

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Obsolete
Core Processor	PowerPC e600
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.5GHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	994-BCBGA, FCCBGA
Supplier Device Package	994-FCCBGA (33x33)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc8641vu1500ke

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notes:

- 1. Dotted waveforms correspond to optional supply values for a specified power supply. See Table 2.
- 2. The recommended maximum ramp up time for power supplies is 20 milliseconds.
- 3. Refer to Section 5, "RESET Initialization" for additional information on PLL relock and reset signal assertion timing requirements.
- 4. Refer to Table 11 for additional information on reset configuration pin setup timing requirements. In addition see Figure 68 regarding HRESET and JTAG connection details including TRST.
- 5. e600 PLL relock time is 100 microseconds maximum plus 255 MPX_clk cycles.
- 6. Stable PLL configuration signals are required as stable SYSCLK is applied. All other POR configuration inputs are required 4 SYSCLK cycles before HRESET negation and are valid at least 2 SYSCLK cycles after HRESET has negated (hold requirement). See Section 5, "RESET Initialization" for more information on setup and hold time of reset configuration signals.
- V_{DD}_PLAT, AV_{DD}_PLAT must strictly reach 90% of their recommended voltage before the rail for Dn_GV_{DD}, and Dn_MV_{REF} reaches 10% of their recommended voltage.
- 8. SYSCLK must be driven only AFTER the power for the various power supplies is stable.
- In device sleep mode, the reset configuration signals for DRAM types (TSEC2_TXD[4],TSEC2_TX_ER) must be valid BEFORE HRESET is asserted.

Figure 3. MPC8641 Power-Up and Reset Sequence

DDR and DDR2 SDRAM

Figure 4 shows the DDR SDRAM input timing for the MDQS to MDQ skew measurement (tDISKEW).

Figure 4. DDR Input Timing Diagram for tDISKEW

6.2.2 DDR SDRAM Output AC Timing Specifications

Table 21. DDR SDRAM Output AC Timing Specifications

At recommended operating conditions.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, MCK[n]/MCK[n] crossing	t _{MCK}	3	10	ns	2
MCK duty cycle 600 MHz 533 MHz 400 MHz	^t мскн/t _М ск	47.5 47 47	52.5 53 53	%	8 9 9
ADDR/CMD output setup with respect to MCK	t _{DDKHAS}			ns	3
600 MHz		1.10	—		7
533 MHz		1.48	—		7
400 MHz		1.95	—		
ADDR/CMD output hold with respect to MCK	t _{DDKHAX}			ns	3
600 MHz		1.10	—		7
533 MHz		1.48	—		7
400 MHz		1.95	—		
MCS[n] output setup with respect to MCK	t _{DDKHCS}			ns	3
600 MHz		1.10	—		7
533 MHz		1.48	—		7
400 MHz		1.95	—		

DDR and DDR2 SDRAM

Table 21. DDR SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MDQS epilogue end	t _{DDKHME}	-0.6	0.6	ns	6

Note:

- The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.

3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS.

- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQS override bits (called WR_DATA_DELAY) in the TIMING_CFG_2 register. This will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the *MPC8641 Integrated Processor Reference Manual* for a description and understanding of the timing modifications enabled by use of these bits.
- Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.
- 7. Maximum DDR1 frequency is 400 MHz
- Per the JEDEC spec the DDR2 duty cycle at 600 MHz is the average low and high cycle time values that are defined as the average pulse widths calculated across any consecutive 200 pulses. Jitter can sometimes force single low and high cycle times to drift from the average values. t_{JIT} = ±125 ps.
- 9. Per the JEDEC spec the DDR2 duty cycle at 400 and 533 MHz is the low and high cycle time values.

NOTE

For the ADDR/CMD setup and hold specifications in Table 21, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle.

Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

8.2.3.2 MII Receive AC Timing Specifications

Table 31 provides the MII receive AC timing specifications.

Table 31. MII Receive AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX} 2,3	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX} ³	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise time (20%-80%)	t _{MRXR} 2	1.0	—	4.0	ns
RX_CLK clock fall time (80%-20%)	t _{MRXF} 2	1.0	—	4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

3. ±100 ppm tolerance on RX_CLK frequency

Figure 14 provides the AC test load for eTSEC.

Figure 14. eTSEC AC Test Load

Figure 15 shows the MII receive AC timing diagram.

Figure 15. MII Receive AC Timing Diagram

8.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.4.1 TBI Transmit AC Timing Specifications

Table 32 provides the TBI transmit AC timing specifications.

Table 32. TBI Transmit AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5% and 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TCG[9:0] setup time GTX_CLK going high	t _{TTKHDV}	2.0	—	—	ns
TCG[9:0] hold time from GTX_CLK going high	t _{TTKHDX}	1.0	—	—	ns
GTX_CLK rise time (20%-80%)	t _{TTXR} ²	—	—	1.0	ns
GTX_CLK fall time (80%–20%)	t _{TTXF} 2	—	—	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

Figure 16 shows the TBI transmit AC timing diagram.

Figure 16. TBI Transmit AC Timing Diagram

8.2.5 TBI Single-Clock Mode AC Specifications

When the eTSEC is configured for TBI modes, all clocks are supplied from external sources to the relevant eTSEC interface. In single-clock TBI mode, when TBICON[CLKSEL] = 1 a 125-MHz TBI receive clock is supplied on TSEC n_RX_CLK pin (no receive clock is used on TSEC n_TX_CLK in this mode, whereas for the dual-clock mode this is the PMA1 receive clock). The 125-MHz transmit clock is applied on the TSEC GTX CLK125 pin in all TBI modes.

A summary of the single-clock TBI mode AC specifications for receive appears in Table 34.

Table 34. TBI single-clock Mode Receive AC Timing Specification

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5% and 2.5 V \pm 5%.

Parameter/Condition	Symbol	Min	Тур	Max	Unit
RX_CLK clock period	t _{TRR} ¹	7.5	8.0	8.5	ns
RX_CLK duty cycle	t _{TRRH/} t _{TRR}	40	50	60	%
RX_CLK peak-to-peak jitter	t _{TRRJ}		—	250	ps
Rise time RX_CLK (20%–80%)	t _{TRRR}	-	—	1.0	ns
Fall time RX_CLK (80%–20%)	t _{TRRF}	_	—	1.0	ns
RCG[9:0] setup time to RX_CLK rising edge	t _{TRRDVKH}	2.0	—	—	ns
RCG[9:0] hold time to RX_CLK rising edge	t _{TRRDXKH}	1.0	_	_	ns

¹ ±100 ppm tolerance on RX_CLK frequency

A timing diagram for TBI receive appears in Figure 18.

Figure 18. TBI Single-Clock Mode Receive AC Timing Diagram

8.2.6 RGMII and RTBI AC Timing Specifications

Table 35 presents the RGMII and RTBI AC timing specifications.

Table 35. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
Data to clock output skew (at transmitter)	t _{SKRGT} ⁵	-500	0	500	ps
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0		2.8	ns

Figure 29. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2 (clock ratio of 4) (PLL Bypass Mode)

Figure 31. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 or 8 (clock ratio of 8 or 16) (PLL Bypass Mode)

High-Speed Serial Interfaces (HSSI)

13.2.4 AC Requirements for SerDes Reference Clocks

The clock driver selected should provide a high quality reference clock with low phase noise and cycle-to-cycle jitter. Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50 Ω to match the transmission line and reduce reflections which are a source of noise to the system.

Table 47 describes some AC parameters common to PCI Express and Serial RapidIO protocols.

Table 47. SerDes Reference Clock Common AC Parameters

At recommended operating conditions with XV_{DD} SRDS1 or XV_{DD} SRDS2 = 1.1V ± 5% and 1.05V ± 5%.

Parameter	Symbol	Min	Max	Unit	Notes
Rising Edge Rate	Rise Edge Rate	1.0	4.0	V/ns	2, 3
Falling Edge Rate	Fall Edge Rate	1.0	4.0	V/ns	2, 3
Differential Input High Voltage	V _{IH}	+200		mV	2
Differential Input Low Voltage	V _{IL}	_	-200	mV	2
Rising edge rate (SD <i>n</i> _REF_CLK) to falling edge rate (SD <i>n</i> _REF_CLK) matching	Rise-Fall Matching	_	20	%	1, 4

Notes:

1. Measurement taken from single ended waveform.

2. Measurement taken from differential waveform.

3. Measured from –200 mV to +200 mV on the differential waveform (derived from SD*n*_REF_CLK minus SD*n*_REF_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 47.

4. Matching applies to rising edge rate for SD*n*_REF_CLK and falling edge rate for SD<u>n_REF_CLK</u>. It is measured using a 200 mV window centered on the median cross point where SDn_REF_CLK rising meets SD*n*_REF_CLK falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of SD*n*_REF_CLK should be compared to the Fall Edge Rate of SD*n*_REF_CLK, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 48.

Figure 47. Differential Measurement Points for Rise and Fall Time

PCI Express

provide additional margin to adequately compensate for the degraded minimum Receiver eye diagram (shown in Figure 51) expected at the input Receiver based on some adequate combination of system simulations and the Return Loss measured looking into the RX package and silicon. The RX eye diagram must be aligned in time using the jitter median to locate the center of the eye diagram.

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

The reference impedance for return loss measurements is 50Ω to ground for both the D+ and D- line (that is, as measured by a Vector Network Analyzer with 50Ω probes—see Figure 52). Note that the series capacitors, C_{TX} , are optional for the return loss measurement.

Figure 51. Minimum Receiver Eye Timing and Voltage Compliance Specification

14.5.1 Compliance Test and Measurement Load

The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package pins, into a test/measurement load shown in Figure 52.

NOTE

The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary.

Symbol	Parameter Description	Min	Typical	Мах	Units	Comments
t _{REF}	REFCLK cycle time	_	10(8)	—	ns	8 ns applies only to serial RapidIO with 125-MHz reference clock
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles	-	—	80	ps	_
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location	-40	—	40	ps	_

Table 51. SDn_REF_CLK and SDn_REF_CLK AC Requirements

15.3 Signal Definitions

LP-Serial links use differential signaling. This section defines terms used in the description and specification of differential signals. Figure 53 shows how the signals are defined. The figures show waveforms for either a transmitter output (TD and $\overline{\text{TD}}$) or a receiver input (RD and $\overline{\text{RD}}$). Each signal swings between A Volts and B Volts where A > B. Using these waveforms, the definitions are as follows:

- 1. The transmitter output signals and the receiver input signals TD, $\overline{\text{TD}}$, RD and $\overline{\text{RD}}$ each have a peak-to-peak swing of A B Volts
- 2. The differential output signal of the transmitter, V_{OD} , is defined as V_{TD} - $V_{\overline{TD}}$
- 3. The differential input signal of the receiver, V_{ID} , is defined as $V_{RD} V_{\overline{RD}}$
- 4. The differential output signal of the transmitter and the differential input signal of the receiver each range from A B to -(A B) Volts
- 5. The peak value of the differential transmitter output signal and the differential receiver input signal is A B Volts
- 6. The peak-to-peak value of the differential transmitter output signal and the differential receiver input signal is 2 * (A B) Volts

Figure 53. Differential Peak-Peak Voltage of Transmitter or Receiver

To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic) transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing that goes between 2.5V and 2.0V. Using these values, the peak-to-peak voltage swing of the signals TD and TD is 500 mV p-p. The differential output signal ranges between 500 mV and -500 mV. The peak differential voltage is 500 mV. The peak-to-peak differential voltage is 1000 mV p-p.

Table 54. Short Run Transmitter AC Timing Specifications—3.125 GBaud (continued)

Characteristic	Symbol	Ra	nge	Unit	Notes
ondraotenstio	Cymbol	Min	Мах	onn	Notes
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	320	320	ps	+/– 100 ppm

Table 55. Long Run Transmitter AC Timing Specifications—1.25 GBaud

Characteristic	aracteristic Symbol Range		nge	Unit	Notes
Characteristic	Cymbol	Min	Мах		Notes
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	—
Deterministic Jitter	J _D	—	0.17	UI p-p	—
Total Jitter	J _T	—	0.35	UI p-p	—
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	800	800	ps	+/– 100 ppm

Table 56. Long Run Transmitter AC Timing Specifications—2.5 GBaud

Characteristic	Symbol	Range		Unit	Notes
Characteristic	Symbol	Min	Мах		Notes
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	—
Deterministic Jitter	J _D	—	0.17	UI p-p	—
Total Jitter	J _T	—	0.35	UI p-p	—
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	400	400	ps	+/– 100 ppm

Continuous Jitter Test Pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10^{-12} . The eye pattern shall be measured with AC coupling and the compliance template centered at 0 Volts differential. The left and right edges of the template shall be aligned with the mean zero crossing points of the measured data eye. The load for this test shall be 100Ω resistive +/- 5% differential to 2.5 GHz.

15.9.2 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (Baud Frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter Test Pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured with AC coupling and at 0 Volts differential. Jitter measurement for the transmitter (or for calibration of a jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described in Annex 48B of IEEE 802.3ae.

15.9.3 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive +/- 5% differential to 2.5 GHz.

15.9.4 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first producing the sum of deterministic and random jitter defined in Section 8.6 and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template shown in Figure 8-4 and Table 8-11. Note that for this to occur, the test signal must have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter specified in Section 8.6 is then added to the signal and the test load is replaced by the receiver being tested.

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
SENSEV _{SS} _Core0	P14	Core0 GND sensing pin	_	31
SENSEV _{SS} _Core1	V20	Core1 GND sensing pin	_	12, 31, <i>S3</i>
SENSEV _{DD} PLAT	N18	V _{DD} _PLAT sensing pin	_	28
SENSEV _{SS} _PLAT	P18	Platform GND sensing pin	—	29
D1_GV _{DD}	B11, B14, D10, D13, F9, F12, H8, H11, H14, K10, K13, L8, P8, R6, U8, V6, W10, Y8, AA6, AB10, AC8, AD12, AE10, AF8, AG12, AH10, AJ8, AJ14, AK12, AL10, AL16	SDRAM 1 I/O supply	D1_GV _{DD} 2.5 - DDR 1.8 DDR2	_
D2_GV _{DD}	B2, B5, B8, D4, D7, E2, F6, G4, H2, J6, K4, L2, M6, N4, P2, T4, U2, W4, Y2, AB4, AC2, AD6, AE4, AF2, AG6, AH4, AJ2, AK6, AL4, AM2	SDRAM 2 I/O supply	D2_GV _{DD} 2.5 V - DDR 1.8 V - DDR2	_
OV _{DD}	B22, B25, B28, D17, D24, D27, F19, F22, F26, F29, G17, H21, H24, K19, K23, M21, AM30	DUART, Local Bus, DMA, Multiprocessor Interrupts, System Control & Clocking, Debug, Test, JTAG, Power management, I ² C, JTAG and Miscellaneous I/O voltage	OV _{DD} 3.3 V	
LV _{DD}	AC20, AD23, AH22	TSEC1 and TSEC2 I/O voltage	LV _{DD} 2.5/3.3 V	_
TV _{DD}	AC17, AG18, AK20	TSEC3 and TSEC4 I/O voltage	TV _{DD} 2.5/3.3 V	_
SV _{DD}	H31, J29, K28, K32, L30, M28, M31, N29, R30, T31, U29, V32, W30, Y31, AA29, AB32, AC30, AD31, AE29, AG30, AH31, AJ29, AK32, AL30, AM31	Transceiver Power Supply SerDes	SV _{DD} 1.05/1.1 V	_
XV _{DD} _SRDS1	K26, L24, M27, N25, P26, R24, R28, T27, U25, V26	Serial I/O Power Supply for SerDes Port 1	XV _{DD} _SRDS1 1.05/1.1 V	

Table 63. MPC864	1 Signal Reference	by Functional	Block (continued)
------------------	--------------------	---------------	-------------------

Table 63. MPC8641 Signal Reference by Functional Block (continued)

	Name ¹	Package Pin Number	Pin Type	Power Supply	Notes
--	-------------------	--------------------	----------	--------------	-------

Note:

- 1. Multi-pin signals such as D1_MDQ[0:63] and D2_MDQ[0:63] have their physical package pin numbers listed in order corresponding to the signal names.
- 2. Stub Series Terminated Logic (SSTL-18 and SSTL-25) type pins.
- 3. If a DDR port is not used, it is possible to leave the related power supply (Dn_GVDD, Dn_MVREF) turned off at reset. Note that these power supplies can only be powered up again at reset for functionality to occur on the DDR port.
- 4. Low Voltage Differential Signaling (LVDS) type pins.
- 5. Low Voltage Transistor-Transistor Logic (LVTTL) type pins.
- 6. This pin is a reset configuration pin and appears again in the Reset Configuration Signals section of this table. See the Reset Configuration Signals section of this table for config name and connection details.
- 7. Recommend a weak pull-up resistor $(1-10 \text{ k}\Omega)$ be placed from this pin to its power supply.
- 8. Recommend a weak pull-down resistor (2–10 k Ω) be placed from this pin to ground.
- 9. This multiplexed pin has input status in one mode and output in another
- 10. This pin is a multiplexed signal for different functional blocks and appears more than once in this table.
- 11. This pin is open drain signal.
- 12. Functional only on the MPC8641D.
- 13. These pins should be left floating.
- 14. These pins should be connected to SV_{DD} .
- 15. These pins should be pulled to ground with a strong resistor (270- Ω to 330- Ω).
- 16. These pins should be connected to OVDD.
- 17. This is a SerDes PLL/DLL digital test signal and is only for factory use.
- 18. This is a SerDes PLL/DLL analog test signal and is only for factory use.
- 19. This pin should be pulled to ground with a 100- $\!\Omega$ resistor.
- 20. The pins in this section are reset configuration pins. Each pin has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ pull-down resistor. However, if the signal is intended to be high after reset, and if there is any device on the net which might pull down the value of the net at reset, then a pullup or active driver is needed.
- 21. Should be pulled down at reset if platform frequency is at 400 MHz.
- 22. These pins require 4.7-kΩ pull-up or pull-down resistors and must be driven as they are used to determine PLL configuration ratios at reset.
- 23. This output is actively driven during reset rather than being tri-stated during reset.
- 24 These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 25. This pin should NOT be pulled down (or driven low) during reset.
- 26. These are test signals for factory use only and must be pulled up (100- Ω to 1- k Ω) to OVDD for normal machine operation.
- 27. Dn_MDIC[0] should be connected to ground with an 18-Ω resistor +/- 1-Ω and Dn_MDIC[1] should be connected Dn_GVDD with an 18-Ω resistor +/- 1-Ω. These pins are used for automatic calibration of the DDR IOs.
- 28. Pin N18 is recommended as a reference point for determining the voltage of V_{DD}_PLAT and is hence considered as the V_{DD}_PLAT sensing voltage and is called SENSEVDD_PLAT.
- 29. Pin P18 is recommended as the ground reference point for SENSEVDD_PLAT and is called SENSEVSS_PLAT.
- 30. This pin should be pulled to ground with a 200- Ω resistor.
- 31. These pins are connected to the power/ground planes internally and may be used by the core power supply to improve tracking and regulation.
- 32. Must be tied low if unused
- 33. These pins may be used as defined functional reset configuration pins in the future. Please include a resistor pull up/down option to allow flexibility of future designs.
- 34. Used as serial data output for SRIO 1x/4x link.
- 35. Used as serial data input for SRIO 1x/4x link.
- 36. This pin requires an external 4.7-kΩ pull-down resistor to pevent PHY from seeing a valid Transmit Enable before it is actively driven.

Table 63. MPC8641 Signal Reference by Functional Block (continued)

Name ¹	Package Pin Number	Pin Type	Power Supply	Notes	
27 This pip is apply an autout in FIFO made when yeard as Dy Flaw Control					

- 37. This pin is only an output in FIFO mode when used as Rx Flow Control.
- 38.This pin functions as cfg_dram_type[0 or 1] at reset and MUST BE VALID BEFORE HRESET ASSERTION in device sleep mode.
- 39. Should be pulled to ground if unused (such as in FIFO, MII and RMII modes).
- 40. See Section 18.4.2, "Platform to FIFO Restrictions" for clock speed limitations for this pin when used in FIFO mode.
- 41. The phase between the output clocks TSEC1_GTX_CLK and TSEC2_GTX_CLK (ports 1 and 2) is no more than 100 ps. The phase between the output clocks TSEC3_GTX_CLK and TSEC4_GTX_CLK (ports 3 and 4) is no more than 100 ps.
- 42. For systems which boot from Local Bus (GPCM)-controlled flash, a pullup on LGPL4 is required.

Special Notes for Single Core Device:

- S1. Solder ball for this signal will not be populated in the single core package.
- S2. The PLL filter from V_{DD}_Core1 to AV_{DD}_Core1 should be removed. AV_{DD}_Core1 should be pulled to ground with a weak (2–10 k Ω) resistor. See Section 20.2.1, "PLL Power Supply Filtering" for more details.
- S3. This pin should be pulled to GND for the single core device.
- S4. No special requirement for this pin on single core device. Pin should be tied to power supply as directed for dual core.

18 Clocking

This section describes the PLL configuration of the MPC8641. Note that the platform clock is identical to the MPX clock.

18.1 Clock Ranges

Table 64 provides the clocking specifications for the processor cores and Table 65 provides the clocking specifications for the memory bus. Table 66 provides the clocking for the Platform/MPX bus and Table 67 provides the clocking for the Local bus.

	Maximum Processor Core Frequency									
Characteristic	1000 MHz		1250MHz		1333MHz		1500 MHz		Unit	Notes
	Min	Max	Min	Max	Min	Max	Min	Max		
e600 core processor frequency	800	1000	800	1250	800	1333	800	1500	MHz	1, 2

Table 64. Processor Core Clocking Specifications

Notes:

 Caution: The MPX clock to SYSCLK ratio and e600 core to MPX clock ratio settings must be chosen such that the resulting SYSCLK frequency, e600 (core) frequency, and MPX clock frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 18.2, "MPX to SYSCLK PLL Ratio," and Section 18.3, "e600 to MPX clock PLL Ratio," for ratio settings.

2. The minimum e600 core frequency is based on the minimum platform clock frequency of 400 MHz.

The Bergquist Company 18930 West 78 th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572
Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01801 Internet: www.chomerics.com	781-935-4850
Dow-Corning Corporation Corporate Center PO Box 994 Midland, MI 48686-0994 Internet: www.dowcorning.com	800-248-2481
Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674
Thermagon Inc. 4707 Detroit Ave. Cleveland, OH 44102 Internet: www.thermagon.com	888-246-9050

The following section provides a heat sink selection example using one of the commercially available heat sinks.

19.2.3 Heat Sink Selection Example

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

 $T_j = T_i + T_r + (R_{\theta JC} + R_{\theta int} + R_{\theta sa}) \times P_d$

where:

T_i is the die-junction temperature

T_i is the inlet cabinet ambient temperature

 T_r is the air temperature rise within the computer cabinet

 $R_{\theta JC}$ is the junction-to-case thermal resistance

 $R_{\theta int}$ is the adhesive or interface material thermal resistance

 $R_{\theta sa}$ is the heat sink base-to-ambient thermal resistance

P_d is the power dissipated by the device

During operation, the die-junction temperatures (T_j) should be maintained less than the value specified in Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (T_j) may range from 30° to 40°C. The air temperature rise within a cabinet (T_r) may be in the range of 5° to 10°C. The thermal resistance of the thermal interface material (R_{0int}) is typically about 0.2°C/W. For

Another useful equation is:

$$\mathbf{V}_{H} - \mathbf{V}_{L} = \mathbf{n} \frac{\mathbf{KT}}{\mathbf{q}} \left[\mathbf{In} \frac{\mathbf{I}_{H}}{\mathbf{I}_{L}} \right]$$

Where:

 $I_{fw} = Forward current$ $I_s = Saturation current$ $V_d = Voltage at diode$ $V_f = Voltage forward biased$ $V_H = Diode voltage while I_H is flowing$ $V_L = Diode voltage while I_L is flowing$ $I_H = Larger diode bias current$ $I_L = Smaller diode bias current$ $q = Charge of electron (1.6 \times 10^{-19} \text{ C})$ n = Ideality factor (normally 1.0) $K = Boltzman's constant (1.38 \times 10^{-23} \text{ Joules/K})$ T = Temperature (Kelvins)

The ratio of I_H to I_L is usually selected to be 10:1. The above simplifies to the following:

$$V_{H}-V_{L}=~1.986\times10^{-4}\times nT$$

Solving for T, the equation becomes:

$$\mathbf{nT} = \frac{\mathbf{V}_{\mathsf{H}} - \mathbf{V}_{\mathsf{L}}}{1.986 \times 10^{-4}}$$

For other pin pull-up or pull-down recommendations of signals, please see Section 17, "Signal Listings."

20.7 Output Buffer DC Impedance

The MPC8641 drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 66). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_p is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_p then becomes the resistance of the pull-up devices. R_p and R_N are designed to be close to each other in value. Then, $Z_0 = (R_p + R_N)/2$.

Figure 66. Driver Impedance Measurement

Table 73 summarizes the signal impedance targets. The driver impedances are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	DUART, Control, Configuration, Power Management	PCI Express	DDR DRAM	Symbol	Unit
R _N	43 Target	25 Target	20 Target	Z ₀	W
R _P	43 Target	25 Target	20 Target	Z ₀	W

Table 73. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.

System Design Information

20.8 Configuration Pin Muxing

The MPC8641 provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While $\overline{\text{HRESET}}$ is asserted however, these pins are treated as inputs. The value presented on these pins while $\overline{\text{HRESET}}$ is asserted, is latched when $\overline{\text{HRESET}}$ deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped with an on-chip gated resistor of approximately 20 k Ω . This value should permit the 4.7-k Ω resistor to pull the configuration pin to a valid logic low level. The pull-up resistor is enabled only during $\overline{\text{HRESET}}$ (and for platform /system clocks after $\overline{\text{HRESET}}$ deassertion to ensure capture of the reset value). When the input receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with minimal signal quality or delay disruption. The default value for all configuration bits treated this way has been encoded such that a high voltage level puts the device into the default state and external resistors are needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

The platform PLL ratio and e600 PLL ratio configuration pins are not equipped with these default pull-up devices.

20.9 JTAG Configuration Signals

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 68. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors that implement the Power Architecture technology. The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, more reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP port connects primarily through the JTAG interface of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 67 allows the COP port to independently assert $\overline{\text{HRESET}}$ or $\overline{\text{TRST}}$, while ensuring that the target can drive $\overline{\text{HRESET}}$ as well.