

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z4d, e200z0h
Core Size	32-Bit Dual-Core
Speed	80MHz/120MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	147
Program Memory Size	1.5MB (1.5M × 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 27x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5644cf0vlu1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

1.1 Document Overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the MPC5646C device. To ensure a complete understanding of the device functionality, refer also to the MPC5646C Reference Manual.

1.2 Description

The MPC5646C is a new family of next generation microcontrollers built on the Power Architecture embedded category. This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device.

The MPC5646C family expands the range of the MPC560xB microcontroller family. It provides the scalability needed to implement platform approaches and delivers the performance required by increasingly sophisticated software architectures. The advanced and cost-efficient host processor core of the MPC5646C automotive controller family complies with the Power Architecture embedded category, which is 100 percent user-mode compatible with the original Power Architecture user instruction set architecture (UISA). It operates at speeds of up to 120 MHz and offers high performance processing optimized for low power consumption. It also capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

Table 1. MPC5646C family comparison¹ (continued)

Feature	MPC5	644B	м	PC5644	łC	MPC	5645B	М	PC5645	5C	MPC5	5646B	м	PC5646	C
Package	176 LQFP	208 LQFP	176 LQFP	208 LQFP	256 BGA	176 LQFP	208 LQFP	176 LQFP	208 LQFP	256 BGA	176 LQFP	208 LQFP	176 LQFP	208 LQFP	256 BGA
Ethernet	N	lo	Yes No			Yes		No		Yes					
I ² C		1													
32 kHz oscillator (SXOSC)								Yes							
GPIO ¹²	147	177	147	177	199	147	177	147	177	199	147	177	147	177	199
Debug		JT	٩G		Nexus 3+		JT	AG		Nexus 3+		JT	AG		Nexus 3+
Cryptographic Services Engine (CSE)								Optional	l						

NOTES:

¹ Feature set dependent on selected peripheral multiplexing; table shows example.

² Based on 125 °C ambient operating temperature and subject to full device characterisation.

³ The e200z0h can run at speeds up to 80 MHz. However, if system frequency is >80 MHz (e.g., e200z4d running at 120 MHz) the e200z0h needs to run at 1/2 system frequency. There is a configurable e200z0 system clock divider for this purpose.

⁴ DMAMUX also included that allows for software selection of 32 out of a possible 57 sources.

⁵ Not shared with 12-bit ADC, but possibly shared with other alternate functions.

⁶ There are 23 dedicated ANS plus 4 dedicated ANX channels on LQPF176. For higher pin count packages, there are 29 dedicated ANS plus 4 dedicated ANX channels.

⁷ 16x precision channels (ANP) and 3x standard (ANS).

⁸ Not shared with 10-bit ADC, but possibly shared with other alternate functions.

⁹ As a minimum, all timer channels can function as PWM or Input Capture and Output Control. Refer to the eMIOS section of the device reference manual for information on the channel configuration and functions.

¹⁰ CAN Sampler also included that allows ID of CAN message to be captured when in low power mode.

¹¹ STCU controls MBIST activation and reporting.

¹² Estimated I/O count for proposed packages based on multiplexing with peripherals.

1

MPC5646C Data Sheet, Rev.6

റ

Table 2 summarizes the functions of the blocks present on the MPC5646C. Table 2. MPC5646C series block summary

Block	Function
Analog-to-digital converter (ADC)	Converts analog voltages to digital values
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Cryptographic Security Engine (CSE)	Supports the encoding and decoding of any kind of data
Crossbar (XBAR) switch	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width
DMA Channel Multiplexer (DMAMUX)	Allows to route DMA sources (called slots) to DMA channels
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via "n" programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
FMPLL (frequency-modulated phase-locked loop)	Generates high-speed system clocks and supports programmable frequency modulation
FlexRay (FlexRay communication controller)	Provides high-speed distributed control for advanced automotive applications
Fast Ethernet Controller (FEC)	Ethernet Media Access Controller (MAC) designed to support both 10 and 100 Mbps Ethernet/IEEE 802.3 networks
Internal multiplexer (IMUX) SIUL subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests for both e200z0h and e200z4d cores
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode

NOTE 1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3]. 2) Availability of port pin alternate functions depends on product selection.

Figure 3. 208-pin LQFP configuration

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] CAN1TX CAN4TX MA[1]	SIUL FlexCAN_1 FlexCAN_4 ADC_0	I/O O O O	M/S	Tristate	36	36	L1
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — —	GPIO[43] — MA[2] CAN1RX CAN4RX WKPU[5]	SIUL — ADC_0 FlexCAN_1 FlexCAN_4 WKPU	/0 	S	Tristate	35	35	K4
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 ALT4 —	GPIO[44] E0UC[12] — FR_DBG[0] SIN_2 EIRQ[19]	SIUL eMIOS_0 — Flexray DSPI_2 SIUL	/O /O 0 	M/S	Tristate	173	205	B4
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 	1/0 1/0 0	M/S	Tristate	174	206	A3
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 ALT4	GPIO[46] E0UC[14] SCK_2 — FR_DBG[2] FIRQ[8]	SIUL eMIOS_0 DSPI_2 — Flexray SIUI	/O /O /O /O 0	M/S	Tristate	3	3	B2
PC[15]	PCR[47]	AF0 AF1 AF2 AF3 ALT4	GPIO[47] E0UC[15] CS0_2 — FR_DBG[3] EIRQ[20]	SIUL eMIOS_0 DSPI_2 — Flexray SIUL	I/O I/O I/O O I	M/S	Tristate	4	4	A1
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 — —	GPI[48] — — ADC0_P[4] ADC1_P[4] WKPU[27]	SIUL — — ADC_0 ADC_1 WKPU	 - 	Ι	Tristate	77	93	R12

Table 4.	Functional	port p	oin desc	riptions	(continued)
i albito il	- anotheria	P • • • P			(00111111000)

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PH[5]	PCR[117]	AF0 AF1 AF2 AF3 —	GPIO[117] E1UC[7] — SIN_7	SIUL eMIOS_1 — DSPI_7	I/O I/O — I	S	Tristate	163	187	B7
PH[6]	PCR[118]	AF0 AF1 AF2 AF3	GPIO[118] E1UC[8] SCK_7 MA[2]	SIUL eMIOS_1 DSPI_7 ADC_0	I/O I/O I/O O	M/S	Tristate	164	188	C7
PH[7]	PCR[119]	AF0 AF1 AF2 AF3 ALT4	GPIO[119] E1UC[9] CS3_2 MA[1] CS0_7	SIUL eMIOS_1 DSPI_2 ADC_0 DSPI_7	I/O I/O O I/O	M/S	Tristate	165	189	C6
PH[8]	PCR[120]	AF0 AF1 AF2 AF3	GPIO[120] E1UC[10] CS2_2 MA[0]	SIUL eMIOS_1 DSPI_2 ADC_0	I/O I/O O O	M/S	Tristate	166	190	A6
PH[9] ⁶	PCR[121]	AF0 AF1 AF2 AF3 —	GPIO[121] — — — TCK	SIUL — — JTAGC	I/O — — — I	S	Input, weak pull-up	155	179	A11
PH[10] ⁶	PCR[122]	AF0 AF1 AF2 AF3 —	GPIO[122] — — — TMS	SIUL — — JTAGC	I/O — — — I	M/S	Input, weak pull-up	148	172	D10
PH[11]	PCR[123]	AF0 AF1 AF2 AF3	GPIO[123] SOUT_3 CS0_4 E1UC[5]	SIUL DSPI_3 DSPI_4 eMIOS_1	I/O O I/O I/O	M/S	Tristate	140	164	A13
PH[12]	PCR[124]	AF0 AF1 AF2 AF3	GPIO[124] SCK_3 CS1_4 E1UC[25]	SIUL DSPI_3 DSPI_4 eMIOS_1	I/O I/O O I/O	M/S	Tristate	141	165	B12
PH[13]	PCR[125]	AF0 AF1 AF2 AF3	GPIO[125] SOUT_4 CS0_3 E1UC[26]	SIUL DSPI_4 DSPI_3 eMIOS_1	I/O O I/O I/O	M/S	Tristate	9	9	B1

Table 4. Functional	port pi	in descri	otions	(continued)
	Poirp			(continued)

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PL[10]	PCR[186]	AF0 AF1 AF2 AF3	GPIO[186] — МСКО —	SIUL — Nexus —	I/O — O —	F/S	Tristate	_	_	M11
PL[11]	PCR[187]	AF0 AF1 AF2 AF3	GPIO[187] — — —	SIUL — — —	I/O — — —	M/S	Tristate	_	_	M12
PL[12]	PCR[188]	AF0 AF1 AF2 AF3	GPIO[188] — EVTO —	SIUL — Nexus —	I/O — O —	M/S	Tristate	_	_	F11
PL[13]	PCR[189]	AF0 AF1 AF2 AF3	GPIO[189] — MDO6 —	SIUL — Nexus —	I/O — O —	M/S	Tristate			F10
PL[14]	PCR[190]	AF0 AF1 AF2 AF3	GPIO[190] — MDO7 —	SIUL — Nexus —	I/O — O —	M/S	Tristate		_	E12
PL[15]	PCR[191]	AF0 AF1 AF2 AF3	GPIO[191] MDO8 	SIUL — Nexus —	I/O — O —	M/S	Tristate			E11
PM[0]	PCR[192]	AF0 AF1 AF2 AF3	GPIO[192] — MDO9 —	SIUL — Nexus —	I/O — O —	M/S	Tristate	_		E10
PM[1]	PCR[193]	AF0 AF1 AF2 AF3	GPIO[193] — MDO10 —	SIUL — Nexus —	I/O — O —	M/S	Tristate	_	_	E9
PM[2]	PCR[194]	AF0 AF1 AF2 AF3	GPIO[194] — MDO11 —	SIUL — Nexus —	I/O — O —	M/S	Tristate			F12
PM[3]	PCR[195]	AF0 AF1 AF2 AF3	GPIO[195] — — —	SIUL — — —	I/O — — —	M/S	Tristate			K12

Table 4 Eurotional	nort n	in descri	ntions /	(continued)
Table 4. Functional	port p	in descri	ptions	(continued)

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PM[4]	PCR[196]	AF0 AF1 AF2 AF3	GPIO[196] — — —	SIUL — — —	I/O — — —	M/S	Tristate	_	_	L12
PM[5]	PCR[197]	AF0 AF1 AF2 AF3	GPIO[197] — — —	SIUL — — —	I/O — — —	M/S	Tristate		_	F9
PM[6]	PCR[198]	AF0 AF1 AF2 AF3	GPIO[198] — — —	SIUL — — —	I/O — —	M/S	Tristate		_	F6

 Table 4. Functional port pin descriptions (continued)

NOTES:

- ¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 000 → AF0; PCR.PA = 001 → AF1; PCR.PA = 010 → AF2; PCR.PA = 011 → AF3; PCR.PA = 100 → ALT4. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".
- ² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
- ³ NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is ignored.
- ⁴ SXOSC's OSC32k_XTAL and OSC32k_EXTAL pins are shared with GPIO functionality. When used as crystal pins, other functionality of the pin cannot be used and it should be ensured that application never programs OBE and PUE bit of the corresponding PCR to "1".
- ⁵ If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature as PB[10] can induce coupling on PB[9] and disturb oscillator frequency.
- ⁶ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
 PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
 It is up to the user to configure these pins as GPIO when needed.
- ⁷ When MBIST is enabled to run (STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V before the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST operation. When MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally drive the pad.
- ⁸ These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development Interface "Port Control Register" rather than the SIUL. Specifically, the debugger can enable the MDO[7:0], MSEO, and MCKO ports by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled by programming NDI ((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]).

Electrical Characteristics

NVUSRO [PAD3V5V(0)] field description 4.2.1

Table 6 shows how NVUSRO [PAD3V5V(0)] controls the device configuration for $V_{DD_{HV_A}}$ domain.

Table 6. PAD3V5V(0) field description

Value ¹	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

NOTES:

'1' is delivery value. It is part of shadow flash memory, thus programmable by customer.

The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.

NVUSRO [PAD3V5V(1)] field description 4.2.2

Table 7 shows how NVUSRO [PAD3V5V(1)] controls the device configuration the device configuration for V_{DD HV B} domain.

Table 7. PAD3V5V(1) field description

Value ¹	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

NOTES: ¹ '1' is delivery value. It is part of shadow flash memory, thus programmable by customer.

The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.

4.3 Absolute maximum ratings

Table 8. Absolute maximum ratings

Symbol		Parameter	Conditions	Va	Unit	
		i di diffeter	Conditions	Min	Max	onne
V _{SS_HV}	SR	Digital ground on VSS_HV pins		0	0	V
V _{DD_HV_} A	SR	Voltage on VDD_HV_A pins with respect to ground (V _{SS_HV})	_	-0.3	6.0	V
V _{DD_HV_B} ¹	SR	Voltage on VDD_HV_B pins with respect to common ground (V _{SS_HV})	_	-0.3	6.0	V
V _{SS_LV}	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS_HV})	_	V _{SS_HV} - 0.1	V _{SS_HV} + 0.1	V

Sum	bol	C	Baramotor		onditions ^{1,2}		Value		Unit
Syn	1001	C	Farameter		Containente		Тур	Max	Unit
V _{OH}	CC	Р	Output high level FAST configuration	Push Pull	$I_{OH} = -14 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0	0.8V _{DD}	_	_	V
		С			$I_{OH} = -7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 1 ³	0.8V _{DD}	_		
		С			$I_{OH} = -11 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1	V _{DD} – 0.8		_	
V _{OL}	CC	Ρ	Output low level FAST configuration	Push Pull	$I_{OL} = 14 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0	_		0.1V _{DD}	V
		С			$I_{OL} = 7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 1 ⁽³⁾	_		0.1V _{DD}	
		С			I _{OL} = 11 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	0.5	

Table 17. FAST configuration output buffer electrical characteristics

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

 $^2~V_{DD}$ as mentioned in the table is $V_{DD_HV_A}/V_{DD_HV_B}.$

³ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus outputs (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Output pin transition times 4.6.4

Table 18. Output pin transition times

Sva	Symbol C Parameter		Co	Conditions ^{1,2}		Value ³			
J		C	raiametei			Min	Тур	Мах	Unit
T _{tr}	CC	D	Output transition time	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$	—	—	50	ns
		Т	output pin ⁴ SLOW configuration	C _L = 50 pF	PAD3V5V = 0	—	—	100	
		D	Ŭ	C _L = 100 pF		_	—	125	
		D		C _L = 25 pF	$V_{DD} = 3.3 V \pm 10\%$,	—	—	40	
		Т		C _L = 50 pF	PAD3V5V = 1	—	—	50	
		D		C _L = 100 pF		—	—	75	

Electrical Characteristics

Figure 7. Noise filtering on reset signal

Symb		C	Paramotor	Conditions ¹		Value ²		Unit
Synnb		C	raiametei	Conditions	Min	Тур	Max	Onic
V _{IH}	SR	Ρ	Input High Level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	V _{DD} + 0.4	V
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	_	-0.3	_	0.35V _{DD}	V
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}		—	V
V _{OL}	СС	Ρ	Output low level	Push Pull, $I_{OL} = 2 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	—	_	0.1V _{DD}	V
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ³	_	_	0.1V _{DD}	
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_	_	0.5	

Table 21. Reset electrical characteristics

Electrical Characteristics

Table 26 shows the data flash memory program and erase characteristics.

Table 26. Data flash memory—Program and erase specifications

Symbol (Value				
		С	Parameter	Min	Typ ¹	Initial max ²	Max ³	Unit
T _{wprogram}		_	Word (32 bits) program time ⁴	—	30	70	500	μs
T _{16Kpperase}		С	16 KB block pre-program and erase time		700	800	5000	ms
T _{eslat}	~~	D	Erase Suspend Latency	_	_	30	30	μs
t _{ESRT} 5	CC	С	Erase Suspend Request Rate	10	—	—	_	ms
t _{PABT}		D	Program Abort Latency	—	—	12	12	μs
t _{EAPT}		D	Erase Abort Latency	—	—	30	30	μs

NOTES:

Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.

⁴ Actual hardware programming times. This does not include software overhead.

⁵ It is time between erase suspend resume and next erase suspend.

Symbol		c	Parameter	Conditions	Va	lue	Unit	
Symb	01	C	raiametei	Conditions	Min	Тур		
P/E	CC C		Number of program/erase cycles per block for 16 Kbyte blocks over the operating temperature range (T _J)	_	100,000	100,000	cycles	
			Number of program/erase cycles per block for 32 Kbyte blocks over the operating temperature range (T_J)	_	10,000	100,000	cycles	
			Number of program/erase cycles per block for 128 Kbyte blocks over the operating temperature range (T _J)	_	1,000	100,000	cycles	
Retention	СС	С	Minimum data retention at 85 °C average ambient temperature ¹	Blocks with 0–1,000 P/E cycles	20	_	years	
				Blocks with 10,000 P/E cycles	10	_	years	
				Blocks with 100,000 P/E cycles	5		years	

Table 27. Flash memory module life

NOTES:

¹ Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

Figure 10. Crystal oscillator and resonator connection scheme

NOTE

XTAL/EXTAL must not be directly used to drive external circuits.

Nominal frequency (MHz)	NDK crystal reference	Crystal equivalent series resistance ESR Ω	Crystal motional capacitance (C _m) fF	Crystal motional inductance (L _m) mH	Load on xtalin/xtalout C1 = C2 (pF) ¹	Shunt capacitance between xtalout and xtalin C0 ² (pF)
4	NX8045GB	300	2.68	591.0	21	2.93
8		300	2.46	160.7	17	3.01
10	NX5032GA	150	2.93	86.6	15	2.91
12		120	3.11	56.5	15	2.93
16		120	3.90	25.3	10	3.00
40	NX5032GA	50	6.18	2.56	8	3.49

Table 34. Crystal description

NOTES:

The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

² The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Electrical Characteristics

Symbol (C	Parameter	Conditions ¹		Valu	e ²	Unit
Cymbo	51	Ŭ	i didineter	Conditions	Min	Тур	Max	Onne
f _{PLLIN}	SR	_	FMPLL reference clock ³	—	4	—	64	MHz
Δ_{PLLIN}	SR		FMPLL reference clock duty cycle ⁽³⁾	_	40	—	60	%
f _{PLLOUT}	СС	Ρ	FMPLL output clock frequency	_	16	—	120	MHz
f _{CPU}	SR	—	System clock frequency	—		_	120 + 2% ⁴	MHz
f _{FREE}	СС	Ρ	Free-running frequency	—	20	_	150	MHz
t _{LOCK}	СС	Ρ	FMPLL lock time	Stable oscillator (f _{PLLIN} = 16 MHz)		40	100	μs
Δt _{LTJIT}	CC		FMPLL long term jitter	f _{PLLIN} = 40 MHz (resonator), f _{PLLCLK} @ 120 MHz, 4000 cycles			6 (for < 1ppm)	ns
I _{PLL}	СС	С	FMPLL consumption	T _A = 25 °C	—		3	mA

Table 38. FMPLL electrical characteristics

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ PLLIN clock retrieved directly from 4-40 MHz XOSC or 16 MIRC. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

 $^4~$ f_{CPU} 120 + 2% MHz can be achieved at 125 °C.

Fast internal RC oscillator (16 MHz) electrical characteristics 4.15

The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device and can also be used as input to PLL.

Symbol		6	Parameter Conditions ¹		Value ²			Unit
Symbol		C	Farameter	Min Typ M		Max	•	
f _{FIRC}	СС	Ρ	Fast internal RC oscillator high	T _A = 25 °C, trimmed	—	16	—	MHz
	SR	—	frequency	_	12		20	
I _{FIRCRUN} ^{3,}	СС	Т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed	—	—	200	μA
I _{FIRCPWD}	СС	D	Fast internal RC oscillator high	T _A = 25 °C	—	—	100	nA
		D	down mode	T _A = 55 °C	_	—	200	nA
		D		T _A = 125 °C	_	—	1	μA

Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics

Figure 19. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (T_C). Again the conversion period T_C is longer than the sampling time T_S , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter $R_F C_F$ is definitively much higher than the sampling time T_S , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

Eqn. 11

 $\frac{V_{A2}}{V_A} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

ADC_0 (10-bit) Eqn. 12

$$C_F > 2048 \cdot C_S$$

ADC_1 (12-bit) Eqn. 13
 $C_F > 8192 \cdot C_S$

Symbo	1	<u> </u>	Perameter	Conditions ¹			Value		Unit
Symbo	"	C	Farameter			Min	Тур	Max	Onit
R _{SW2}	СС	D	Internal resistance of analog source	_	-	_	_	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_	-	_	-	2	kΩ
I _{INJ} 7	SR	_	Input current Injection	Current injection on	V _{DD} = 3.3 V ± 10%	-5	_	5	mA
				input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	_	5	
INL	СС	Т	Absolute value for integral non-linearity	No overload		_	0.5	1.5	LSB
DNL	CC	Т	Absolute differential non-linearity	No overload		_	0.5	1.0	LSB
OFS	СС	Т	Absolute offset error	_	-	_	0.5	_	LSB
GNE	СС	Т	Absolute gain error	_	-	_	0.6	_	LSB
TUEP	СС	Ρ	Total unadjusted	Without curren	t injection	-2	0.6	2	LSB
		Т	channels, input only pins	With current in	jection	-3		3	
TUEX	СС	Т	Total unadjusted	Without curren	t injection	-3	1	3	LSB
		Т	channel	With current in	jection	-4		4	

Table 42. ADC conversion characteristics (10-bit ADC_0) (continued)

NOTES:

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² Analog and digital $V_{SS HV}$ must be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC0} and V_{DD_ADC0} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

- ⁴ During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC0_S} . After the end of the sample time t_{ADC0_S} , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{ADC0_S} depend on programming.
- ⁵ This parameter does not include the sample time t_{ADC0_S}, but only the time for determining the digital result and the time to load the result's register with the conversion result
- ⁶ Refer to ADC conversion table for detailed calculations.

⁷ PB10 should not have any current injected. It can disturb accuracy on other ADC_0 pins.

⁸ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

	/	

NOTE 1.	S DIMENSIONS AND TOLERANCING PER	ASME Y14.5M-1994.	
2.	DIMENSIONS IN MILLIMETERS.		
3.	DATUMS L, M AND N TO BE DETERM	INED AT THE SEATING PLANE, DATU	МΤ.
4.	DIMENSIONS TO BE DETERMINED AT	SEATING PLANE, DATUM T.	
5.	DIMENSIONS DO NOT INCLUDE MOLE PROTRUSION IS 0.25 PER SIDE. I MOLD MISMATCH.) PROTRUSION. ALLOWABLE DIMENSIONS INCLUDE	
6.	DIMENSION DOES NOT INCLUDE DAN SHALL NOT CAUSE THE LEAD WIDTH SPACE BETWEEN PROTRUSION AND AN	MBAR PROTRUSION. DAMBAR PROTRUS TO EXCEED 0.35. MINIMUM DJACENT LEAD 0.07.	ION
© FREESCAL ALL	E SEMICONDUCTOR, INC. MECHANIC.	AL OUTLINE PRINT VERSION NO	IT TO SCALE
IIILE:	208 LD TQFP,	DUCUMENT NU: 98ASS23458W	KEV: C
28 X 2	3 PKG, 0.50 PITCH, 1.4 THICK	STANDARD: JEDEC MS-026 BJB	ZU WAT ZUUS

Figure 42. 208 LQFP mechanical drawing (Part 3 of 3)

Package characteristics

5.1.3 256 MAPBGA package mechanical drawing

Figure 43. 256 MAPBGA mechanical drawing (Part 1 of 2)

Package characteristics

Figure 44. 256 MAPBGA mechanical drawing (Part 2 of 2)

Revision history

Revision	Date	Changes	
4	23 June 2011	 Interchanged the denominator with numerator in Equation 11 of Input impedance and ADC accuracy section Removed the note (All ADC conversion characteristics described in the table below are applicable only for the precision channels. The data for semi-precision and extended channels is awaited and same will be subsequently updated in later revs.) in the ADC electrical characteristics section. In On-chip peripherals current consumption table, replaced IDD_HV_ADC with IDD_HV_ADC0 and IDD_HV_ADC1 values as per ADC specs In ADC conversion characteristics (10-bit ADC_0) table, the minimum sample time of ADC0 changed to 500 at 32 MHz In ADC conversion characteristics (12-bit ADC_0) table, removed the entry for sample time at 30 MHz In Conversion characteristics (12-bit ADC_1)table, changed TUEX to TUES and INLX to INLS (Extended channels are not supported by the device. So, changed to standard channel.) 	

Table 52.	Revision	history	(continued)
-----------	----------	---------	-------------