | Notes         |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|---------------|
| XV <sub>DD</sub> _SRDS2 | AA25, AB28, AC26, AD27, AE25, AF28,<br>AH27, AK28, AM27, W24, Y27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Serial I/O<br>Power Supply<br>for SerDes<br>Port 2 | XV <sub>DD</sub> _SRDS2<br>1.05/1.1 V         | _             |
| V <sub>DD</sub> _Core0  | L12, L13, L14, M13, M15, N12, N14, P11,<br>P13, P15, R12, R14, T11, T13, T15, U12,<br>U14, V11, V13, V15, W12, W14, Y12, Y13,<br>Y15, AA12, AA14, AB13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Core 0 voltage<br>supply                           | V <sub>DD</sub> _Core0<br>0.95/1.05/1.1<br>V  | _             |
| V <sub>DD</sub> _Core1  | R16, R18, R20, T17, T19, T21, T23, U16,<br>U18, U22, V17, V19, V21, V23, W16, W18,<br>W20, W22, Y17, Y19, Y21, Y23, AA16,<br>AA18, AA20, AA22, AB23, AC24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Core 1 voltage<br>supply                           | V <sub>DD</sub> _Core1<br>0.95/1.05/1.1<br>V  | 12, <i>S1</i> |
| V <sub>DD</sub> _PLAT   | M16, M17, M18, N16, N20, N22, P17, P19,<br>P21, P23, R22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Platform supply voltage                            | V <sub>DD</sub> _PLAT<br>1.05/1.1 V           | _             |
| AV <sub>DD</sub> _Core0 | B20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Core 0 PLL<br>Supply                               | AV <sub>DD</sub> _Core0<br>0.95/1.05/1.1<br>V | _             |
| AV <sub>DD</sub> _Core1 | A19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Core 1 PLL<br>Supply                               | AV <sub>DD</sub> _Core1<br>0.95/1.05/1.1<br>V | 12, <i>S2</i> |
| AV <sub>DD</sub> _PLAT  | B19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Platform PLL<br>supply voltage                     | AV <sub>DD</sub> _PLAT<br>1.05/1.1 V          | _             |
| AV <sub>DD</sub> _LB    | A20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Local Bus PLL<br>supply voltage                    | AV <sub>DD</sub> _LB<br>1.05/1.1 V            | _             |
| AV <sub>DD</sub> _SRDS1 | P32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SerDes Port 1<br>PLL & DLL<br>Power Supply         | AV <sub>DD</sub> _SRDS1<br>1.05/1.1 V         | _             |
| AV <sub>DD</sub> _SRDS2 | AF32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SerDes Port 2<br>PLL & DLL<br>Power Supply         | AV <sub>DD</sub> _SRDS2<br>1.05/1.1 V         | _             |
| GND                     | C3, C6, C9, C12, C15, C23, C26, E5, E8,<br>E11, E14, E18, E25, E28, F3, G7, G10, G13,<br>G20, G23, G27, G30, H5, J3, J9, J12, J15,<br>J22, J25, K7, L5, L20, M3, M9, M12, N7,<br>N11, N13, N15, N17, N19, N21, N23, P5,<br>P12, P16, P20, P22, R3, R9, R11, R13, R15,<br>R17, R19, R21, R23, T7, T12, T14, T16,<br>T18, T20, T22, U5, U11,U13, U15, U17,<br>U19, U21, U23, V3, V9, V12, V14, V16, V18,<br>V22, W7, W11, W13, W15, W17, W19, W21,<br>W23, Y5, Y14, Y16, Y18, Y20, Y22, AA3,<br>AA9, AA13, AA15, AA17, AA19, AA21,<br>AA23, AB7, AB24, AC5, AC11, AD3, AD9,<br>AD15, AE7, AE13, AE18, AF5, AF11, AF21,<br>AF24, AG3, AG9, AH7, AH13, AJ5, AJ11,<br>AK3, AK9, AK15, AK19, AK23, AL7, AL13 | GND                                                | _                                             |               |

| Table 63. MPC8641 Signal Reference by Functional Block (contin | nued) |
|----------------------------------------------------------------|-------|
|----------------------------------------------------------------|-------|



Tyco Electronics800-522-6752Chip Coolers<sup>TM</sup>P.O. Box 3668Harrisburg, PA 17105-3668Internet: www.chipcoolers.comWakefield Engineering603-635-510233 Bridge St.Pelham, NH 03076Internet: www.wakefield.comInternet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost.

# 19.2.1 Internal Package Conduction Resistance

For the exposed-die packaging technology described in Table 71, the intrinsic conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance (the case is actually the top of the exposed silicon die)
- The die junction-to-board thermal resistance

Figure 60 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.



### Figure 60. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach material (or thermal interface material), and finally to the heat sink where it is removed by forced-air convection.

Because the silicon thermal resistance is quite small, the temperature drop in the silicon may be neglected for a first-order analysis. Thus the thermal interface material and the heat sink conduction/convective thermal resistances are the dominant terms.



## **19.2.2 Thermal Interface Materials**

A thermal interface material is recommended at the package-to-heat sink interface to minimize the thermal contact resistance. Figure 61 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare joint results in a thermal resistance approximately seven times greater than the thermal grease joint.

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 59). Therefore, synthetic grease offers the best thermal performance, considering the low interface pressure, and is recommended due to the high power dissipation of the MPC8641. Of course, the selection of any thermal interface material depends on many factors—thermal performance requirements, manufacturability, service temperature, dielectric properties, cost, and so on.



Figure 61. Thermal Performance of Select Thermal Interface Material

The board designer can choose between several types of thermal interface. Heat sink adhesive materials should be selected based on high conductivity and mechanical strength to meet equipment shock/vibration requirements. There are several commercially available thermal interfaces and adhesive materials provided by the following vendors:





Top View of Model (Not to Scale)

Figure 62. Recommended Thermal Model of MPC8641

# 19.2.4 Temperature Diode

The MPC8641 has a temperature diode on the microprocessor that can be used in conjunction with other system temperature monitoring devices (such as Analog Devices, ADT7461<sup>TM</sup>). These devices use the negative temperature coefficient of a diode operated at a constant current to determine the temperature of the microprocessor and its environment. It is recommended that each device be individually calibrated.

The following are the specifications of the MPC8641 on-board temperature diode:

 $V_{f} > 0.40 V$ 

 $V_{f} < 0.90 V$ 

An approximate value of the ideality may be obtained by calibrating the device near the expected operating temperature.

Ideality factor is defined as the deviation from the ideal diode equation:

$$I_{fw} = I_s \left[ e^{\frac{qV_f}{nKT}} - 1 \right]$$



Table 75 shows the parts that are available for ordering and their operating conditions.

| Part Offerings <sup>1</sup> | Operating Conditions                                                                       |
|-----------------------------|--------------------------------------------------------------------------------------------|
| MC8641Dxx1500KX             | Dual core<br>Max CPU speed = 1500 MHz,<br>Max DDR = 600 MHz<br>Core Voltage = 1.1 volts    |
| MC8641Dxx1333JX             | Dual core<br>Max CPU speed = 1333 MHz,<br>Max DDR = 533 MHz<br>Core Voltage = 1.05 volts   |
| MC8641Dxx1250HX             | Dual core<br>Max CPU speed = 1250 MHz,<br>Max DDR = 500 MHz<br>Core Voltage = 1.05 volts   |
| MC8641Dxx1000GX             | Dual core<br>Max CPU speed = 1000 MHz,<br>Max DDR = 400 MHz<br>Core Voltage = 1.05 volts   |
| MC8641Dxx1000NX             | Dual core<br>MAX CPU speed = 1000 MHz,<br>MAX DDR = 500 MHz<br>Core Voltage = 0.95 volts   |
| MC8641xx1500KX              | Single core<br>Max CPU speed = 1500 MHz,<br>Max DDR = 600 MHz<br>Core Voltage = 1.1 volts  |
| MC8641xx1333JX              | Single core<br>Max CPU speed = 1333 MHz,<br>Max DDR = 533 MHz<br>Core Voltage = 1.05 volts |
| MC8641xx1250HX              | Single core<br>Max CPU speed = 1250 MHz,<br>Max DDR = 500 MHz<br>Core Voltage = 1.05 volts |
| MC8641xx1000HX              | Single core<br>Max CPU speed = 1000 MHz,<br>Max DDR = 400 MHz<br>Core Voltage = 1.05 volts |
| MC8641xx1000NX              | Single core<br>Max CPU speed = 1000 MHz,<br>Max DDR = 500 MHz<br>Core Voltage = 0.95 volts |

### Table 75. Part Offerings and Operating Conditions

Note that the "xx" in the part marking represents the package option. The upper case "X" represents the revision letter. For more information see Table 74.

### MPC8641 and MPC8641D Integrated Host Processor Hardware Specifications, Rev. 3

1



#### How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and PowerQUICC, are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2008-2014 Freescale Semiconductor, Inc.



Document Number: MPC8641D Rev. 3 05/2014

