

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e600
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.333GHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	994-BCBGA, FCCBGA
Supplier Device Package	994-FCCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc8641hx1333jc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical Characteristics

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8641. The MPC8641 is currently targeted to these specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

Characteristic	Symbol	Absolute Maximum Value	Unit	Notes
Cores supply voltages	V _{DD} _Core0, V _{DD} _Core1	-0.3 to 1.21 V	V	2
Cores PLL supply	AV _{DD} _Core0, AV _{DD} _Core1	–0.3 to 1.21 V	V	_
SerDes Transceiver Supply (Ports 1 and 2)	SV _{DD}	–0.3 to 1.21 V	V	_
SerDes Serial I/O Supply Port 1	XV _{DD} _SRDS1	–0.3 to 1.21V	V	_
SerDes Serial I/O Supply Port 2	XV _{DD} _SRDS2	-0.3 to 1.21 V	V	
SerDes DLL and PLL supply voltage for Port 1 and Port 2	AV _{DD} _SRDS1, AV _{DD} _SRDS2	-0.3 to 1.21V	V	—
Platform Supply voltage	V _{DD} _PLAT	–0.3 to 1.21V	V	
Local Bus and Platform PLL supply voltage	AV _{DD} _LB, AV _{DD} _PLAT	-0.3 to 1.21V	V	—
DDR and DDR2 SDRAM I/O supply voltages	D1_GV _{DD,}	–0.3 to 2.75 V	V	3
	D2_GV _{DD}	–0.3 to 1.98 V	V	3
eTSEC 1 and 2 I/O supply voltage	LV _{DD}	–0.3 to 3.63 V	V	4
		-0.3 to 2.75 V	V	4
eTSEC 3 and 4 I/O supply voltage	TV _{DD}	-0.3 to 3.63 V	V	4
		-0.3 to 2.75 V	V	4
Local Bus, DUART, DMA, Multiprocessor Interrupts, System Control & Clocking, Debug, Test, Power management, I ² C, JTAG and Miscellaneous I/O voltage	OV _{DD}	–0.3 to 3.63 V	V	—

DDR and DDR2 SDRAM

Table 15 provides the recommended operating conditions for the DDR SDRAM component(s) when $Dn_GV_{DD}(typ) = 2.5 \text{ V}.$

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	D <i>n_</i> GV _{DD}	2.375	2.625	V	1
I/O reference voltage	Dn_MV _{REF}	$0.49 \times Dn_GV_{DD}$	$0.51 \times Dn_GV_{DD}$	V	2
I/O termination voltage	V _{TT}	D <i>n</i> _MV _{REF} – 0.04	D <i>n</i> _MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	D <i>n</i> _MV _{REF} + 0.15	D <i>n_</i> GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	D <i>n</i> _MV _{REF} - 0.15	V	—
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-16.2	—	mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	16.2	_	mA	—

Table	15 DDR	SDRAM DC	Electrical	Characteristics	for Dn	GV	(tvn)	- 251	/
lable	15. DDn	SURAW DC	Electrical	Characteristics			(LYP)	= 2.5	

Notes:

1. Dn_GV_{DD} is expected to be within 50 mV of the DRAM Dn_GV_{DD} at all times.

2. MV_{REF} is expected to be equal to $0.5 \times Dn_{GV_{DD}}$, and to track $Dn_{GV_{DD}}$ DC variations as measured at the receiver. Peak-to-peak noise on $Dn_{MV_{REF}}$ may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to Dn_MV_{REF}. This rail should track variations in the DC level of Dn_MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq D*n*_GV_{DD}.

Table 16 provides the DDR capacitance when $Dn \text{ } \text{GV}_{DD}$ (typ)=2.5 V.

Table 16. DDR SDRAM Capacitance for Dn_GV_{DD} (typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $Dn_GV_{DD} = 2.5 V \pm 0.125 V$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = Dn_GVDD/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 17 provides the current draw characteristics for MV_{REF} .

Table 17. Current Draw Characteristics for MV_{REF}

Parameter / Condition	Symbol	Min	Max	Unit	Note
Current draw for MV _{REF}	I _{MVREF}	—	500	μA	1

1. The voltage regulator for MV_{REF} must be able to supply up to 500 μA current.

DDR and DDR2 SDRAM

Figure 5 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (tDDKHMH).

Figure 5. Timing Diagram for tDDKHMH

Figure 6 shows the DDR SDRAM output timing diagram.

Figure 6. DDR SDRAM Output Timing Diagram

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

Table 24. GMII, MII, RMII, TBI and FIFO DC Electrical Characteristics (continued)

Parameter	Symbol	Min	Мах	Unit	Notes
Input low current (V _{IN} = GND)	Ι _{ΙL}	-600	_	μA	3

Notes:

¹ LV_{DD} supports eTSECs 1 and 2.

² TV_{DD} supports eTSECs 3 and 4.

³ The symbol V_{IN}, in this case, represents the LV_{IN} and TV_{IN} symbols referenced in Table 1 and Table 2.

Table 25. GMII, RGMII, RTBI, TBI and FIFO DC Electrical Characteristics

Parameters	Symbol	Min	Мах	Unit	Notes
Supply voltage 2.5 V	LV _{DD} /TV _{DD}	2.375	2.625	V	1,2
Output high voltage $(LV_{DD}/TV_{DD} = Min, I_{OH} = -1.0 mA)$	V _{OH}	2.00	_	V	_
Output low voltage ($LV_{DD}/TV_{DD} = Min, I_{OL} = 1.0 mA$)	V _{OL}	—	0.40	V	—
Input high voltage	V _{IH}	1.70	—	V	—
Input low voltage	V _{IL}	—	0.90	V	—
Input high current $(V_{IN} = LV_{DD}, V_{IN} = TV_{DD})$	IIH	—	10	μA	1, 2,3
Input low current (V _{IN} = GND)	I _{IL}	-15	—	μA	3

Note:

 $^1\,$ LV_{DD} supports eTSECs 1 and 2.

² TV_{DD} supports eTSECs 3 and 4.

³ Note that the symbol V_{IN}, in this case, represents the LV_{IN} and TV_{IN} symbols referenced in Table 1 and Table 2.

8.2 FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications

The AC timing specifications for FIFO, GMII, MII, TBI, RGMII, RMII and RTBI are presented in this section.

8.2.1 FIFO AC Specifications

The basis for the AC specifications for the eTSEC's FIFO modes is the double data rate RGMII and RTBI specifications, since they have similar performance and are described in a source-synchronous fashion like FIFO modes. However, the FIFO interface provides deliberate skew between the transmitted data and source clock in GMII fashion.

When the eTSEC is configured for FIFO modes, all clocks are supplied from external sources to the relevant eTSEC interface. That is, the transmit clock must be applied to the eTSEC*n*'s TSEC*n*_TX_CLK, while the receive clock must be applied to pin TSEC*n*_RX_CLK. The eTSEC internally uses the transmit

Ethernet Management Interface Electrical Characteristics

Table 39. MII Management AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} is 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDIO to MDC hold time	t _{MDDXKH}	0	_	—	ns	_
MDC rise time	t _{MDCR}	—	_	10	ns	4
MDC fall time	t _{MDHF}	—	-	10	ns	4

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and $t_{(first two letters of functional block)(reference)(state)(signal)(state)}$ for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

- 2. This parameter is dependent on the system clock speed. (The maximum frequency is the maximum platform frequency divided by 64.)
- 3. This parameter is dependent on the system clock speed. (That is, for a system clock of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a system clock of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz.)
- 4. Guaranteed by design.
- 5. t_{MPXCLK} is the platform (MPX) clock

Figure 23 provides the AC test load for eTSEC.

Figure 23. eTSEC AC Test Load

NOTE

Output will see a 50- Ω load since what it sees is the transmission line.

Figure 24 shows the MII management AC timing diagram.

Figure 24. MII Management Interface Timing Diagram

Table 45. I²C DC Electrical Characteristics (continued)

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Parameter	Symbol	Min	Max	Unit	Notes
Capacitance for each I/O pin	CI	_	10	pF	

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. Refer to the MPC8641 Integrated Host Processor Reference Manual for information on the digital filter used.

3. I/O pins will obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

12.2 I²C AC Electrical Specifications

Table 46 provides the AC timing parameters for the I^2C interfaces.

Table 46. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 45).

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL} 4	1.3	—	μS
High period of the SCL clock	t _{I2CH} 4	0.6	—	μS
Setup time for a repeated START condition	t _{I2SVKH} 4	0.6	—	μS
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL} 4	0.6	—	μS
Data setup time	t _{I2DVKH} 4	100	_	ns
Data input hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	0 ²	_	μs
Rise time of both SDA and SCL signals	t _{I2CR}	20 + 0.1 C _B ⁵	300	ns
Fall time of both SDA and SCL signals	t _{I2CF}	20 + 0.1 C _b ⁵	300	ns
Data output delay time	t _{I2OVKL}	—	0.9 ³	μS
Set-up time for STOP condition	^t I2PVKH	0.6	—	μS
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μS
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$		V

l²C

Table 46. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 45).

Parameter	Symbol ¹	Min	Мах	Unit
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	_	V

Note:

- 1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the low (L) state or hold time. Also, t_{12PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 2. As a transmitter, the MPC8641 provides a delay time of at least 300 ns for the SDA signal (referred to the Vihmin of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of Start or Stop condition. When MPC8641 acts as the I²C bus master while transmitting, MPC8641 drives both SCL and SDA. As long as the load on SCL and SDA are balanced, MPC8641 would not cause unintended generation of Start or Stop condition. Therefore, the 300 ns SDA output delay time is not a concern. If, under some rare condition, the 300 ns SDA output delay time is required for MPC8641 as transmitter, the following setting is recommended for the FDR bit field of the I2CFDR register to ensure both the desired I²C SCL clock frequency and SDA output delay time are achieved, assuming that the desired I²C SCL clock frequency is 400 KHz and the Digital Filter Sampling Rate Register (I2CDFSRR) is programmed with its default setting of 0x10 (decimal 16):

I ² C Source Clock Frequency	333 MHz	266 MHz	200 MHz	133 MHz
FDR Bit Setting	0x2A	0x05	0x26	0x00
Actual FDR Divider Selected	896	704	512	384
Actual I ² C SCL Frequency Generated	371 KHz	378 KHz	390 KHz	346 KHz

For the detail of I²C frequency calculation, refer to the application note AN2919 "Determining the I²C Frequency Divider Ratio for SCL". Note that the I²C Source Clock Frequency is half of the MPX clock frequency for MPC8641.

- 3. The maximum t_{I2DXKL} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. Guaranteed by design.
- 5. C_B = capacitance of one bus line in pF.

Figure 32 provides the AC test load for the I^2C .

Figure 36. I²C AC Test Load

Figure 43 shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It assumes that the DC levels of the clock driver chip is compatible with MPC8641D SerDes reference clock input's DC requirement.

Figure 43. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

Figure 44 shows the SerDes reference clock connection reference circuits for LVDS type clock driver. Since LVDS clock driver's common mode voltage is higher than the MPC8641D SerDes reference clock input's allowed range (100 to 400 mV), AC-coupled connection scheme must be used. It assumes the LVDS output driver features $50-\Omega$ termination resistor. It also assumes that the LVDS transmitter establishes its own common mode level without relying on the receiver or other external component.

Figure 44. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)

Figure 45 shows the SerDes reference clock connection reference circuits for LVPECL type clock driver. Since LVPECL driver's DC levels (both common mode voltages and output swing) are incompatible with

High-Speed Serial Interfaces (HSSI)

13.2.4 AC Requirements for SerDes Reference Clocks

The clock driver selected should provide a high quality reference clock with low phase noise and cycle-to-cycle jitter. Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50 Ω to match the transmission line and reduce reflections which are a source of noise to the system.

Table 47 describes some AC parameters common to PCI Express and Serial RapidIO protocols.

Table 47. SerDes Reference Clock Common AC Parameters

At recommended operating conditions with XV_{DD} SRDS1 or XV_{DD} SRDS2 = 1.1V ± 5% and 1.05V ± 5%.

Parameter	Symbol	Min	Max	Unit	Notes
Rising Edge Rate	Rise Edge Rate	1.0	4.0	V/ns	2, 3
Falling Edge Rate	Fall Edge Rate	1.0	4.0	V/ns	2, 3
Differential Input High Voltage	V _{IH}	+200		mV	2
Differential Input Low Voltage	V _{IL}	_	-200	mV	2
Rising edge rate (SD <i>n</i> _REF_CLK) to falling edge rate (SD <i>n</i> _REF_CLK) matching	Rise-Fall Matching	_	20	%	1, 4

Notes:

1. Measurement taken from single ended waveform.

2. Measurement taken from differential waveform.

3. Measured from –200 mV to +200 mV on the differential waveform (derived from SD*n*_REF_CLK minus SD*n*_REF_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 47.

4. Matching applies to rising edge rate for SD*n*_REF_CLK and falling edge rate for SD<u>n_REF_CLK</u>. It is measured using a 200 mV window centered on the median cross point where SDn_REF_CLK rising meets SD*n*_REF_CLK falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of SD*n*_REF_CLK should be compared to the Fall Edge Rate of SD*n*_REF_CLK, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 48.

Figure 47. Differential Measurement Points for Rise and Fall Time

Figure 48. Single-Ended Measurement Points for Rise and Fall Time Matching

The other detailed AC requirements of the SerDes Reference Clocks is defined by each interface protocol based on application usage. Refer to the following sections for detailed information:

- Section 14.2, "AC Requirements for PCI Express SerDes Clocks"
- Section 15.2, "AC Requirements for Serial RapidIO SDn_REF_CLK and SDn_REF_CLK"

13.3 SerDes Transmitter and Receiver Reference Circuits

Figure 49 shows the reference circuits for SerDes data lane's transmitter and receiver.

Figure 49. SerDes Transmitter and Receiver Reference Circuits

The DC and AC specification of SerDes data lanes are defined in each interface protocol section below (PCI Express or Serial Rapid IO) in this document based on the application usage:"

- Section 14, "PCI Express"
- Section 15, "Serial RapidIO"

Note that external AC Coupling capacitor is required for the above two serial transmission protocols with the capacitor value defined in specification of each protocol section.

14 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8641.

Symbol	Parameter	Min	Nom	Max	Units	Comments
T _{TX-EYE}	Minimum TX Eye Width	0.70	_	_	UI	The maximum Transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} = 0.3$ UI. See Notes 2 and 3.
T _{TX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median.	_	_	0.15	UI	Jitter is defined as the measurement variation of the crossing points ($V_{TX-DIFFp-p} = 0$ V) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2 and 3.
T _{TX-RISE} , T _{TX-FALL}	D+/D-TX Output Rise/Fall Time	0.125	_	_	UI	See Notes 2 and 5
V _{TX-CM-ACp}	RMS AC Peak Common Mode Output Voltage	_	_	20	mV	
V _{TX-CM-DC-ACTIVE-} IDLE-DELTA	Absolute Delta of DC Common Mode Voltage During L0 and Electrical Idle	0	_	100	mV	$eq:logical_lo$
V _{TX-CM} -DC-LINE-DELTA	Absolute Delta of DC Common Mode between D+ and D-	0	_	25	mV	$\begin{split} & V_{\text{TX-CM-DC-D+}} - V_{\text{TX-CM-DC-D-}} <= 25 \text{ mV} \\ &V_{\text{TX-CM-DC-D+}} = DC_{(\text{avg})} \text{ of } V_{\text{TX-D+}} \\ &V_{\text{TX-CM-DC-D-}} = DC_{(\text{avg})} \text{ of } V_{\text{TX-D-}} \\ &\text{See Note 2.} \end{split}$
V _{TX-IDLE} -DIFFp	Electrical Idle differential Peak Output Voltage	0	_	20	mV	$V_{TX-IDLE-DIFFp} = V_{TX-IDLE-D+} - V_{TX-IDLE-D-} \le 20 \text{ mV}$ See Note 2.
V _{TX-RCV-DETECT}	The amount of voltage change allowed during Receiver Detection		_	600	mV	The total amount of voltage change that a transmitter can apply to sense whether a low impedance Receiver is present. See Note 6.
V _{TX-DC-CM}	The TX DC Common Mode Voltage	0	_	3.6	V	The allowed DC Common Mode voltage under any conditions. See Note 6.
I _{TX-SHORT}	TX Short Circuit Current Limit	—	_	90	mA	The total current the Transmitter can provide when shorted to its ground
T _{TX-IDLE-MIN}	Minimum time spent in Electrical Idle	50			UI	Minimum time a Transmitter must be in Electrical Idle Utilized by the Receiver to start looking for an Electrical Idle Exit after successfully receiving an Electrical Idle ordered set

Figure 52. Compliance Test/Measurement Load

15 Serial RapidIO

This section describes the DC and AC electrical specifications for the RapidIO interface of the MPC8641, for the LP-Serial physical layer. The electrical specifications cover both single and multiple-lane links. Two transmitter types (short run and long run) on a single receiver are specified for each of three baud rates, 1.25, 2.50, and 3.125 GBaud.

Two transmitter specifications allow for solutions ranging from simple board-to-board interconnect to driving two connectors across a backplane. A single receiver specification is given that will accept signals from both the short run and long run transmitter specifications.

The short run transmitter specifications should be used mainly for chip-to-chip connections on either the same printed circuit board or across a single connector. This covers the case where connections are made to a mezzanine (daughter) card. The minimum swings of the short run specification reduce the overall power used by the transceivers.

The long run transmitter specifications use larger voltage swings that are capable of driving signals across backplanes. This allows a user to drive signals across two connectors and a backplane. The specifications allow a distance of at least 50 cm at all baud rates.

All unit intervals are specified with a tolerance of +/-100 ppm. The worst case frequency difference between any transmit and receive clock will be 200 ppm.

To ensure interoperability between drivers and receivers of different vendors and technologies, AC coupling at the receiver input must be used.

15.1 DC Requirements for Serial RapidIO SD*n*_REF_CLK and SD*n*_REF_CLK

For more information, see Section 13.2, "SerDes Reference Clocks."

15.2 AC Requirements for Serial RapidIO SD*n*_REF_CLK and SD*n*_REF_CLK

Table 51 lists AC requirements.

Table 54. Short Run Transmitter AC Timing Specifications—3.125 GBaud (continued)

Characteristic	Symbol	Ra	nge	Unit	Notes
ondraotenstio	Cymbol	Min	Мах	onn	Notes
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	320	320	ps	+/– 100 ppm

Table 55. Long Run Transmitter AC Timing Specifications—1.25 GBaud

Characteristic	Symbol	Range		Unit	Notes	
Characteristic	Min Max		Мах			
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair	
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	—	
Deterministic Jitter	J _D	—	0.17	UI p-p	—	
Total Jitter	J _T	—	0.35	UI p-p	—	
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit Interval	UI	800	800	ps	+/– 100 ppm	

Table 56. Long Run Transmitter AC Timing Specifications—2.5 GBaud

Characteristic	Symbol	Range		Unit	Notes	
Characteristic	Min Max		Мах			
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair	
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	—	
Deterministic Jitter	J _D	—	0.17	UI p-p	—	
Total Jitter	J _T	—	0.35	UI p-p	—	
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit Interval	UI	400	400	ps	+/– 100 ppm	

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
TSEC3_TX_EN	AH19	0	TV _{DD}	36
TSEC3_TX_ER	AH17	0	TV _{DD}	_
TSEC3_TX_CLK	AH18	I	TV _{DD}	40
TSEC3_GTX_CLK	AG19	0	TV _{DD}	41
TSEC3_CRS	AE15	I/O	TV _{DD}	37
TSEC3_COL	AF15	I	TV _{DD}	_
TSEC3_RXD[0:7]	AJ17, AE16, AH16, AH14, AJ19, AH15, AG16, AE19	I	TV _{DD}	
TSEC3_RX_DV	AG15	I	TV _{DD}	_
TSEC3_RX_ER	AF16	I	TV _{DD}	_
TSEC3_RX_CLK	AJ18	I	TV _{DD}	40
	eTSEC Port 4 Signa	als ⁵		
TSEC4_TXD[0:3]	AC18, AC16, AD18, AD17	0	TV _{DD}	6
TSEC4_TXD[4]	AD16	0	TV _{DD}	25
TSEC4_TXD[5:7]	AB18, AB17, AB16	0	TV _{DD}	6
TSEC4_TX_EN	AF17	0	TV _{DD}	36
TSEC4_TX_ER	AF19	0	TV _{DD}	—
TSEC4_TX_CLK	AF18	I	TV _{DD}	40
TSEC4_GTX_CLK	AG17	0	TV _{DD}	41
TSEC4_CRS	AB14	I/O	TV _{DD}	37
TSEC4_COL	AC13	I	TV _{DD}	_
TSEC4_RXD[0:7]	AG14, AD13, AF13, AD14, AE14, AB15, AC14, AE17	I	TV _{DD}	
TSEC4_RX_DV	AC15	I	TV _{DD}	_
TSEC4_RX_ER	AF14	I	TV _{DD}	_
TSEC4_RX_CLK	AG13	I	TV _{DD}	40
	Local Bus Signals	s ⁵	· · · · · ·	
LAD[0:31]	A30, E29, C29, D28, D29, H25, B29, A29, C28, L22, M22, A28, C27, H26, G26, B27, B26, A27, E27, G25, D26, E26, G24, F27, A26, A25, C25, H23, K22, D25, F25, H22	I/O	OV _{DD}	6
LDP[0:3]	A24, E24, C24, B24	I/O	OV _{DD}	6, 22
LA[27:31]	J21, K21, G22, F24, G21	0	OV _{DD}	6, 22
LCS[0:4]	A22, C22, D23, E22, A23	0	OV _{DD}	7
LCS[5]/DMA_DREQ[2]	B23	0	OV _{DD}	7, 9, 10

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes		
IRQ[9]/DMA_DREQ[3]	B30	I	OV _{DD}	10		
IRQ[10]/DMA_DACK[3]	C30	I	OV _{DD}	9, 10		
IRQ[11]/DMA_DDONE[3]	D30	I	OV _{DD}	9, 10		
IRQ_OUT	J26	0	OV _{DD}	7, 11		
DUART Signals ⁵						
UART_SIN[0:1]	B32, C32	I	OV _{DD}	_		
UART_SOUT[0:1]	D31, A32	0	OV _{DD}	_		
UART_CTS[0:1]	A31, B31	I	OV _{DD}	—		
UART_RTS[0:1]	C31, E30	0	OV _{DD}	_		
	l ² C Signals					
IIC1_SDA	A16	I/O	OV _{DD}	7, 11		
IIC1_SCL	B17	I/O	OV _{DD}	7, 11		
IIC2_SDA	A21	I/O	OV _{DD}	7, 11		
IIC2_SCL	B21	I/O	OV _{DD}	7, 11		
System Control Signals ⁵						
HRESET	B18	Ι	OV _{DD}	—		
HRESET_REQ	K18	0	OV _{DD}			
SMI_0	L15	Ι	OV _{DD}			
SMI_1	L16	Ι	OV _{DD}	12, <i>S4</i>		
SRESET_0	C20	-	OV _{DD}	—		
SRESET_1	C21	I	OV _{DD}	12, <i>S4</i>		
CKSTP_IN	L18	I	OV _{DD}	—		
CKSTP_OUT	L17	0	OV _{DD}	7, 11		
READY/TRIG_OUT	J13	0	OV _{DD}	10, 25		
	Debug Signals ⁵					
TRIG_IN	J14	I	OV _{DD}	—		
TRIG_OUT/READY	J13	0	OV _{DD}	10, 25		
D1_MSRCID[0:1]/ LB_SRCID[0:1]	F15, K15	0	OV _{DD}	6, 10		
D1_MSRCID[2]/ LB_SRCID[2]	K14	0	OV _{DD}	10, 25		
D1_MSRCID[3:4]/ LB_SRCID[3:4]	H15, G15	0	OV _{DD}	10		
D2_MSRCID[0:4]	E16, C17, F16, H16, K16	0	OV _{DD}	_		

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Signal Listings

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes				
D1_MDVAL/LB_DVAL	J16	0	OV _{DD}	10				
D2_MDVAL	D19	0	OV _{DD}	_				
	Power Management Signals ⁵							
ASLEEP	C19	0	OV _{DD}	_				
	System Clocking Signals ⁵							
SYSCLK	G16	I	OV _{DD}	_				
RTC	K17	I	OV _{DD}	32				
CLK_OUT	B16	0	OV _{DD}	23				
	Test Signals ⁵							
LSSD_MODE	C18	I	OV _{DD}	26				
TEST_MODE[0:3]	C16, E17, D18, D16	I	OV _{DD}	26				
	JTAG Signals ⁵							
ТСК	H18	I	OV _{DD}	_				
TDI	J18	I	OV _{DD}	24				
TDO	G18	0	OV _{DD}	23				
TMS	F18	I	OV _{DD}	24				
TRST	A17	I	OV _{DD}	24				
	Miscellaneous ⁵							
Spare	J17	—	—	13				
GPOUT[0:7]/ TSEC1_TXD[0:7]	AF25, AC23, AG24, AG23, AE24, AE23, AE22, AD22	0	OV _{DD}	6, 10				
GPIN[0:7]/ TSEC1_RXD[0:7]	AL25, AL24, AK26, AK25, AM26, AF26, AH24, AG25	I	OV _{DD}	10				
GPOUT[8:15]/ TSEC2_TXD[0:7]	AB20, AJ23, AJ22, AD19, AH23, AH21, AG22, AG21	0	OV _{DD}	10				
GPIN[8:15]/ TSEC2_RXD[0:7]	AL22, AK22, AM21, AH20, AG20, AF20, AF23, AF22	I	OV _{DD}	10				
	Additional Analog Si	gnals						
TEMP_ANODE	AA11	Thermal	—	_				
TEMP_CATHODE	Y11	Thermal	—	_				
	Sense, Power and GND	Signals						
SENSEV _{DD} Core0	M14	V _{DD} Core0 sensing pin	—	31				
SENSEV _{DD} Core1	U20	V _{DD} _Core1 sensing pin	—	12,31, <i>S1</i>				

Top View of Model (Not to Scale)

Figure 62. Recommended Thermal Model of MPC8641

19.2.4 Temperature Diode

The MPC8641 has a temperature diode on the microprocessor that can be used in conjunction with other system temperature monitoring devices (such as Analog Devices, ADT7461TM). These devices use the negative temperature coefficient of a diode operated at a constant current to determine the temperature of the microprocessor and its environment. It is recommended that each device be individually calibrated.

The following are the specifications of the MPC8641 on-board temperature diode:

 $V_{f} > 0.40 V$

 $V_{f} < 0.90 V$

An approximate value of the ideality may be obtained by calibrating the device near the expected operating temperature.

Ideality factor is defined as the deviation from the ideal diode equation:

$$\mathbf{I}_{\text{fw}} = \mathbf{I}_{s} \left[\mathbf{e}^{\frac{\mathbf{q}\mathbf{V}_{f}}{\mathbf{n}\mathbf{K}\mathbf{T}}} - \mathbf{1} \right]$$

Another useful equation is:

$$\mathbf{V}_{H} - \mathbf{V}_{L} = \mathbf{n} \frac{\mathbf{KT}}{\mathbf{q}} \left[\mathbf{In} \frac{\mathbf{I}_{H}}{\mathbf{I}_{L}} \right]$$

Where:

 $I_{fw} = Forward current$ $I_s = Saturation current$ $V_d = Voltage at diode$ $V_f = Voltage forward biased$ $V_H = Diode voltage while I_H is flowing$ $V_L = Diode voltage while I_L is flowing$ $I_H = Larger diode bias current$ $I_L = Smaller diode bias current$ $q = Charge of electron (1.6 \times 10^{-19} \text{ C})$ n = Ideality factor (normally 1.0) $K = Boltzman's constant (1.38 \times 10^{-23} \text{ Joules/K})$ T = Temperature (Kelvins)

The ratio of I_H to I_L is usually selected to be 10:1. The above simplifies to the following:

$$V_{H}-V_{L}=~1.986\times10^{-4}\times nT$$

Solving for T, the equation becomes:

$$\mathbf{nT} = \frac{\mathbf{V}_{\mathsf{H}} - \mathbf{V}_{\mathsf{L}}}{1.986 \times 10^{-4}}$$

Local Bus - If parity is not used, tie LDP[0:3] to ground via a 4.7 k Ω resistor, tie LPBSE to OV_{DD} via a 4.7 k Ω resistor (pull-up resistor). For systems which boot from Local Bus (GPCM)-controlled flash, a pullup on LGPL4 is required.

SerDes - Receiver lanes configured for PCI Express are allowed to be disconnected (as would occur when a PCI Express slot is connected but not populated). Directions for terminating the SerDes signals is discussed in Section 20.5.1, "Guidelines for High-Speed Interface Termination."

20.5.1 Guidelines for High-Speed Interface Termination

20.5.1.1 SerDes Interface

The high-speed SerDes interface can be disabled through the POR input cfg_io_ports[0:3] and through the DEVDISR register in software. If a SerDes port is disabled through the POR input the user can not enable it through the DEVDISR register in software. However, if a SerDes port is enabled through the POR input the user can disable it through the DEVDISR register in software. Disabling a SerDes port through software should be done on a temporary basis. Power is always required for the SerDes interface, even if the port is disabled through either mechanism. Table 72 describes the possible enabled/disabled scenarios for a SerDes port. The termination recommendations must be followed for each port.

	Disabled through POR input	Enabled through POR input
Enabled through DEVDISR	SerDes port is disabled (and cannot be enabled through DEVDISR) Complete termination required (Reference Clock not required)	SerDes port is enabled Partial termination may be required ¹ (Reference Clock is required)
Disabled through DEVDISR	SerDes port is disabled (through POR input) Complete termination required (Reference Clock not required)	SerDes port is disabled after software disables port Same termination requirements as when the port is enabled through POR input ² (Reference Clock is required)

Notes:

- ¹ Partial Termination when a SerDes port is enabled through both POR input and DEVDISR is determined by the SerDes port mode. If the port is in x8 PCI Express mode, no termination is required because all pins are being used. If the port is in x1/x2/x4 PCI Express mode, termination is required on the unused pins. If the port is in x4 Serial RapidIO mode termination is required on the unused pins.
- ² If a SerDes port is enabled through the POR input and then disabled through DEVDISR, no hardware changes are required. Termination of the SerDes port should follow what is required when the port is enabled through both POR input and DEVDISR. See Note 1 for more information.

If the high-speed SerDes port requires complete or partial termination, the unused pins should be terminated as described in this section.

The following pins must be left unconnected (floating):

- SD*n*_TX[7:0]
- $\overline{\text{SD}n_\text{TX}}[7:0]$

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and PowerQUICC, are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2008-2014 Freescale Semiconductor, Inc.

Document Number: MPC8641D Rev. 3 05/2014

