

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	e200z4d
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	147
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 27x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5646bcf0vlu1r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTE 1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3]. 2) Availability of port pin alternate functions depends on product selection.

Figure 3. 208-pin LQFP configuration

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 E0UC[29] —	SIUL DSPI_0 eMIOS_0 —	I/O O I/O —	M/S	Tristate	52	66	R5
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4]	SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL	I/O I/O I/O I/O I	M/S	Tristate	50	58	P4
PA[15]	PCR[15]	AF0 AF1 AF2 AF3 —	GPIO[15] CS0_0 SCK_0 E0UC[1] WKPU[10]	SIUL DSPI_0 DSPI_0 eMIOS_0 WKPU	I/O I/O I/O I/O I	M/S	Tristate	48	56	R2
PB[0]	PCR[16]	AF0 AF1 AF2 AF3	GPIO[16] CAN0TX E0UC[30] LIN0TX	SIUL FlexCAN_0 eMIOS_0 LINFlexD_0	I/O O I/O I	M/S	Tristate	39	39	L3
PB[1]	PCR[17]	AF0 AF1 AF2 — —	GPIO[17] — E0UC[31] LIN0RX WKPU[4] CAN0RX	SIUL — eMIOS_0 LINFlexD_0 WKPU FlexCAN_0	/O /O 	S	Tristate	40	40	M2
PB[2]	PCR[18]	AF0 AF1 AF2 AF3	GPIO[18] LIN0TX SDA E0UC[30]	SIUL LINFlexD_0 I ² C eMIOS_0	I/O O I/O I/O	M/S	Tristate	176	208	A2
PB[3]	PCR[19]	AF0 AF1 AF2 AF3 —	GPIO[19] E0UC[31] SCL WKPU[11] LIN0RX	SIUL eMIOS_0 I ² C WKPU LINFlexD_0	/O /O /O 	S	Tristate	1	1	D4
PB[4]	PCR[20]	AF0 AF1 AF2 AF3 	GPI[20] — — — ADC0_P[0] ADC1_P[0]	SIUL — — ADC_0 ADC_1	-	I	Tristate	88	104	T16

Table 4. Functional	port pir	description	s (continued)
	portpii	i accomption.	

Package pinouts and signal descriptions

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PD[15]	PCR[63]	AF0 AF1 AF2 AF3 ALT4	GPIO[63] CS2_1 E0UC[27] — FR_DBG[1]	SIUL DSPI_1 eMIOS_0 — Flexray	1/0 0/0 1/0 0	S	Tristate	106	128	J13
PE[0]	PCR[64]	— AF0 AF1 AF2 AF3 — —	ADC0_S[7] GPIO[64] E0UC[16] CAN5RX WKPU[6]	ADC_0 SIUL eMIOS_0 — FlexCAN_5 WKPU	 /O /O - 	S	Tristate	18	18	G2
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] CAN5TX —	SIUL eMIOS_0 FlexCAN_5 —	I/O I/O O —	M/S	Tristate	20	20	F4
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 ALT4 —	GPIO[66] E0UC[18] — FR_A_TX_EN SIN_1 EIRQ[21]	SIUL eMIOS_0 — Flexray DSPI_1 SIUL	/O /O - 	M/S	Tristate	156	180	A7
PE[3]	PCR[67]	AF0 AF1 AF2 AF3 —	GPIO[67] E0UC[19] SOUT_1 — FR_A_RX WKPU[29]	SIUL eMIOS_0 DSPI_1 — Flexray WKPU	/O /O 	M/S	Tristate	157	181	A10
PE[4]	PCR[68]	AF0 AF1 AF2 AF3 ALT4 —	GPIO[68] E0UC[20] SCK_1 — FR_B_TX EIRQ[9]	SIUL eMIOS_0 DSPI_1 — Flexray SIUL	/O /O /O 0 	M/S	Tristate	160	184	A8
PE[5]	PCR[69]	AF0 AF1 AF2 AF3 —	GPIO[69] E0UC[21] CS0_1 MA[2] FR_B_RX WKPU[30]	SIUL eMIOS_0 DSPI_1 ADC_0 Flexray WKPU	/O /O /O 0 	M/S	Tristate	161	185	B8

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PE[6]	PCR[70]	AF0 AF1 AF2 AF3 —	GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22]	SIUL eMIOS_0 DSPI_0 ADC_0 SIUL	I/O I/O O I	M/S	Tristate	167	191	B6
PE[7]	PCR[71]	AF0 AF1 AF2 AF3 —	GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23]	SIUL eMIOS_0 DSPI_0 ADC_0 SIUL	I/O I/O O I	M/S	Tristate	168	192	A5
PE[8]	PCR[72]	AF0 AF1 AF2 AF3	GPIO[72] CAN2TX E0UC[22] CAN3TX	SIUL FlexCAN_2 eMIOS_0 FlexCAN_3	I/O O I/O O	M/S	Tristate	21	21	G1
PE[9]	PCR[73]	AF0 AF1 AF2 AF3 — —	GPIO[73] — E0UC[23] — WKPU[7] CAN2RX CAN3RX	SIUL — eMIOS_0 — WKPU FlexCAN_2 FlexCAN_3	/O - /O 	S	Tristate	22	22	H1
PE[10]	PCR[74]	AF0 AF1 AF2 AF3 —	GPIO[74] LIN3TX CS3_1 E1UC[30] EIRQ[10]	SIUL LINFlexD_3 DSPI_1 eMIOS_1 SIUL	I/O O I/O I	S	Tristate	23	23	G3
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 —	GPIO[75] E0UC[24] CS4_1 — LIN3RX WKPU[14]	SIUL eMIOS_0 DSPI_1 LINFlexD_3 WKPU	/O /O - 	S	Tristate	25	25	H3
PE[12]	PCR[76]	AF0 AF1 AF2 AF3 — — — —	GPIO[76] — E1UC[19] — CRS SIN_2 EIRQ[11] ADC1_S[7]	SIUL eMIOS_1 FEC DSPI_2 SIUL ADC_1	/O - /O 	M/S	Tristate	133	157	C14

Table 4. Functional port pir	descriptions (continued)
Table III anotienai peri pi	

Package pinouts and signal descriptions

								Piı	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PF[13]	PCR[93]	AF0 AF1 AF2 AF3 —	GPIO[93] E1UC[26] — LIN5RX WKPU[16]	SIUL eMIOS_1 LINFlexD_5 WKPU	/O /O 	S	Tristate	49	57	P3
PF[14]	PCR[94]	AF0 AF1 AF2 AF3 ALT4	GPIO[94] CAN4TX E1UC[27] CAN1TX MDIO	SIUL FlexCAN_4 eMIOS_1 FlexCAN_1 FEC	I/O O I/O O I/O	M/S	Tristate	126	150	D14
PF[15]	PCR[95]	AF0 AF1 AF2 AF3 	GPIO[95] E1UC[4] — RX_DV CAN1RX CAN4RX EIRQ[13]	SIUL eMIOS_1 FEC FlexCAN_1 FlexCAN_4 SIUL	/0 /0 	M/S	Tristate	125	149	D15
PG[0]	PCR[96]	AF0 AF1 AF2 AF3 ALT4	GPIO[96] CAN5TX E1UC[23] — MDC	SIUL FlexCAN_5 eMIOS_1 FEC	I/O O I/O — O	F	Tristate	122	146	E13
PG[1]	PCR[97]	AF0 AF1 AF2 AF3 	GPIO[97] — E1UC[24] — TX_CLK CAN5RX EIRQ[14]	SIUL — eMIOS_1 — FEC FlexCAN_5 SIUL	/O /O 	Μ	Tristate	121	145	E14
PG[2]	PCR[98]	AF0 AF1 AF2 AF3	GPIO[98] E1UC[11] SOUT_3 —	SIUL eMIOS_1 DSPI_3 —	I/O I/O O	M/S	Tristate	16	16	E4
PG[3]	PCR[99]	AF0 AF1 AF2 AF3 —	GPIO[99] E1UC[12] CS0_3 — WKPU[17]	SIUL eMIOS_1 DSPI_3 — WKPU	I/O I/O I/O I	S	Tristate	15	15	E1
PG[4]	PCR[100]	AF0 AF1 AF2 AF3	GPIO[100] E1UC[13] SCK_3 —	SIUL eMIOS_1 DSPI_3 —	I/O I/O I/O —	M/S	Tristate	14	14	F2

MPC5646C Data Sheet, Rev.6

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PJ[7]	PCR[151]	AF0 AF1 AF2 AF3 —	GPIO[151] — — — ADC0_S[30]	SIUL — — ADC_0	I/O — — — I	S	Tristate		111	P16
PJ[8]	PCR[152]	AF0 AF1 AF2 AF3	GPIO[152] — — — ADC0_S[31]	SIUL — — ADC_0	I/O — — I	S	Tristate	_	110	P15
PJ[9]	PCR[153]	AF0 AF1 AF2 AF3 —	GPIO[153] — — — ADC1_S[8]	SIUL — — — ADC_1	I/O — — — —	S	Tristate	_	68	P5
PJ[10]	PCR[154]	AF0 AF1 AF2 AF3 —	GPIO[154] — — — ADC1_S[9]	SIUL — — — ADC_1	I/O — — — I	S	Tristate		67	Τ5
PJ[11]	PCR[155]	AF0 AF1 AF2 AF3 —	GPIO[155] — — — ADC1_S[10]	SIUL — — — ADC_1	I/O — — — I	S	Tristate		60	R3
PJ[12]	PCR[156]	AF0 AF1 AF2 AF3 —	GPIO[156] — — — ADC1_S[11]	SIUL — — — ADC_1	I/O — — — I	S	Tristate		59	T1
PJ[13]	PCR[157]	AF0 AF1 AF2 AF3 — — — —	GPIO[157] — CS1_7 — CAN4RX ADC1_S[12] CAN1RX WKPU[31]	SIUL DSPI_7 FlexCAN_4 ADC_1 FlexCAN_1 WKPU	/O 	S	Tristate		65	N5
PJ[14]	PCR[158]	AF0 AF1 AF2 AF3	GPIO[158] CAN1TX CAN4TX CS2_7	SIUL FlexCAN_1 FlexCAN_4 DSPI_7	I/O O O O	M/S	Tristate		64	T4

Table 4. Functional port pir	descriptions (continued)
Table III anotienai peri pi	

								Piı	n numb	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PL[10]	PCR[186]	AF0 AF1 AF2	GPIO[186] — MCKO	SIUL — Nexus	I/O — O	F/S	Tristate	_	_	M11
		AF3	_	_	_					
PL[11]	PCR[187]	AF0 AF1 AF2	GPIO[187] — —	SIUL — —	I/O — —	M/S	Tristate		_	M12
PL[12]	PCR[188]	AF3 AF0	— GPIO[188]	— SIUL	— I/O	M/S	Tristate			F11
[]		AF1 AF2 AF3	EVTO	Nexus	0 					
PL[13]	PCR[189]	AF0 AF1 AF2 AF3	GPIO[189] MDO6 	SIUL — Nexus —	I/O — O	M/S	Tristate	_		F10
PL[14]	PCR[190]	AF0 AF1 AF2 AF3	GPIO[190] MDO7 	SIUL — Nexus —	I/O — O	M/S	Tristate			E12
PL[15]	PCR[191]	AF0 AF1 AF2 AF3	GPIO[191] — MDO8 —	SIUL — Nexus —	I/O — O —	M/S	Tristate	_		E11
PM[0]	PCR[192]	AF0 AF1 AF2 AF3	GPIO[192] MDO9 	SIUL — Nexus —	I/O 	M/S	Tristate			E10
PM[1]	PCR[193]	AF0 AF1 AF2 AF3	GPIO[193] — MDO10 —	SIUL — Nexus —	I/O — O —	M/S	Tristate	_	_	E9
PM[2]	PCR[194]	AF0 AF1 AF2 AF3	GPIO[194] — MDO11 —	SIUL — Nexus —	I/O — O —	M/S	Tristate			F12
PM[3]	PCR[195]	AF0 AF1 AF2 AF3	GPIO[195] — — —	SIUL — — —	I/O — — —	M/S	Tristate			K12

Table 4. Functional	port pin	descriptions	(continued)	
	P • · · P ···		(0011111000)	

				-				Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PM[4]	PCR[196]	AF0 AF1 AF2 AF3	GPIO[196] — — —	SIUL — — —	I/O 	M/S	Tristate		_	L12
PM[5]	PCR[197]	AF0 AF1 AF2 AF3	GPIO[197] — — —	SIUL — — —	I/O 	M/S	Tristate	_	_	F9
PM[6]	PCR[198]	AF0 AF1 AF2 AF3	GPIO[198] — — —	SIUL — — —	I/O — — —	M/S	Tristate		_	F6

 Table 4. Functional port pin descriptions (continued)

NOTES:

- ¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 000 → AF0; PCR.PA = 001 → AF1; PCR.PA = 010 → AF2; PCR.PA = 011 → AF3; PCR.PA = 100 → ALT4. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".
- ² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
- ³ NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is ignored.
- ⁴ SXOSC's OSC32k_XTAL and OSC32k_EXTAL pins are shared with GPIO functionality. When used as crystal pins, other functionality of the pin cannot be used and it should be ensured that application never programs OBE and PUE bit of the corresponding PCR to "1".
- ⁵ If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature as PB[10] can induce coupling on PB[9] and disturb oscillator frequency.
- ⁶ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
 PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
 It is up to the user to configure these pins as GPIO when needed.
- ⁷ When MBIST is enabled to run (STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V before the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST operation. When MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally drive the pad.
- ⁸ These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development Interface "Port Control Register" rather than the SIUL. Specifically, the debugger can enable the MDO[7:0], MSEO, and MCKO ports by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled by programming NDI ((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]).

NP

Electrical Characteristics

- 2 V_{DD} as mentioned in the table is V_{DD_HV_A}/V_{DD_HV_B}. All values need to be confirmed during device validation.
- ³ Analog filters are available on all wakeup lines.
- ⁴ The width of input pulse in between 40 ns to 1000 ns is indeterminate. It may pass the noise or may not depending on silicon sample to sample variation.

4.6.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

- Table 14 provides weak pull figures. Both pull-up and pull-down resistances are supported.
- Table 15 provides output driver characteristics for I/O pads when in SLOW configuration.
- Table 16 provides output driver characteristics for I/O pads when in MEDIUM configuration.
- Table 17 provides output driver characteristics for I/O pads when in FAST configuration.

Svm	Symbol C		Parameter	er Conditions ^{1,2}			Value			
Gyn			i di difictei	Condition	5113	Min	Тур	Мах	Unit	
I _{WPU}	CC	Р	C current absolute & value	$V_{IN} = V_{IL}, V_{DD} =$	PAD3V5V = 0	10	_	150	μA	
		С		5.0 V ± 10%	$PAD3V5V = 1^{3}$	10	_	250		
		Ρ		V _{IN} = V _{IL} , V _{DD} = 3.3 V ± 10%	PAD3V5V = 1	10	_	150		
I _{WPD}	CC	Р		$V_{IN} = V_{IH}, V_{DD} =$	PAD3V5V = 0	10		150	μA	
		С	current absolute value	5.0 V ± 10%	PAD3V5V = 1	10		250		
		Ρ		V _{IN} = V _{IH} , V _{DD} = 3.3 V ± 10%	PAD3V5V = 1	10		150		

Table 14. I/O pull-up/pull-down DC electrical characteristics

NOTES:

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 $^2~V_{DD}$ as mentioned in the table is $V_{DD_HV_A}\!/V_{DD_HV_B}.$

³ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Table 15. SLOW configuration output buff	fer electrical characteristics
--	--------------------------------

Sv	Symbol		c	с	с	С	C	C	с	с	с	C	Parameter		Conditions ^{1,2}	Value			Unit
Uy,		Doi C Parameter		Conditions	Min	Тур	Мах	U											
V _{Oł}	H C	C		SLOW	Push Pull	I _{OH} = -3 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	_	_	V									
		(С	configuration		$I_{OH} = -3 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^3$	0.8V _{DD}		_										
			Ρ			I _{OH} = −1.5 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	V _{DD} - 0.8	_	_										

- LV_CFLA0/CFLA1: Low voltage supply for the two code Flash modules. It is shorted with LV_COR through double bonding.
- LV_DFLA: Low voltage supply for data Flash module. It is shorted with LV_COR through double bonding.
- LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.

1) All VSS_LV pins must be grounded, as shown for VSS_HV pin.

Figure 8. Voltage regulator capacitance connection

The internal voltage regulator requires external bulk capacitance (C_{REGn}) to be connected to the device to provide a stable low voltage digital supply to the device. Also required for stability is the C_{DEC2} capacitor at ballast collector. This is needed to minimize sharp injection current when ballast is turning ON. Apart from the bulk capacitance, user should connect EMI/decoupling cap (C_{REGP}) at each V_{DD_LV}/V_{SS_LV} pin pair.

4.8.1.1 Recommendations

- The external NPN driver must be BCP68 type.
- V_{DD LV} should be implemented as a power plane from the emitter of the ballast transistor.

- 10 µF capacitors should be connected to the 4 pins closest to the outside of the package and should be evenly distributed around the package. For BGA packages, the balls should be used are D8, H14, R9, J3–one cap on each side of package.
 - There should be a track direct from the capacitor to this pin (pin also connects to V_{DD_LV} plane). The tracks ESR should be less than 100 mΩ.
 - The remaining $V_{DD_{LV}}$ pins (exact number will vary with package) should be decoupled with 0.1 μ F caps, connected to the pin as per 10 μ F.

(see Section 4.4, "Recommended operating conditions").

4.8.2 V_{DD BV} options

- Option 1: V_{DD_BV} shared with V_{DD_HV_A}
 V_{DD_BV} must be star routed from V_{DD_HV_A} from the common source. This is to eliminate ballast noise injection on the MCU.
- Option 2: $V_{DD BV}$ independent of the MCU supply

 $V_{DD_BV} > 2.6$ V for correct functionality. The device is not monitoring this supply hence the external component must meet the 2.6 V criteria through external monitoring if required.

Symbol		с	Parameter	Conditions ¹		Value ²		Unit
Gymbol		Ŭ	i di dificici	Conditions	Min	Тур	Max	onic
C _{REGn}	SR	—	External ballast stability capacitance	—	40	—	60	μF
R _{REG}	SR		Stability capacitor equivalent serial resistance	—	_	—	0.2	Ω
C _{REGP}	SR		Decoupling capacitance (Close to the pin)	V _{DD_HV_A/HV_B} /V _{SS_HV} pair		100	—	nF
				V _{DD_LV} /V _{SS_LV} pair		100		nF
C _{DEC2}	SR	_	Stability capacitance regulator supply (Close to the ballast collector)	V _{DD_BV} /V _{SS_HV}	10	_	40	μF
V _{MREG}	СС	Ρ	Main regulator output voltage	Before trimming	_	1.32		V
				After trimming T _A = 25 °C	1.20	1.28	—	
I _{MREG}	SR		Main regulator current provided to $V_{DD_{LV}}$ domain		_		350	mA
IMREGINT	СС	D	Main regulator module current	I _{MREG} = 200 mA	_	—	2	mA
			consumption	I _{MREG} = 0 mA	MREG = 0 mA — — 1		1	
V _{LPREG}	СС	Ρ	Low power regulator output voltage	After trimming T _A = 25 °C	1.21	1.27	_	V
I _{LPREG}	SR	_	Low power regulator current provided to V _{DD_LV} domain	_		—	50	mA

Table 22. Voltage regulator electrical characteristics

NOTES:

- All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
- ² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.
- ³ Data based on characterization results, not tested in production.

4.11.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply over-voltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 33. Latch-up results

Symbol	Parameter	Conditions	Class
LU	-	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

4.12 Fast external crystal oscillator (4–40 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 10 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 34 provides the parameter description of 4 MHz to 40 MHz crystals used for the design simulations.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being CS and Cp₂ substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1MHz, with CS+Cp₂ equal to 3pF, a resistance of 330K Ω is obtained (Reqiv = 1 / (fc*(CS+Cp₂)), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS+Cp₂) and the sum of R_S + R_F, the external circuit must be designed to respect the following relation

Eqn. 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

The formula above provides a constraint for external network design, in particular on resistive path.

Figure 16. Input equivalent circuit (precise channels)

			Devementer	a 1 1		Value		Unit
Symb	ol	С	Parameter	Conditions ¹	Min	Тур	Max	Unit
V _{SS_ADC1}	SR	—	Voltage on VSS_HV_ADC1 (ADC_1 reference) pin with respect to ground (V _{SS_HV}) ²	_	-0.1		0.1	V
V _{DD_ADC1} ³	SR	_	Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (V _{SS_HV})	_	V _{DD_HV_A} – 0.1		V _{DD_HV_A} + 0.1	V
V _{AINx} ^{3,4}	SR	—	Analog input voltage ⁵	_	V _{SS_ADC1} - 0.1		V _{DD_ADC1} + 0.1	V
f _{ADC1}	SR		ADC_1 analog frequency	_	8 + 2%		32 + 2%	MHz
t _{ADC1_PU}	SR		ADC_1 power up delay	_	1.5			
t _{ADC1_S}	CC	Т	Sample time ⁶ VDD=5.0 V		440			ns
			Sample time ⁽⁶⁾ VDD=3.3 V	_	530			
t _{ADC1_C}	CC	Ρ	Conversion time ^{7, 8} VDD=5.0 V	f _{ADC1} = 32 MHz	2			
			Conversion time ^{(7),} (⁶⁾ VDD =5.0 V	f _{ADC 1} = 30 MHz	2.1			μs
			Conversion time ^{(7),} (6) VDD=3.3 V	f _{ADC 1} = 20 MHz	3			
			Conversion time ^{(7),} ⁽⁶⁾ VDD =3.3 V	f _{ADC1} = 15 MHz	3.01			
C _S	СС	D	ADC_1 input sampling capacitance	_		5		pF
C _{P1}	СС	D	ADC_1 input pin capacitance 1	—		3		pF
C _{P2}	СС	D	ADC_1 input pin capacitance 2	—		1		pF
C _{P3}	СС	D	ADC_1 input pin capacitance 3	_		1.5		pF
R _{SW1}	СС	D	Internal resistance of analog source	—			1	kΩ

Table 43.	Conversion	characteristics	(12-bit ADC 1)
			(

Figure 24. MII serial management channel timing diagram

MPC5646C Data Sheet, Rev.6

Spec	Characteristic	Symbol			Unit	
opee		Cymbol	Min	Max		
9	Data Setup Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) ⁵ Master (MTFE = 1, CPHA = 1)	t _{sui}	36 5 36 36		ns ns ns ns	
10	Data Hold Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) ⁵ Master (MTFE = 1, CPHA = 1)	t _{HI}	0 4 0 0	 	ns ns ns ns	
11	Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1)	t _{SUO}	 	12 37 12 12	ns ns ns ns	
12	Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1)	t _{HO}	0 ⁶ 9.5 0 ⁷ 0 ⁸		ns ns ns ns	

Table 49. DSPI timing (continued)

NOTES:

¹ This value of this parameter is dependent upon the external device delays and the other parameters mentioned in this table.

² The maximum value is programmable in DSPI_CTAR*n* [PSSCK] and DSPI_CTAR*n* [CSSCK]. For MPC5646C, the spec value of t_{CSC} will be attained only if T_{DSPI} x PSSCK x CSSCK > Δ t_{CSC}.

³ The maximum value is programmable in DSPI_CTAR*n* [PASC] and DSPI_CTAR*n* [ASC]. For MPC5646C, the spec value of t_{ASC} will be attained only if T_{DSPI} x PASC x ASC > Δt_{ASC} .

 $^4\,$ The parameter value is obtained from t_{SUSS} and t_{SUO} for slave.

⁵ This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b00.

⁶ For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 0) is -2 ns.

⁷ For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 0) is -2 n.

⁸ For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 1) is -2 ns.

Figure 30. DSPI modified transfer format timing-master, CPHA = 1

Figure 35. Nexus TDI, TMS, TDO timing

4.19.4 JTAG characteristics

Table	51. JTAG	characteristics
-------	----------	-----------------

No.	Symb		С	Parameter		Value		Unit
NO.	Symbol C Paramete			Min	Тур	Мах	Unit	
1	t _{JCYC}	CC	D	TCK cycle time	64	_	_	ns
2	t _{TDIS}	CC	D	TDI setup time	10	—	_	ns
3	t _{TDIH}	CC	D	TDI hold time	5	—	_	ns
4	t _{TMSS}	CC	D	TMS setup time	10	—	_	ns
5	t _{TMSH}	CC	D	TMS hold time	5	—	_	ns

MPC5646C Data Sheet, Rev.6

No.	Symbol		с	Parameter	Value			Unit
					Min	Тур	Мах	
6	t _{TDOV}	CC	D	TCK low to TDO valid			33	ns
7	t _{TDOI}	СС	D	TCK low to TDO invalid	6	—	—	ns
—	t _{TDC}	CC	D	TCK Duty Cycle	40	—	60	%
—	t _{TCKRISE}	СС	D	TCK Rise and Fall Times	—	—	3	ns

Figure 36. Timing diagram - JTAG boundary scan

Revision history

7 Revision history

Table 52 summarizes revisions to this document.

Table 52. Revision history

Revision	Date	Changes
1	15 April 2010	Initial Release
2	17 August 2010	 Editing and formatting updates throughout the document. Updated Voltage regulator capacitance connection figure. Added a new sub-section "V_{DD_BV} Options" Program and erase specifications: Updated Tdwprogram TYP to 22 us Updated T128Kpperase Max to 5000 ms Added recommendation in the Voltage regulator electrical characteristics section. Added crystal description table in Fast external crystal oscillator (4 to 140 MHz) electrical characteristics section and corrected the cross-reference to the same. Added rew sections - Pad types, System pins and functional ports Updated TYP numbers in the Flash program and erase specifications table Added a new table: Program and erase specifications (Data Flash) Flash read access timing table: Added Data flash memory numbers Flash read access timing table: Added Data flash memory numbers Flash power supply DC electrical characteristics table: Updated IDFREAD and IDFMOD values for Data flash, Removed IDFLPW parameter Updated feature list. MPC5646C 3M block diagram: Updated ADC channels and added legends. MPC5646C 3M series block summary: Added new blocks. Functional Port Pin Descriptions table: Added OSC32k_XTAL and OSC32k_EXTAL function at PB8 and PB9 port pins. Electrical Characteristics: Replaced VSS with VSS_HV throughout the section. Absolute maximum ratings, Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V) tables: VRC_CTRL min is updated to "0". Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V) tables: Clarified footnotes 2 in both tables. LOFF thermal characteristics section: Updated numbers for LQFP packages. Low voltage power domain electrical characteristics table: Clarified footnotes based upon review comments. Code flash memory—Program and erase specifications: Updated