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Electrical Characteristics

Junction temperature range TJ 0 to 105 °C —

Notes: 
1. Core 1 characteristics apply only to MPC8641D
2. If two separate power supplies are used for VDD_Core0 and VDD_Core1, they must be at the same nominal voltage and the 

individual power supplies must be tracked and kept within 100 mV of each other during normal run time.
3. Caution: Dn_MVIN must meet the overshoot/undershoot requirements for Dn_GVDD as shown in Figure 2.
4. Caution: L/TVIN must meet the overshoot/undershoot requirements for L/TVDD as shown in Figure 2 during regular run time. 
5. Caution: OVIN must meet the overshoot/undershoot requirements for OVDD as shown in Figure 2 during regular run time. 
6.  Timing limitations for M,L,T,O)VIN and Dn_MVREF during regular run time is provided in Figure 2
7. Applies to devices marked with a core frequency of 1333 MHz and below. Refer to Table 74 Part Numbering Nomenclature 

to determine if the device has been marked for a core frequency of 1333 MHz and below.
8. Applies to devices marked with a core frequency above 1333 MHz. Refer to Table 74 Part Numbering Nomenclature to 

determine if the device has been marked for a core frequency above 1333 MHz.
9. The 2.5 V ± 125 mV range is for DDR and 1.8 V ± 90 mV range is for DDR2.
10. See Section 8.2, “FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications,” for details on the recommended 

operating conditions per protocol.
11. The PCI Express interface of the device is expected to receive signals from 0.175 to 1.2 V. For more information refer to 

Section 14.4.3, “Differential Receiver (RX) Input Specifications.”
12. Applies to Part Number MC8641xxx1000NX only. VDD_Coren = 0.95 V and VDD_PLAT = 1.05 V devices. Refer to Table 74 

Part Numbering Nomenclature to determine if the device has been marked for VDD_Coren = 0.95 V.
13. This voltage is the input to the filter discussed in Section 20.2, “Power Supply Design and Sequencing,” and not necessarily 

the voltage at the AVDD_Coren pin, which may be reduced from VDD_Coren by the filter.

Table 2. Recommended Operating Conditions (continued)

Characteristic Symbol
Recommended 

Value
Unit Notes
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Electrical Characteristics

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8641.

Figure 2. Overshoot/Undershoot Voltage for Dn_M/O/L/TVIN

The MPC8641 core voltage must always be provided at nominal VDD_Coren (See Table 2 for actual 
recommended core voltage). Voltage to the processor interface I/Os are provided through separate sets of 
supply pins and must be provided at the voltages shown in Table 2. The input voltage threshold scales with 
respect to the associated I/O supply voltage. OVDD and L/TVDD based receivers are simple CMOS I/O 
circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses a 
single-ended differential receiver referenced to each externally supplied Dn_MVREF signal (nominally set 
to Dn_GVDD/2) as is appropriate for the (SSTL-18 and SSTL-25) electrical signaling standards. 

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

L/T/Dn_G/O/X/SVDD + 20%

L/T/Dn_G/O/X/SVDD

L/T/Dn_G/O/X/SVDD + 5%

of tCLK
1

1. tCLK references clocks for various functional blocks as follows:

VIH

VIL

Note:

DDRn = 10% of Dn_MCK period
eTSECn = 10% of ECn_GTX_CLK125 period
Local Bus = 10% of LCLK[0:2] period
I2C = 10% of SYSCLK
JTAG = 10% of SYSCLK
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Electrical Characteristics

Figure 3 illustrates the Power Up sequence as described above.

Figure 3. MPC8641 Power-Up and Reset Sequence
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100 µs Platform PLL

 

Asserted for
100 μs after

Power Supply Ramp Up 2

Notes: 
1. Dotted waveforms correspond to optional supply values for a specified power supply. See Table 2.
2. The recommended maximum ramp up time for power supplies is 20 milliseconds.
3. Refer to Section 5, “RESET Initialization” for additional information on PLL relock and reset signal 

assertion timing requirements.
4. Refer to Table 11 for additional information on reset configuration pin setup timing requirements. In 

addition see Figure 68 regarding HRESET and JTAG connection details including TRST.
5. e600 PLL relock time is 100 microseconds maximum plus 255 MPX_clk cycles.
6.  Stable PLL configuration signals are required as stable SYSCLK is applied. All other POR configuration 

inputs are required 4 SYSCLK cycles before HRESET negation and are valid at least 2 SYSCLK cycles 
after HRESET has negated (hold requirement). See Section 5, “RESET Initialization” for more 
information on setup and hold time of reset configuration signals.

7.  VDD_PLAT, AVDD_PLAT must strictly reach 90% of their recommended voltage before the rail for 
Dn_GVDD, and Dn_MVREF reaches 10% of their recommended voltage.

8.  SYSCLK must be driven only AFTER the power for the various power supplies is stable.
9.  In device sleep mode, the reset configuration signals for DRAM types (TSEC2_TXD[4],TSEC2_TX_ER) 

must be valid BEFORE HRESET is asserted.

e6005

AVDD_LB, SVDD, XVDD_SRDSn

VDD_Coren, AVDD_Coren
AVDD_SRDSn 

1.8 V

Dn_GVDD, = 1.8/2.5 V
Dn_MVREF

If

SYSCLK 8  (not drawn to scale)

Relock Time 3

 

L/TVDD=2.5 V 1

7

PLL

9

SYSCLK is functional 4

Cycles Setup and hold Time 6
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Input Clocks

NOTE
The phase between the output clocks TSEC1_GTX_CLK and 
TSEC2_GTX_CLK (ports 1 and 2) is no more than 100 ps. The phase 
between the output clocks TSEC3_GTX_CLK and TSEC4_GTX_CLK 
(ports 3 and 4) is no more than 100 ps.

4.4 Platform Frequency Requirements for PCI-Express and Serial 
RapidIO

The MPX platform clock frequency must be considered for proper operation of the high-speed PCI 
Express and Serial RapidIO interfaces as described below.

For proper PCI Express operation, the MPX clock frequency must be greater than or equal to:
527 MHz x (PCI-Express link width)

16 / (1 + cfg_plat_freq)

Note that at MPX = 400 MHz, cfg_plat_freq = 0 and at MPX > 400 MHz, cfg_plat_freq = 1. Therefore, 
when operating PCI Express in x8 link width, the MPX platform frequency must be 400 MHz with 
cfg_plat_freq = 0 or greater than or equal to 527 MHz with cfg_plat_freq = 1.

For proper Serial RapidIO operation, the MPX clock frequency must be greater than or equal to:
2 × (0.8512) × (Serial RapidIO interface frequency) × (Serial RapidIO link width)

64

4.5 Other Input Clocks
For information on the input clocks of other functional blocks of the platform such as SerDes, and eTSEC, 
see the specific section of this document.

ECn_GTX_CLK125 duty cycle
GMII, TBI

1000Base-T for RGMII, RTBI

tG125H/tG125
45
47

—
55
53

% 1, 2

Notes:
1. Timing is guaranteed by design and characterization.
2. ECn_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. 

ECn_GTX_CLK125 duty cycle can be loosened from 47/53% as long as the PHY device can tolerate the duty cycle 
generated by the eTSEC GTX_CLK. See Section 8.2.6, “RGMII and RTBI AC Timing Specifications,” for duty cycle 
for 10Base-T and 100Base-T reference clock.

3. ±100 ppm tolerance on ECn_GTX_CLK125 frequency

Table 10. ECn_GTX_CLK125 AC Timing Specifications (continued)

Parameter/Condition Symbol Min Typical Max Unit Notes
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Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

clock to synchronously generate transmit data and outputs an echoed copy of the transmit clock back out 
onto the TSECn_GTX_CLK pin (while transmit data appears on TSECn_TXD[7:0], for example). It is 
intended that external receivers capture eTSEC transmit data using the clock on TSECn_GTX_CLK as a 
source-synchronous timing reference. Typically, the clock edge that launched the data can be used, since 
the clock is delayed by the eTSEC to allow acceptable set-up margin at the receiver. Note that there is 
relationship between the maximum FIFO speed and the platform speed. For more information see 
Section 18.4.2, “Platform to FIFO Restrictions.”

NOTE
The phase between the output clocks TSEC1_GTX_CLK and 
TSEC2_GTX_CLK (ports 1 and 2) is no more than 100 ps. The phase 
between the output clocks TSEC3_GTX_CLK and TSEC4_GTX_CLK 
(ports 3 and 4) is no more than 100 ps.

A summary of the FIFO AC specifications appears in Table 26 and Table 27.
Table 26. FIFO Mode Transmit AC Timing Specification

At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol Min Typ Max Unit

TX_CLK, GTX_CLK clock period (GMII mode) tFIT 7.0 8.0 100 ns

TX_CLK, GTX_CLK clock period (Encoded mode) tFIT 5.3 8.0 100 ns

TX_CLK, GTX_CLK duty cycle tFITH/tFIT 45 50 55 %

TX_CLK, GTX_CLK peak-to-peak jitter tFITJ — — 250 ps

Rise time TX_CLK (20%–80%) tFITR — — 0.75 ns

Fall time TX_CLK (80%–20%) tFITF — — 0.75 ns

FIFO data TXD[7:0], TX_ER, TX_EN setup time to GTX_CLK tFITDV 2.0 — — ns

GTX_CLK to FIFO data TXD[7:0], TX_ER, TX_EN hold time tFITDX 0.5 — 3.0 ns

Table 27. FIFO Mode Receive AC Timing Specification
At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol Min Typ Max Unit

RX_CLK clock period (GMII mode) tFIR
1

1 ±100 ppm tolerance on RX_CLK frequency

7.0 8.0 100 ns

RX_CLK clock period (Encoded mode) tFIR 
1 5.3 8.0 100 ns

RX_CLK duty cycle tFIRH/tFIR 45 50 55 %

RX_CLK peak-to-peak jitter tFIRJ — — 250 ps

Rise time RX_CLK (20%–80%) tFIRR — — 0.75 ns

Fall time RX_CLK (80%–20%) tFIRF — — 0.75 ns

RXD[7:0], RX_DV, RX_ER setup time to RX_CLK tFIRDV 1.5 — — ns

RXD[7:0], RX_DV, RX_ER hold time to RX_CLK tFIRDX 0.5 — — ns
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Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

Timing diagrams for FIFO appear in Figure 8 and Figure 9.
.

Figure 8. FIFO Transmit AC Timing Diagram

Figure 9. FIFO Receive AC Timing Diagram

8.2.2 GMII AC Timing Specifications
This section describes the GMII transmit and receive AC timing specifications.

8.2.2.1 GMII Transmit AC Timing Specifications

Table 28 provides the GMII transmit AC timing specifications.
Table 28. GMII Transmit AC Timing Specifications

At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

GMII data TXD[7:0], TX_ER, TX_EN setup time tGTKHDV 2.5 — — ns

GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay  tGTKHDX 0.5 — 5.0 ns

GTX_CLK data clock rise time (20%-80%) tGTXR
2 — — 1.0 ns

tFIT

tFITH

tFITF

tFITDX

TXD[7:0]
TX_EN

GTX_CLK

TX_ER

tFITDV

tFITR

tFIR

tFIRH
tFIRF

tFIRR

RX_CLK

RXD[7:0]
RX_DV
RX_ER

valid data

tFIRDXtFIRDV



MPC8641 and MPC8641D Integrated Host Processor Hardware Specifications, Rev. 3

38 Freescale Semiconductor
 

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2.4.2 TBI Receive AC Timing Specifications

Table 33 provides the TBI receive AC timing specifications.

Figure 17 shows the TBI receive AC timing diagram.

Figure 17. TBI Receive AC Timing Diagram

Table 33. TBI Receive AC Timing Specifications
At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

PMA_RX_CLK[0:1] clock period tTRX
3 — 16.0 — ns

PMA_RX_CLK[0:1] skew tSKTRX 7.5 — 8.5 ns

PMA_RX_CLK[0:1] duty cycle tTRXH/tTRX 40 — 60 %

RCG[9:0] setup time to rising PMA_RX_CLK tTRDVKH 2.5 — — ns

RCG[9:0] hold time to rising PMA_RX_CLK tTRDXKH 1.5 — — ns

PMA_RX_CLK[0:1] clock rise time (20%-80%) tTRXR
2 0.7 — 2.4 ns

PMA_RX_CLK[0:1] clock fall time (80%-20%) tTRXF
2 0.7 — 2.4 ns

Note:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) 

for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTRDVKH symbolizes TBI receive 
timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the tTRX clock reference (K) going 
to the high (H) state or setup time. Also, tTRDXKH symbolizes TBI receive timing (TR) with respect to the time data input signals 
(D) went invalid (X) relative to the tTRX clock reference (K) going to the high (H) state. Note that, in general, the clock reference 
symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of 
tTRX represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: 
R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).

2. Guaranteed by design.
3. ±100 ppm tolerance on PMA_RX_CLK[0:1] frequency

PMA_RX_CLK1

RCG[9:0]

tTRX

tTRXH

tTRXR

tTRXF

tTRDVKH

PMA_RX_CLK0

tTRDXKH

tTRDVKH

tTRDXKH

tSKTRX

tTRXH

Valid Data Valid Data
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Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2.7 RMII AC Timing Specifications
This section describes the RMII transmit and receive AC timing specifications.

8.2.7.1 RMII Transmit AC Timing Specifications

The RMII transmit AC timing specifications are in Table 36.

Figure 20 shows the RMII transmit AC timing diagram.

Figure 20. RMII Transmit AC Timing Diagram

Table 36. RMII Transmit AC Timing Specifications
At recommended operating conditions with L/TVDD of 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

REF_CLK clock period tRMT — 20.0 — ns

REF_CLK duty cycle tRMTH/tRMT 35 50 65 %

REF_CLK peak-to-peak jitter tRMTJ — — 250 ps

Rise time REF_CLK (20%–80%) tRMTR 1.0 — 2.0 ns

Fall time REF_CLK (80%–20%) tRMTF 1.0 — 2.0 ns

REF_CLK to RMII data TXD[1:0], TX_EN delay tRMTDX 1.0 — 10.0 ns

Note:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) 

for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII 
transmit timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in 
general, the clock reference symbol representation is based on two to three letters representing the clock of a particular 
functional. For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter 
convention is used with the appropriate letter: R (rise) or F (fall).

REF_CLK

TXD[1:0]

tRMTDX

tRMT

tRMTH

tRMTR

tRMTF

TX_EN
TX_ER
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10 Local Bus
This section describes the DC and AC electrical specifications for the local bus interface of the MPC8641.

10.1 Local Bus DC Electrical Characteristics
Table 40 provides the DC electrical characteristics for the local bus interface operating at OVDD = 3.3 V 
DC.

10.2 Local Bus AC Electrical Specifications
Table 41 describes the timing parameters of the local bus interface at OVDD = 3.3 V with PLL enabled. 
For information about the frequency range of local bus see Section 18.1, “Clock Ranges.”

Table 40. Local Bus DC Electrical Characteristics (3.3 V DC)

Parameter Symbol Min Max Unit

High-level input voltage VIH 2 OVDD + 0.3 V

Low-level input voltage VIL –0.3 0.8 V

Input current 
(VIN 

1 = 0 V or VIN = OVDD)
IIN — ±5 μA

High-level output voltage 
(OVDD = min, IOH = –2 mA)

VOH OVDD – 0.2 — V

Low-level output voltage 
(OVDD = min, IOL = 2 mA)

VOL — 0.2 V

Note:
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Table 41. Local Bus Timing Parameters (OVDD = 3.3 V)m - PLL Enabled

Parameter Symbol 1 Min Max Unit Notes

Local bus cycle time tLBK 7.5 — ns 2

Local Bus Duty Cycle tLBKH/tLBK 45 55 % —

LCLK[n] skew to LCLK[m] or LSYNC_OUT tLBKSKEW — 150 ps 7, 8

Input setup to local bus clock (except LGTA/LUPWAIT) tLBIVKH1 1.8 — ns 3, 4

LGTA/LUPWAIT input setup to local bus clock tLBIVKH2 1.7 — ns 3, 4

Input hold from local bus clock (except LGTA/LUPWAIT) tLBIXKH1 1.0 — ns 3, 4

LGTA/LUPWAIT input hold from local bus clock tLBIXKH2 1.0 — ns 3, 4

LALE output transition to LAD/LDP output transition (LATCH hold 
time)

tLBOTOT 1.5 — ns 6

Local bus clock to output valid (except LAD/LDP and LALE) tLBKHOV1 — 2.0 ns —

Local bus clock to data valid for LAD/LDP tLBKHOV2 — 2.2 ns —

Local bus clock to address valid for LAD tLBKHOV3 — 2.3 ns —
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Figure 32 provides the AC test load for TDO and the boundary-scan outputs.

Figure 32. AC Test Load for the JTAG Interface

Figure 33 provides the JTAG clock input timing diagram.

Figure 33. JTAG Clock Input Timing Diagram

Output hold times:
Boundary-scan data

TDO
tJTKLDX
tJTKLOX

30
30

—
—

ns
5, 6

JTAG external clock to output high impedance:
Boundary-scan data

TDO
tJTKLDZ
tJTKLOZ

3
3

19
9

ns
5, 6

Notes:
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question. 

The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 32). 
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) 
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG 
device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference 
(K) going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input 
signals (D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, the clock 
reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall 
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
4. Non-JTAG signal input timing with respect to tTCLK.
5. Non-JTAG signal output timing with respect to tTCLK.
6. Guaranteed by design.

Table 44. JTAG AC Timing Specifications (Independent of SYSCLK) 1 (continued)
At recommended operating conditions (see Table 3).

Parameter Symbol 2 Min Max Unit Notes

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

JTAG

tJTKHKL tJTGR

External Clock VMVMVM

tJTG tJTGF

VM = Midpoint Voltage (OVDD/2)
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I2C

Figure 34 provides the TRST timing diagram.

Figure 34. TRST Timing Diagram

Figure 35 provides the boundary-scan timing diagram.

Figure 35. Boundary-Scan Timing Diagram

12 I2C 
This section describes the DC and AC electrical characteristics for the I2C interfaces of the MPC8641.

12.1 I2C DC Electrical Characteristics
Table 45 provides the DC electrical characteristics for the I2C interfaces.

Table 45. I2C DC Electrical Characteristics
At recommended operating conditions with OVDD of 3.3 V ± 5%.

Parameter Symbol Min Max Unit Notes

Input high voltage level VIH 0.7 × OVDD OVDD + 0.3 V —

Input low voltage level VIL –0.3 0.3 × OVDD V —

Low level output voltage VOL 0 0.2 × OVDD V 1

Pulse width of spikes which must be suppressed by 
the input filter

tI2KHKL 0 50 ns 2

Input current each I/O pin (input voltage is between 
0.1 × OVDD and 0.9 × OVDD(max)

II –10 10 μA 3

TRST

VM = Midpoint Voltage (OVDD/2)

VM VM

tTRST

VM = Midpoint Voltage (OVDD/2)

VM VM

tJTDVKH
tJTDXKH

Boundary
Data Outputs

Boundary
Data Outputs

JTAG
External Clock

Boundary
Data Inputs

Output Data Valid

tJTKLDX

tJTKLDZ

tJTKLDV

Input
Data Valid

Output Data Valid
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PCI Express

14.5 Receiver Compliance Eye Diagrams
The RX eye diagram in Figure 51 is specified using the passive compliance/test measurement load (see 
Figure 52) in place of any real PCI Express RX component.

Note: In general, the minimum Receiver eye diagram measured with the compliance/test measurement 
load (see Figure 52) will be larger than the minimum Receiver eye diagram measured over a range of 
systems at the input Receiver of any real PCI Express component. The degraded eye diagram at the input 
Receiver is due to traces internal to the package as well as silicon parasitic characteristics which cause the 
real PCI Express component to vary in impedance from the compliance/test measurement load. The input 
Receiver eye diagram is implementation specific and is not specified. RX component designer should 

TRX-IDLE-DET-DIFF-

ENTERTIME

Unexpected 
Electrical Idle 
Enter Detect 
Threshold 
Integration Time

— — 10 ms An unexpected Electrical Idle (VRX-DIFFp-p < 
VRX-IDLE-DET-DIFFp-p) must be recognized no 
longer than TRX-IDLE-DET-DIFF-ENTERING to 
signal an unexpected idle condition.

LTX-SKEW Total Skew — — 20 ns Skew across all lanes on a Link. This includes 
variation in the length of SKP ordered set (for 
example, COM and one to five Symbols) at 
the RX as well as any delay differences 
arising from the interconnect itself.

Notes:
1. No test load is necessarily associated with this value.
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 52 should be used as 

the RX device when taking measurements (also refer to the Receiver compliance eye diagram shown in Figure 51). If the clocks 
to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used 
as a reference for the eye diagram.

3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and 
interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in 
which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 
250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point 
in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the 
clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must 
be used as the reference for the eye diagram. 

4. The Receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to 
300 mV and the D- line biased to -300 mV and a common mode return loss greater than or equal to 6 dB (no bias required) 
over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference 
impedance for return loss measurements for is 50 Ω to ground for both the D+ and D- line (that is, as measured by a Vector 
Network Analyzer with 50 ohm probes - see Figure 52). Note: that the series capacitors CTX is optional for the return loss 
measurement.

5. Impedance during all LTSSM states. When transitioning from a Fundamental Reset to Detect (the initial state of the LTSSM) 
there is a 5 ms transition time before Receiver termination values must be met on all un-configured Lanes of a Port.

6. The RX DC Common Mode Impedance that exists when no power is present or Fundamental Reset is asserted. This helps 
ensure that the Receiver Detect circuit will not falsely assume a Receiver is powered on when it is not. This term must be 
measured at 300 mV above the RX ground.

7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm 
using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated 
data.

Table 50. Differential Receiver (RX) Input Specifications (continued)

Symbol Parameter Min Nom Max Units Comments
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Figure 52. Compliance Test/Measurement Load

15 Serial RapidIO
This section describes the DC and AC electrical specifications for the RapidIO interface of the MPC8641, 
for the LP-Serial physical layer. The electrical specifications cover both single and multiple-lane links. 
Two transmitter types (short run and long run) on a single receiver are specified for each of three baud 
rates, 1.25, 2.50, and 3.125 GBaud.

Two transmitter specifications allow for solutions ranging from simple board-to-board interconnect to 
driving two connectors across a backplane. A single receiver specification is given that will accept signals 
from both the short run and long run transmitter specifications.

The short run transmitter specifications should be used mainly for chip-to-chip connections on either the 
same printed circuit board or across a single connector. This covers the case where connections are made 
to a mezzanine (daughter) card. The minimum swings of the short run specification reduce the overall 
power used by the transceivers.

The long run transmitter specifications use larger voltage swings that are capable of driving signals across 
backplanes. This allows a user to drive signals across two connectors and a backplane. The specifications 
allow a distance of at least 50 cm at all baud rates.

All unit intervals are specified with a tolerance of +/– 100 ppm. The worst case frequency difference 
between any transmit and receive clock will be 200 ppm.

To ensure interoperability between drivers and receivers of different vendors and technologies, AC 
coupling at the receiver input must be used.

15.1 DC Requirements for Serial RapidIO SDn_REF_CLK and 
SDn_REF_CLK 

For more information, see Section 13.2, “SerDes Reference Clocks.”

15.2 AC Requirements for Serial RapidIO SDn_REF_CLK and 
SDn_REF_CLK

Table 51 lists AC requirements.
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15.4 Equalization
With the use of high speed serial links, the interconnect media will cause degradation of the signal at the 
receiver. Effects such as Inter-Symbol Interference (ISI) or data dependent jitter are produced. This loss 
can be large enough to degrade the eye opening at the receiver beyond what is allowed in the specification. 
To negate a portion of these effects, equalization can be used. The most common equalization techniques 
that can be used are:

• A passive high pass filter network placed at the receiver. This is often referred to as passive 
equalization.

• The use of active circuits in the receiver. This is often referred to as adaptive equalization.

15.5 Explanatory Note on Transmitter and Receiver Specifications
AC electrical specifications are given for transmitter and receiver. Long run and short run interfaces at 
three baud rates (a total of six cases) are described.

The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified 
in Clause 47 of IEEE 802.3ae-2002.

XAUI has similar application goals to serial RapidIO, as described in Section 8.1. The goal of this standard 
is that electrical designs for serial RapidIO can reuse electrical designs for XAUI, suitably modified for 
applications at the baud intervals and reaches described herein.

15.6 Transmitter Specifications
LP-Serial transmitter electrical and timing specifications are stated in the text and tables of this section.

The differential return loss, S11, of the transmitter in each case shall be better than
• –10 dB for (Baud Frequency)/10 < Freq(f) < 625 MHz, and
• –10 dB + 10log(f/625 MHz) dB for 625 MHz ≤ Freq(f) ≤ Baud Frequency

The reference impedance for the differential return loss measurements is 100 Ohm resistive. Differential 
return loss includes contributions from on-chip circuitry, chip packaging and any off-chip components 
related to the driver. The output impedance requirement applies to all valid output levels.

It is recommended that the 20%–80% rise/fall time of the transmitter, as measured at the transmitter output, 
in each case have a minimum value 60 ps.

It is recommended that the timing skew at the output of an LP-Serial transmitter between the two signals 
that comprise a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB and 15 ps at 3.125 GB.
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Figure 56. Receiver Input Compliance Mask

15.9 Measurement and Test Requirements
Since the LP-Serial electrical specification are guided by the XAUI electrical interface specified in Clause 
47 of IEEE 802.3ae-2002, the measurement and test requirements defined here are similarly guided by 
Clause 47. In addition, the CJPAT test pattern defined in Annex 48A of IEEE 802.3ae-2002 is specified as 
the test pattern for use in eye pattern and jitter measurements. Annex 48B of IEEE 802.3ae-2002 is 
recommended as a reference for additional information on jitter test methods.

15.9.1 Eye Template Measurements
For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point 
at (Baud Frequency)/1667 is applied to the jitter. The data pattern for template measurements is the 

Table 62. Receiver Input Compliance Mask Parameters Exclusive of Sinusoidal Jitter

Receiver Type VDIFFmin (mV) VDIFFmax (mV) A (UI) B (UI)

1.25 GBaud 100 800 0.275 0.400

2.5 GBaud 100 800 0.275 0.400

3.125 GBaud 100 800 0.275 0.400
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Continuous Jitter Test Pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial 
link shall be active in both the transmit and receive directions, and opposite ends of the links shall use 
asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane 
implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The 
amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10-12. 
The eye pattern shall be measured with AC coupling and the compliance template centered at 0 Volts 
differential. The left and right edges of the template shall be aligned with the mean zero crossing points of 
the measured data eye. The load for this test shall be 100 Ω resistive +/– 5% differential to 2.5 GHz. 

15.9.2 Jitter Test Measurements
For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (Baud 
Frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter 
Test Pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial link shall 
be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous 
clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations 
shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured 
with AC coupling and at 0 Volts differential. Jitter measurement for the transmitter (or for calibration of a 
jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that 
described in Annex 48B of IEEE 802.3ae.

15.9.3 Transmit Jitter
Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive +/– 5% 
differential to 2.5 GHz. 

15.9.4 Jitter Tolerance
Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first 
producing the sum of deterministic and random jitter defined in Section 8.6 and then adjusting the signal 
amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template 
shown in Figure 8-4 and Table 8-11. Note that for this to occur, the test signal must have vertical waveform 
symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero 
crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using 
a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The 
required sinusoidal jitter specified in Section 8.6 is then added to the signal and the test load is replaced 
by the receiver being tested. 
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18 Clocking
This section describes the PLL configuration of the MPC8641. Note that the platform clock is identical to 
the MPX clock.

18.1 Clock Ranges
Table 64 provides the clocking specifications for the processor cores and Table 65 provides the clocking 
specifications for the memory bus. Table 66 provides the clocking for the Platform/MPX bus and Table 67 
provides the clocking for the Local bus.

37.This pin is only an output in FIFO mode when used as Rx Flow Control.
38.This pin functions as cfg_dram_type[0 or 1] at reset and MUST BE VALID BEFORE HRESET ASSERTION in device sleep 

mode.
39. Should be pulled to ground if unused (such as in FIFO, MII and RMII modes).
40. See Section 18.4.2, “Platform to FIFO Restrictions” for clock speed limitations for this pin when used in FIFO mode.
41. The phase between the output clocks TSEC1_GTX_CLK and TSEC2_GTX_CLK (ports 1 and 2) is no more than 100 ps. 

The phase between the output clocks TSEC3_GTX_CLK and TSEC4_GTX_CLK (ports 3 and 4) is no more than 100 ps.
42. For systems which boot from Local Bus (GPCM)-controlled flash, a pullup on LGPL4 is required.

Special Notes for Single Core Device:  
S1. Solder ball for this signal will not be populated in the single core package.
S2. The PLL filter from VDD_Core1 to AVDD_Core1 should be removed. AVDD_Core1 should be pulled to ground with a weak 

(2–10 kΩ) resistor. See Section 20.2.1, “PLL Power Supply Filtering” for more details.
S3. This pin should be pulled to GND for the single core device.
S4. No special requirement for this pin on single core device. Pin should be tied to power supply as directed for dual core.

Table 64. Processor Core Clocking Specifications

Characteristic

Maximum Processor Core Frequency

Unit Notes1000 MHz 1250MHz 1333MHz  1500 MHz

Min Max Min Max Min Max Min Max

e600 core processor frequency 800 1000 800 1250 800 1333 800 1500 MHz 1, 2

Notes:
1. Caution: The MPX clock to SYSCLK ratio and e600 core to MPX clock ratio settings must be chosen such that the resulting 

SYSCLK frequency, e600 (core) frequency, and MPX clock frequency do not exceed their respective maximum or minimum 
operating frequencies. Refer to Section 18.2, “MPX to SYSCLK PLL Ratio,” and Section 18.3, “e600 to MPX clock PLL Ratio,” 
for ratio settings.

2. The minimum e600 core frequency is based on the minimum platform clock frequency of 400 MHz.

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Name1 Package Pin Number Pin Type Power Supply Notes
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19.2.2 Thermal Interface Materials
A thermal interface material is recommended at the package-to-heat sink interface to minimize the thermal 
contact resistance. Figure 61 shows the thermal performance of three thin-sheet thermal-interface 
materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function 
of contact pressure. As shown, the performance of these thermal interface materials improves with 
increasing contact pressure. The use of thermal grease significantly reduces the interface thermal 
resistance. That is, the bare joint results in a thermal resistance approximately seven times greater than the 
thermal grease joint. 

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board 
(see Figure 59). Therefore, synthetic grease offers the best thermal performance, considering the low 
interface pressure, and is recommended due to the high power dissipation of the MPC8641. Of course, the 
selection of any thermal interface material depends on many factors—thermal performance requirements, 
manufacturability, service temperature, dielectric properties, cost, and so on.

Figure 61. Thermal Performance of Select Thermal Interface Material

The board designer can choose between several types of thermal interface. Heat sink adhesive materials 
should be selected based on high conductivity and mechanical strength to meet equipment shock/vibration 
requirements. There are several commercially available thermal interfaces and adhesive materials 
provided by the following vendors:
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example, assuming a Ti of 30°C, a Tr of 5°C, a package RθJC = 0.1, and a typical power consumption (Pd) 
of 43.4 W, the following expression for Tj is obtained:

Die-junction temperature: Tj = 30°C + 5°C + (0.1°C/W + 0.2°C/W + θsa) × 43.4 W

For this example, a Rθsavalue of 1.32 °C/W or less is required to maintain the die junction temperature 
below the maximum value of Table 2.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common 
figure-of-merit used for comparing the thermal performance of various microelectronic packaging 
technologies, one should exercise caution when only using this metric in determining thermal management 
because no single parameter can adequately describe three-dimensional heat flow. The final die-junction 
operating temperature is not only a function of the component-level thermal resistance, but the 
system-level design and its operating conditions. In addition to the component's power consumption, a 
number of factors affect the final operating die-junction temperature—airflow, board population (local 
heat flux of adjacent components), heat sink efficiency, heat sink placement, next-level interconnect 
technology, system air temperature rise, altitude, and so on.

Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC8641 thermal model is shown in Figure 62. Four cuboids are used 
to represent this device. The die is modeled as 12.4x15.3 mm at a thickness of 0.86 mm. See Section 3, 
“Power Characteristics” for power dissipation details. The substrate is modeled as a single block 
33x33x1.2 mm with orthotropic conductivity: 13.5 W/(m • K) in the xy-plane and 5.3 W/(m • K) in the 
z-direction. The die is centered on the substrate. The bump/underfill layer is modeled as a collapsed 
thermal resistance between the die and substrate with a conductivity of 5.3 W/(m • K) in the thickness 
dimension of 0.07 mm. Because the bump/underfill is modeled with zero physical dimension (collapsed 
height), the die thickness was slightly enlarged to provide the correct height. The C5 solder layer is 
modeled as a cuboid with dimensions 33x33x0.4 mm and orthotropic thermal conductivity of 0.034 W/(m 
• K) in the xy-plane and 9.6 W/(m • K) in the z-direction. An LGA solder layer would be modeled as a 
collapsed thermal resistance with thermal conductivity of 9.6W/(m • K) and an effective height of 0.1 mm. 
The thermal model uses approximate dimensions to reduce grid. Please refer to the case outline for actual 
dimensions.
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