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1.1 Key Features
The following lists an overview of the MPC8641 key feature set:

• Major features of the e600 core are as follows:
— High-performance, 32-bit superscalar microprocessor that implements the PowerPC ISA
— Eleven independent execution units and three register files

– Branch processing unit (BPU) 
– Four integer units (IUs) that share 32 GPRs for integer operands
– 64-bit floating-point unit (FPU)
– Four vector units and a 32-entry vector register file (VRs)
– Three-stage load/store unit (LSU)

— Three issue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and three instructions, 
respectively, in a cycle. 

— Rename buffers
— Dispatch unit
— Completion unit
— Two separate 32-Kbyte instruction and data level 1 (L1) caches 
— Integrated 1-Mbyte, eight-way set-associative unified instruction and data level 2 (L2) cache 

with ECC
— 36-bit real addressing
— Separate memory management units (MMUs) for instructions and data
— Multiprocessing support features 
— Power and thermal management
— Performance monitor 
— In-system testability and debugging features 
— Reliability and serviceability

• MPX coherency module (MCM)
— Ten local address windows plus two default windows
— Optional low memory offset mode for core 1 to allow for address disambiguation

• Address translation and mapping units (ATMUs)
— Eight local access windows define mapping within local 36-bit address space
— Inbound and outbound ATMUs map to larger external address spaces
— Three inbound windows plus a configuration window on PCI Express
— Four inbound windows plus a default window on serial RapidIO 
— Four outbound windows plus default translation for PCI Express 
— Eight outbound windows plus default translation for serial RapidIO with segmentation and 

sub-segmentation support
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• DDR memory controllers
— Dual 64-bit memory controllers (72-bit with ECC)
— Support of up to a 300-MHz clock rate and a 600-MHz DDR2 SDRAM
— Support for DDR, DDR2 SDRAM
— Up to 16 Gbytes per memory controller
— Cache line and page interleaving between memory controllers. 

• Serial RapidIO interface unit
— Supports RapidIO Interconnect Specification, Revision 1.2 
— Both 1x and 4x LP-Serial link interfaces 
— Transmission rates of 1.25-, 2.5-, and 3.125-Gbaud (data rates of 1.0-, 2.0-, and 2.5-Gbps) per 

lane
— RapidIO–compliant message unit
— RapidIO atomic transactions to the memory controller

• PCI Express interface
— PCI Express 1.0a compatible
— Supports x1, x2, x4, and x8 link widths
— 2.5 Gbaud, 2.0 Gbps lane

• Four enhanced three-speed Ethernet controllers (eTSECs)
— Three-speed support (10/100/1000 Mbps)
— Four IEEE 802.3, 802.3u, 802.3x, 802.3z, 802.3ac, 802.3ab-compatible controllers
— Support of the following physical interfaces: MII, RMII, GMII, RGMII, TBI, and RTBI
— Support a full-duplex FIFO mode for high-efficiency ASIC connectivity
— TCP/IP off-load
— Header parsing
— Quality of service support
— VLAN insertion and deletion
— MAC address recognition
— Buffer descriptors are backward compatible with PowerQUICC II and PowerQUICC III 

programming models
— RMON statistics support
— MII management interface for control and status

• Programmable interrupt controller (PIC)
— Programming model is compliant with the OpenPIC architecture
— Supports 16 programmable interrupt and processor task priority levels
— Supports 12 discrete external interrupts and 48 internal interrupts
— Eight global high resolution timers/counters that can generate interrupts
— Allows processors to interrupt each other with 32b messages
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Figure 3 illustrates the Power Up sequence as described above.

Figure 3. MPC8641 Power-Up and Reset Sequence
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assertion timing requirements.
4. Refer to Table 11 for additional information on reset configuration pin setup timing requirements. In 
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6.  Stable PLL configuration signals are required as stable SYSCLK is applied. All other POR configuration 

inputs are required 4 SYSCLK cycles before HRESET negation and are valid at least 2 SYSCLK cycles 
after HRESET has negated (hold requirement). See Section 5, “RESET Initialization” for more 
information on setup and hold time of reset configuration signals.
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3 Power Characteristics
The power dissipation for the dual core MPC8641D device is shown in Table 4.

Table 4. MPC8641D Power Dissipation (Dual Core)

Power Mode
Core Frequency 

(MHz)
Platform 

Frequency (MHz)

VDD_Coren, 
VDD_PLAT 

(Volts)

Junction 
Temperature 

Power
(Watts)

Notes

Typical

1500 MHz 600 MHz 1.1 V

65 oC 32.1 1, 2

Thermal 
105 oC

43.4 1, 3

Maximum 49.9 1, 4

Typical

1333 MHz 533 MHz 1.05 V

65 oC 23.9 1, 2

Thermal 
105 oC

30.0 1, 3

Maximum 34.1 1, 4

Typical
1250 MHz

500 MHz
1.05 V

65 oC 23.9 1, 2

Thermal 
105 oC

30.0 1, 3

Maximum 34.1 1, 4

Typical
1000 MHz 400 MHz 1.05 V

65 oC 23.9 1, 2

Thermal 
105 oC

30.0 1, 3

Maximum 34.1 1, 4

Typical
1000 MHz 500 MHz 0.95 V,

1.05 V

65 oC 16.2 1, 2, 5

Thermal 
105 oC

21.8 1, 3, 5

Maximum  25.0 1, 4, 5

Notes:
1. These values specify the power consumption at nominal voltage and apply to all valid processor bus frequencies and 

configurations. The values do not include power dissipation for I/O supplies.
2. Typical power is an average value measured at the nominal recommended core voltage (VDD_Coren) and 65°C junction 

temperature (see Table 2)while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz with one core 
at 100% efficiency and the second core at 65% efficiency. 

3. Thermal power is the average power measured at nominal core voltage (VDD_Coren) and maximum operating junction 
temperature (see Table 2) while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz on both 
cores and a typical workload on platform interfaces.

4. Maximum power is the maximum power measured at nominal core voltage (VDD_Coren) and maximum operating junction 
temperature (see Table 2) while running a test which includes an entirely L1-cache-resident, contrived sequence of 
instructions which keep all the execution units maximally busy on both cores.

5. These power numbers are for Part Number MC8641Dxx1000NX only. VDD_Coren = 0.95 V and VDD_PLAT = 1.05 V.
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NOTE
The phase between the output clocks TSEC1_GTX_CLK and 
TSEC2_GTX_CLK (ports 1 and 2) is no more than 100 ps. The phase 
between the output clocks TSEC3_GTX_CLK and TSEC4_GTX_CLK 
(ports 3 and 4) is no more than 100 ps.

4.4 Platform Frequency Requirements for PCI-Express and Serial 
RapidIO

The MPX platform clock frequency must be considered for proper operation of the high-speed PCI 
Express and Serial RapidIO interfaces as described below.

For proper PCI Express operation, the MPX clock frequency must be greater than or equal to:
527 MHz x (PCI-Express link width)

16 / (1 + cfg_plat_freq)

Note that at MPX = 400 MHz, cfg_plat_freq = 0 and at MPX > 400 MHz, cfg_plat_freq = 1. Therefore, 
when operating PCI Express in x8 link width, the MPX platform frequency must be 400 MHz with 
cfg_plat_freq = 0 or greater than or equal to 527 MHz with cfg_plat_freq = 1.

For proper Serial RapidIO operation, the MPX clock frequency must be greater than or equal to:
2 × (0.8512) × (Serial RapidIO interface frequency) × (Serial RapidIO link width)

64

4.5 Other Input Clocks
For information on the input clocks of other functional blocks of the platform such as SerDes, and eTSEC, 
see the specific section of this document.

ECn_GTX_CLK125 duty cycle
GMII, TBI

1000Base-T for RGMII, RTBI

tG125H/tG125
45
47

—
55
53

% 1, 2

Notes:
1. Timing is guaranteed by design and characterization.
2. ECn_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. 

ECn_GTX_CLK125 duty cycle can be loosened from 47/53% as long as the PHY device can tolerate the duty cycle 
generated by the eTSEC GTX_CLK. See Section 8.2.6, “RGMII and RTBI AC Timing Specifications,” for duty cycle 
for 10Base-T and 100Base-T reference clock.

3. ±100 ppm tolerance on ECn_GTX_CLK125 frequency

Table 10. ECn_GTX_CLK125 AC Timing Specifications (continued)

Parameter/Condition Symbol Min Typical Max Unit Notes
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8 Ethernet: Enhanced Three-Speed Ethernet (eTSEC), 
MII Management

This section provides the AC and DC electrical characteristics for enhanced three-speed and MII 
management.

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) 
(10/100/1Gb Mbps)—GMII/MII/TBI/RGMII/RTBI/RMII Electrical 
Characteristics

The electrical characteristics specified here apply to all gigabit media independent interface (GMII), media 
independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface 
(RGMII), reduced ten-bit interface (RTBI), and reduced media independent interface (RMII) signals 
except management data input/output (MDIO) and management data clock (MDC). The RGMII and RTBI 
interfaces are defined for 2.5 V, while the GMII and TBI interfaces can be operated at 3.3 or 2.5 V. Whether 
the GMII or TBI interface is operated at 3.3 or 2.5 V, the timing is compatible with IEEE 802.3. The 
RGMII and RTBI interfaces follow the Reduced Gigabit Media-Independent Interface (RGMII) 
Specification Version 1.3 (12/10/2000). The RMII interface follows the RMII Consortium RMII 
Specification Version 1.2 (3/20/1998). The electrical characteristics for MDIO and MDC are specified in 
Section 9, “Ethernet Management Interface Electrical Characteristics.”

8.1.1 eTSEC DC Electrical Characteristics
All GMII, MII, TBI, RGMII, RMII and RTBI drivers and receivers comply with the DC parametric 
attributes specified in Table 24 and Table 25. The potential applied to the input of a GMII, MII, TBI, 
RGMII, RMII or RTBI receiver may exceed the potential of the receiver’s power supply (that is, a GMII 
driver powered from a 3.6-V supply driving VOH into a GMII receiver powered from a 2.5-V supply). 
Tolerance for dissimilar GMII driver and receiver supply potentials is implicit in these specifications. The 
RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC 
EIA/JESD8-5.

Table 24. GMII, MII, RMII, TBI and FIFO DC Electrical Characteristics

Parameter Symbol Min Max Unit Notes

Supply voltage 3.3 V LVDD
TVDD

3.135 3.465 V 1, 2 

Output high voltage
(LVDD/TVDD = Min, IOH = –4.0 mA)

VOH 2.40 — V —

Output low voltage
(LVDD/TVDD = Min, IOL = 4.0 mA)

VOL — 0.50 V —

Input high voltage VIH 2.0 — V —

Input low voltage VIL — 0.90 V —

Input high current
(VIN

 = LVDD, VIN = TVDD)
IIH — 40 μA 1, 2,3 



MPC8641 and MPC8641D Integrated Host Processor Hardware Specifications, Rev. 3

30 Freescale Semiconductor
 

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2 FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing 
Specifications

The AC timing specifications for FIFO, GMII, MII, TBI, RGMII, RMII and RTBI are presented in this 
section. 

8.2.1 FIFO AC Specifications
The basis for the AC specifications for the eTSEC’s FIFO modes is the double data rate RGMII and RTBI 
specifications, since they have similar performance and are described in a source-synchronous fashion like 
FIFO modes. However, the FIFO interface provides deliberate skew between the transmitted data and 
source clock in GMII fashion.

When the eTSEC is configured for FIFO modes, all clocks are supplied from external sources to the 
relevant eTSEC interface. That is, the transmit clock must be applied to the eTSECn’s TSECn_TX_CLK, 
while the receive clock must be applied to pin TSECn_RX_CLK. The eTSEC internally uses the transmit 

Input low current
(VIN

 = GND)
IIL –600 — μA 3

Notes:

1 LVDD supports eTSECs 1 and 2.
2 TVDD supports eTSECs 3 and 4.
3 The symbol VIN, in this case, represents the LVIN and TVIN symbols referenced in Table 1 and Table 2.

Table 25. GMII, RGMII, RTBI, TBI and FIFO DC Electrical Characteristics

Parameters Symbol Min Max Unit Notes

Supply voltage 2.5 V LVDD/TVDD 2.375 2.625 V 1,2

1 LVDD supports eTSECs 1 and 2.
2 TVDD supports eTSECs 3 and 4.

Output high voltage
(LVDD/TVDD = Min, IOH = –1.0 mA)

VOH 2.00 — V —

Output low voltage
(LVDD/TVDD = Min, IOL = 1.0 mA)

VOL — 0.40 V —

Input high voltage VIH 1.70 — V —

Input low voltage VIL — 0.90 V —

Input high current
(VIN

 = LVDD, VIN = TVDD)
IIH — 10 μA 1, 2,3

3 Note that the symbol VIN, in this case, represents the LVIN and TVIN symbols referenced in Table 1 and Table 2.

Input low current
(VIN = GND)

IIL –15 — μA 3

Note:

Table 24. GMII, MII, RMII, TBI and FIFO DC Electrical Characteristics (continued)

Parameter Symbol Min Max Unit Notes
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Timing diagrams for FIFO appear in Figure 8 and Figure 9.
.

Figure 8. FIFO Transmit AC Timing Diagram

Figure 9. FIFO Receive AC Timing Diagram

8.2.2 GMII AC Timing Specifications
This section describes the GMII transmit and receive AC timing specifications.

8.2.2.1 GMII Transmit AC Timing Specifications

Table 28 provides the GMII transmit AC timing specifications.
Table 28. GMII Transmit AC Timing Specifications

At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

GMII data TXD[7:0], TX_ER, TX_EN setup time tGTKHDV 2.5 — — ns

GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay  tGTKHDX 0.5 — 5.0 ns

GTX_CLK data clock rise time (20%-80%) tGTXR
2 — — 1.0 ns

tFIT

tFITH

tFITF

tFITDX

TXD[7:0]
TX_EN

GTX_CLK

TX_ER

tFITDV

tFITR

tFIR

tFIRH
tFIRF

tFIRR

RX_CLK

RXD[7:0]
RX_DV
RX_ER

valid data

tFIRDXtFIRDV
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8.2.4.2 TBI Receive AC Timing Specifications

Table 33 provides the TBI receive AC timing specifications.

Figure 17 shows the TBI receive AC timing diagram.

Figure 17. TBI Receive AC Timing Diagram

Table 33. TBI Receive AC Timing Specifications
At recommended operating conditions with L/TVDD of 3.3 V ± 5% and 2.5 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

PMA_RX_CLK[0:1] clock period tTRX
3 — 16.0 — ns

PMA_RX_CLK[0:1] skew tSKTRX 7.5 — 8.5 ns

PMA_RX_CLK[0:1] duty cycle tTRXH/tTRX 40 — 60 %

RCG[9:0] setup time to rising PMA_RX_CLK tTRDVKH 2.5 — — ns

RCG[9:0] hold time to rising PMA_RX_CLK tTRDXKH 1.5 — — ns

PMA_RX_CLK[0:1] clock rise time (20%-80%) tTRXR
2 0.7 — 2.4 ns

PMA_RX_CLK[0:1] clock fall time (80%-20%) tTRXF
2 0.7 — 2.4 ns

Note:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) 

for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTRDVKH symbolizes TBI receive 
timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the tTRX clock reference (K) going 
to the high (H) state or setup time. Also, tTRDXKH symbolizes TBI receive timing (TR) with respect to the time data input signals 
(D) went invalid (X) relative to the tTRX clock reference (K) going to the high (H) state. Note that, in general, the clock reference 
symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of 
tTRX represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: 
R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).

2. Guaranteed by design.
3. ±100 ppm tolerance on PMA_RX_CLK[0:1] frequency

PMA_RX_CLK1

RCG[9:0]

tTRX

tTRXH

tTRXR

tTRXF

tTRDVKH

PMA_RX_CLK0

tTRDXKH

tTRDVKH

tTRDXKH

tSKTRX

tTRXH

Valid Data Valid Data



MPC8641 and MPC8641D Integrated Host Processor Hardware Specifications, Rev. 3

44 Freescale Semiconductor
 

Ethernet Management Interface Electrical Characteristics

Figure 23 provides the AC test load for eTSEC.

Figure 23. eTSEC AC Test Load

NOTE
Output will see a 50-Ω load since what it sees is the transmission line.

Figure 24 shows the MII management AC timing diagram.

Figure 24. MII Management Interface Timing Diagram

MDIO to MDC hold time tMDDXKH 0 — — ns —

MDC rise time tMDCR — — 10 ns 4

MDC fall time tMDHF — — 10 ns 4

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX 
symbolizes management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are 
invalid (X) or data hold time. Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input 
signals (D) reach the valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For 
rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This parameter is dependent on the system clock speed. (The maximum frequency is the maximum platform frequency 
divided by 64.)

3. This parameter is dependent on the system clock speed. (That is, for a system clock of 267 MHz, the maximum frequency 
is 8.3 MHz and the minimum frequency is 1.2 MHz; for a system clock of 375 MHz, the maximum frequency is 11.7 MHz 
and the minimum frequency is 1.7 MHz.)

4. Guaranteed by design.
5. tMPXCLK is the platform (MPX) clock

Table 39. MII Management AC Timing Specifications (continued)
At recommended operating conditions with OVDD is 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit Notes

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

MDC

tMDDXKH

tMDC

tMDCH

tMDCR

tMDCF

tMDDVKH

tMDKHDX

MDIO

MDIO

(Input)

(Output)
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The Differential Input Voltage (or Swing) of the receiver, VID, is defined as the difference of the 
two complimentary input voltages: VSDn_RX – VSDn_RX. The VID value can be either positive or 
negative.

4. Differential Peak Voltage, VDIFFp
The peak value of the differential transmitter output signal or the differential receiver input signal 
is defined as Differential Peak Voltage, VDIFFp = |A – B| Volts.

5. Differential Peak-to-Peak, VDIFFp-p
Since the differential output signal of the transmitter and the differential input signal of the receiver 
each range from A – B to –(A – B) Volts, the peak-to-peak value of the differential transmitter 
output signal or the differential receiver input signal is defined as Differential Peak-to-Peak 
Voltage, VDIFFp-p = 2*VDIFFp = 2 * |(A – B)| Volts, which is twice of differential swing in 
amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage 
can also be calculated as VTX-DIFFp-p = 2*|VOD|.

6. Differential Waveform
The differential waveform is constructed by subtracting the inverting signal (SDn_TX, for 
example) from the non-inverting signal (SDn_TX, for example) within a differential pair. There is 
only one signal trace curve in a differential waveform. The voltage represented in the differential 
waveform is not referenced to ground. Refer to Figure 47 as an example for differential waveform.

7. Common Mode Voltage, Vcm
The Common Mode Voltage is equal to one half of the sum of the voltages between each conductor 
of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out = 
(VSDn_TX + VSDn_TX)/2 = (A + B) / 2, which is the arithmetic mean of the two complimentary 
output voltages within a differential pair. In a system, the common mode voltage may often differ 
from one component’s output to the other’s input. Sometimes, it may be even different between the 
receiver input and driver output circuits within the same component. It is also referred as the DC 
offset in some occasion.

Figure 38. Differential Voltage Definitions for Transmitter or Receiver

Differential Swing, VID or VOD = A - B

A Volts

B Volts

SDn_TX or 
SDn_RX

SDn_TX or 
SDn_RX

Differential Peak Voltage, VDIFFp = |A - B|

Differential Peak-Peak Voltage, VDIFFpp = 2*VDIFFp (not shown)

Vcm = (A + B) / 2
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Figure 46 shows the SerDes reference clock connection reference circuits for a single-ended clock driver. 
It assumes the DC levels of the clock driver are compatible with MPC8641D SerDes reference clock 
input’s DC requirement.

Figure 46. Single-Ended Connection (Reference Only)

50 Ω

50 ΩSDn_REF_CLK

SDn_REF_CLK

100 Ω differential PWB trace
SerDes Refer. 
CLK Receiver

Clock Driver

CLK_Out

Single-Ended 
CLK Driver Chip MPC8641D
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D2_MDQ[0:63] A7, B7, C5, D5, C8, D8, D6, A5, C4, A3, D3, 
D2, A4, B4, C2, C1, E3, E1, H4, G1, D1, E4, 
G3, G2, J4, J2, L1, L3, H3, H1, K1, L4, AA4, 
AA2, AD1, AD2, Y1, AA1, AC1, AC3, AD5, 
AE1, AG1, AG2, AC4, AD4, AF3, AF4, AH3, 
AJ1, AM1, AM3, AH1, AH2, AL2, AL3, AK5, 
AL5, AK7, AM7, AK4, AM4, AM6, AJ7

I/O D2_GVDD —

D2_MECC[0:7] H6, J5, M5, M4, G6, H7, M2, M1 I/O D2_GVDD —

D2_MDM[0:8] C7, B3, F4, J1, AB1, AE2, AK1, AM5, K6 O D2_GVDD —

D2_MDQS[0:8] B6, B1, F1, K2, AB3, AF1, AL1, AL6, L6 I/O D2_GVDD —

D2_MDQS[0:8] A6, A2, F2, K3, AB2, AE3, AK2, AJ6, K5 I/O D2_GVDD —

D2_MBA[0:2] W5, V5, P3 O D2_GVDD —

D2_MA[0:15] W1, U4, U3, T1, T2, T3, T5, R2, R1, R5, V4, 
R4, P1, AH5, P4, N1

O D2_GVDD —

D2_MWE Y4 O D2_GVDD —

D2_MRAS W3 O D2_GVDD —

D2_MCAS AB5 O D2_GVDD —

D2_MCS[0:3] Y3, AF6, AA5, AF7 O D2_GVDD —

D2_MCKE[0:3] N6, N5, N2, N3 O D2_GVDD 23

D2_MCK[0:5] U1, F5, AJ3, V2, E7, AG4 O D2_GVDD —

D2_MCK[0:5] V1, G5, AJ4, W2, E6, AG5 O D2_GVDD —

D2_MODT[0:3] AE6, AG7, AE5, AH6 O D2_GVDD —

D2_MDIC[0:1] F8, F7 IO D2_GVDD 27

D2_MVREF A18 DDR Port 2 
reference 
voltage

D2_GVDD /2 3

High Speed I/O Interface 1 (SERDES 1)4

SD1_TX[0:7] L26, M24, N26, P24, R26, T24, U26, V24 O SVDD —

SD1_TX[0:7] L27, M25, N27, P25, R27, T25, U27, V25 O SVDD —

SD1_RX[0:7] J32, K30, L32, M30, T30, U32, V30, W32 I SVDD —

SD1_RX[0:7] J31, K29, L31, M29, T29, U31, V29, W31 I SVDD —

SD1_REF_CLK N32 I SVDD —

SD1_REF_CLK N31 I SVDD —

SD1_IMP_CAL_TX Y26 Analog SVDD 19

SD1_IMP_CAL_RX J28 Analog SVDD 30

SD1_PLL_TPD U28 O SVDD 13, 17

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Name1 Package Pin Number Pin Type Power Supply Notes
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AGND_SRDS1 P30 SerDes Port 1 
Ground pin for 
AVDD_SRDS1

— —

AGND_SRDS2 AF30 SerDes Port 2 
Ground pin for 
AVDD_SRDS2

— —

SGND H28, H32, J30, K31, L28, L29, M32, N30, 
R29, T32, U30, V31, W29,Y32 AA30, AB31, 
AC29, AD32, AE30, AG29, AH32, AJ30, 
AK31, AL29, AM32

Ground pins for 
SVDD

— —

XGND K27, L25, M26, N24, P27, R25, T26, U24, 
V27, W25, Y28, AA24, AB27, AC25, AD28, 
AE26, AF27, AH28, AJ26, AK27, AL26, 
AM28

Ground pins for 
XVDD_SRDSn

— —

Reset Configuration Signals20

TSEC1_TXD[0] /
cfg_alt_boot_vec

AF25 — LVDD —

TSEC1_TXD[1]/
cfg_platform_freq

AC23 — LVDD 21

TSEC1_TXD[2:4]/
cfg_device_id[5:7]

AG24, AG23, AE24 — LVDD —

TSEC1_TXD[5]/
cfg_tsec1_reduce

AE23 — LVDD —

TSEC1_TXD[6:7]/
cfg_tsec1_prtcl[0:1]

AE22, AD22 — LVDD —

TSEC2_TXD[0:3]/
cfg_rom_loc[0:3]

AB20, AJ23, AJ22, AD19 — LVDD —

TSEC2_TXD[4],
TSEC2_TX_ER/

cfg_dram_type[0:1]

AH23,
AB19

— LVDD 38

TSEC2_TXD[5]/
cfg_tsec2_reduce

AH21 — LVDD —

TSEC2_TXD[6:7]/
cfg_tsec2_prtcl[0:1]

AG22, AG21 — LVDD —

TSEC3_TXD[0:1]/
cfg_spare[0:1]

AL21, AJ21 O TVDD 33

TSEC3_TXD[2]/
cfg_core1_enable

AM20 O TVDD —

TSEC3_TXD[3]/
cfg_core1_lm_offset

AJ20 — LVDD —

TSEC3_TXD[5]/
cfg_tsec3_reduce

AK21 — LVDD —

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Name1 Package Pin Number Pin Type Power Supply Notes
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19.2.2 Thermal Interface Materials
A thermal interface material is recommended at the package-to-heat sink interface to minimize the thermal 
contact resistance. Figure 61 shows the thermal performance of three thin-sheet thermal-interface 
materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function 
of contact pressure. As shown, the performance of these thermal interface materials improves with 
increasing contact pressure. The use of thermal grease significantly reduces the interface thermal 
resistance. That is, the bare joint results in a thermal resistance approximately seven times greater than the 
thermal grease joint. 

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board 
(see Figure 59). Therefore, synthetic grease offers the best thermal performance, considering the low 
interface pressure, and is recommended due to the high power dissipation of the MPC8641. Of course, the 
selection of any thermal interface material depends on many factors—thermal performance requirements, 
manufacturability, service temperature, dielectric properties, cost, and so on.

Figure 61. Thermal Performance of Select Thermal Interface Material

The board designer can choose between several types of thermal interface. Heat sink adhesive materials 
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example, assuming a Ti of 30°C, a Tr of 5°C, a package RθJC = 0.1, and a typical power consumption (Pd) 
of 43.4 W, the following expression for Tj is obtained:

Die-junction temperature: Tj = 30°C + 5°C + (0.1°C/W + 0.2°C/W + θsa) × 43.4 W

For this example, a Rθsavalue of 1.32 °C/W or less is required to maintain the die junction temperature 
below the maximum value of Table 2.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common 
figure-of-merit used for comparing the thermal performance of various microelectronic packaging 
technologies, one should exercise caution when only using this metric in determining thermal management 
because no single parameter can adequately describe three-dimensional heat flow. The final die-junction 
operating temperature is not only a function of the component-level thermal resistance, but the 
system-level design and its operating conditions. In addition to the component's power consumption, a 
number of factors affect the final operating die-junction temperature—airflow, board population (local 
heat flux of adjacent components), heat sink efficiency, heat sink placement, next-level interconnect 
technology, system air temperature rise, altitude, and so on.

Due to the complexity and variety of system-level boundary conditions for today's microelectronic 
equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) 
may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board as 
well as system-level designs.

For system thermal modeling, the MPC8641 thermal model is shown in Figure 62. Four cuboids are used 
to represent this device. The die is modeled as 12.4x15.3 mm at a thickness of 0.86 mm. See Section 3, 
“Power Characteristics” for power dissipation details. The substrate is modeled as a single block 
33x33x1.2 mm with orthotropic conductivity: 13.5 W/(m • K) in the xy-plane and 5.3 W/(m • K) in the 
z-direction. The die is centered on the substrate. The bump/underfill layer is modeled as a collapsed 
thermal resistance between the die and substrate with a conductivity of 5.3 W/(m • K) in the thickness 
dimension of 0.07 mm. Because the bump/underfill is modeled with zero physical dimension (collapsed 
height), the die thickness was slightly enlarged to provide the correct height. The C5 solder layer is 
modeled as a cuboid with dimensions 33x33x0.4 mm and orthotropic thermal conductivity of 0.034 W/(m 
• K) in the xy-plane and 9.6 W/(m • K) in the z-direction. An LGA solder layer would be modeled as a 
collapsed thermal resistance with thermal conductivity of 9.6W/(m • K) and an effective height of 0.1 mm. 
The thermal model uses approximate dimensions to reduce grid. Please refer to the case outline for actual 
dimensions.
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20 System Design Information
This section provides electrical and thermal design recommendations for successful application of the 
MPC8641.

20.1 System Clocking
This device includes six PLLs, as follows:

1. The platform PLL generates the platform clock from the externally supplied SYSCLK input. The 
frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio 
configuration bits as described in Section 18.2, “MPX to SYSCLK PLL Ratio.”

2. The dual e600 Core PLLs generate the e600 clock from the externally supplied input. 
3. The local bus PLL generates the clock for the local bus. 
4. There are two internal PLLs for the SerDes block. 

20.2 Power Supply Design and Sequencing

20.2.1 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide independent filter circuits per PLL power supply as illustrated in Figure 64, one to each of the 
AVDD type pins. By providing independent filters to each PLL the opportunity to cause noise injection 
from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD type pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
type pin, which is on the periphery of the footprint, without the inductance of vias.

Figure 63 and Figure 64 show the PLL power supply filter circuits for the platform and cores, respectively.
 

Figure 63. MPC8641 PLL Power Supply Filter Circuit (for platform and Local Bus)

  

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10 Ω

 

AVDD_PLAT, AVDD_LB;VDD_PLAT




