



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                 |
|----------------------------|------------------------------------------------------------------------|
| Core Processor             | e200z4d                                                                |
| Core Size                  | 32-Bit Single-Core                                                     |
| Speed                      | 120MHz                                                                 |
| Connectivity               | CANbus, I <sup>2</sup> C, LINbus, SCI, SPI                             |
| Peripherals                | DMA, POR, PWM, WDT                                                     |
| Number of I/O              | 199                                                                    |
| Program Memory Size        | 3MB (3M x 8)                                                           |
| Program Memory Type        | FLASH                                                                  |
| EEPROM Size                | 64K x 8                                                                |
| RAM Size                   | 192K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                              |
| Data Converters            | A/D 33x10b, 10x12b                                                     |
| Oscillator Type            | Internal                                                               |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                     |
| Mounting Type              | Surface Mount                                                          |
| Package / Case             | 256-LBGA                                                               |
| Supplier Device Package    | 256-MAPBGA (17x17)                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5646bf0mmj1 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# **Other Features**

- System clocks sources
  - 4–40 MHz external crystal oscillator
  - 16 MHz internal RC oscillator
  - FMPLL
  - Additionally, there are two low power oscillators: 128 kHz internal RC oscillator, 32 kHz external crystal oscillator
- Real Time Counter (RTC) with clock source from internal 128 kHz or 16 MHz oscillators or external 4–40 MHz crystal
  - Supports autonomous wake-up with 1 ms resolution with max timeout of 2 seconds
  - Optional support from external 32 kHz crystal oscillator, supporting wake-up with 1 second resolution and max timeout of 1 hour
- 1 Real Time Interrupt (RTI) with 32-bit counter resolution
- 1 Safety Enhanced Software Watchdog Timer (SWT) that supports keyed functionality
- 1 dual-channel FlexRay Controller with 128 message buffers
- 1 Fast Ethernet Controller (FEC)
- On-chip voltage regulator (VREG)
- Cryptographic Services Engine (CSE)
- Offered in the following standard package types:
  - 176-pin LQFP, 24  $\times$  24 mm, 0.5 mm Lead Pitch
  - 208-pin LQFP, 28  $\times$  28 mm, 0.5 mm Lead Pitch
  - 256-ball MAPBGA, 17 × 17mm, 1.0 mm Lead Pitch

# Table 1. MPC5646C family comparison<sup>1</sup>

| Feature            |                                        | MPC               | 5644B           | М                    | PC5644                                    | C                                  | MPC              | 5645B           | М                    | PC5645                                    | iC                                 | MPC               | 5646B           | М                                                                    | PC5646      | C                                  |
|--------------------|----------------------------------------|-------------------|-----------------|----------------------|-------------------------------------------|------------------------------------|------------------|-----------------|----------------------|-------------------------------------------|------------------------------------|-------------------|-----------------|----------------------------------------------------------------------|-------------|------------------------------------|
| Package            |                                        | 176<br>LQFP       | 208<br>LQFP     | 176<br>LQFP          | 208<br>LQFP                               | 256<br>BGA                         | 176<br>LQFP      | 208<br>LQFP     | 176<br>LQFP          | 208<br>LQFP                               | 256<br>BGA                         | 176<br>LQFP       | 208<br>LQFP     | 176<br>LQFP                                                          | 208<br>LQFP | 256<br>BGA                         |
| CPU                |                                        | e20               | 0z4d            | e200z                | 4d + e2                                   | 00z0h                              | e20              | 0z4d            | e200z                | z4d + e2                                  | 00z0h                              | e200              | 0z4d            | e200z                                                                | z4d + e2    | 00z0h                              |
| Execution s        | beed <sup>2</sup>                      | Up to 12<br>(e200 | 20 MHz<br>Oz4d) | Up<br>((<br>Up<br>(e | to 120 M<br>e200z4c<br>to 80 M<br>e200z0h | /Hz<br>1)<br>IHz<br>) <sup>3</sup> | Up to 12<br>(e20 | 20 MHz<br>0z4d) | Up<br>(י<br>Up<br>(€ | to 120 M<br>e200z4c<br>to 80 M<br>e200z0h | /Hz<br>1)<br>IHz<br>) <sup>3</sup> | Up to 12<br>(e200 | 20 MHz<br>Oz4d) | Up to 120 MHz<br>(e200z4d)<br>Up to 80 MHz<br>(e200z0h) <sup>3</sup> |             | 1Hz<br> )<br> Hz<br>) <sup>3</sup> |
| Code flash r       | nemory                                 |                   |                 | 1.5 MB               |                                           |                                    |                  |                 | 2 MB                 |                                           |                                    |                   |                 | 3 MB                                                                 |             |                                    |
| Data flash n       | nemory                                 |                   |                 |                      |                                           |                                    |                  | 4               | 4 x16 KE             | 3                                         |                                    |                   |                 |                                                                      |             |                                    |
| SRAM               |                                        | 128               | KB              |                      | 192 KB                                    |                                    | 160              | ) KB            |                      | 256 KB                                    |                                    | 192               | KB              |                                                                      | 256 KB      |                                    |
| MPU                |                                        |                   |                 |                      |                                           |                                    |                  |                 | 16-entry             | /                                         |                                    |                   |                 |                                                                      |             |                                    |
| eDMA <sup>4</sup>  |                                        |                   | 32 ch           |                      |                                           |                                    |                  |                 |                      |                                           |                                    |                   |                 |                                                                      |             |                                    |
| 10-bit ADC         |                                        |                   |                 |                      |                                           |                                    |                  |                 |                      |                                           |                                    |                   |                 |                                                                      |             |                                    |
|                    | dedicated <sup>5,6</sup>               | 27 ch             | 33 ch           | 27 ch                | 33                                        | ch                                 | 27 ch            | 33 ch           | 27 ch                | 33                                        | ch                                 | 27 ch             | 33 ch           | 27 ch                                                                | 33          | ch                                 |
|                    | shared with<br>12-bit ADC <sup>7</sup> |                   |                 |                      |                                           |                                    |                  |                 | 19 ch                |                                           |                                    |                   |                 |                                                                      |             |                                    |
| 12-bit ADC         |                                        |                   |                 |                      |                                           |                                    |                  |                 |                      |                                           |                                    |                   |                 |                                                                      |             |                                    |
|                    | dedicated <sup>8</sup>                 | 5 ch              | 10 ch           | 5 ch                 | 10                                        | ch                                 | 5 ch             | 10 ch           | 5 ch                 | 10                                        | ch                                 | 5 ch              | 10 ch           | 5 ch                                                                 | 10          | ch                                 |
|                    | shared with<br>10-bit ADC <sup>7</sup> |                   |                 |                      |                                           |                                    |                  |                 | 19 ch                |                                           |                                    |                   |                 |                                                                      |             |                                    |
| СТИ                |                                        |                   |                 |                      |                                           |                                    |                  |                 | 64 ch                |                                           |                                    |                   |                 |                                                                      |             |                                    |
| Total timer I      | O <sup>9</sup> eMIOS                   |                   |                 |                      |                                           |                                    |                  | 64              | l ch, 16-            | bit                                       |                                    |                   |                 |                                                                      |             |                                    |
| SCI (LINFle        | kD)                                    |                   |                 |                      |                                           |                                    |                  |                 | 10                   |                                           |                                    |                   |                 |                                                                      |             |                                    |
| SPI (DSPI)         |                                        |                   |                 |                      |                                           |                                    |                  |                 | 8                    |                                           |                                    |                   |                 |                                                                      |             |                                    |
| CAN (FlexC         | AN) <sup>10</sup>                      |                   |                 |                      |                                           |                                    |                  |                 | 6                    |                                           |                                    |                   |                 |                                                                      |             |                                    |
| FlexRay            |                                        |                   |                 |                      |                                           |                                    |                  |                 | Yes                  |                                           |                                    |                   |                 |                                                                      |             |                                    |
| STCU <sup>11</sup> |                                        |                   |                 |                      |                                           |                                    |                  |                 | Yes                  |                                           |                                    |                   |                 |                                                                      |             |                                    |



### Package pinouts and signal descriptions

|             |         |                                              |                                                                              |                                                                             |                                               |          |                           | Pir      | n numbe  | er         |
|-------------|---------|----------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------|----------|---------------------------|----------|----------|------------|
| Port<br>pin | PCR     | Alternate<br>function <sup>1</sup>           | Function                                                                     | Peripheral                                                                  | I/O<br>direction <sup>2</sup>                 | Pad type | RESET<br>config.          | 176 LQFP | 208 LQFP | 256 MAPBGA |
| PA[7]       | PCR[7]  | AF0<br>AF1<br>AF2<br>AF3<br>—<br>—<br>—      | GPIO[7]<br>E0UC[7]<br>LIN3TX<br>—<br>RXD[2]<br>EIRQ[2]<br>ADC1_S[1]          | SIUL<br>eMIOS_0<br>LINFlexD_3<br>—<br>FEC<br>SIUL<br>ADC_1                  | I/O<br>I/O<br>O<br>I<br>I<br>I<br>I           | M/S      | Tristate                  | 128      | 152      | C15        |
| PA[8]       | PCR[8]  | AF0<br>AF1<br>AF2<br>AF3<br>—<br>—<br>—<br>— | GPIO[8]<br>E0UC[8]<br>E0UC[14]<br>—<br>RXD[1]<br>EIRQ[3]<br>ABS[0]<br>LIN3RX | SIUL<br>eMIOS_0<br>eMIOS_0<br><br>FEC<br>SIUL<br>MC_RGM<br>LINFlexD_3       | /O<br> /O<br> /O<br> <br> <br> <br> <br>      | M/S      | Input,<br>weak<br>pull-up | 129      | 153      | B16        |
| PA[9]       | PCR[9]  | AF0<br>AF1<br>AF2<br>AF3<br>—                | GPIO[9]<br>E0UC[9]<br>—<br>CS2_1<br>RXD[0]<br>FAB                            | SIUL<br>eMIOS_0<br>—<br>DSPI1<br>FEC<br>MC_RGM                              | /O<br> /O<br>—<br>0<br> <br>                  | M/S      | Pull-<br>down             | 130      | 154      | B15        |
| PA[10]      | PCR[10] | AF0<br>AF1<br>AF2<br>AF3<br>—<br>—<br>—      | GPIO[10]<br>E0UC[10]<br>SDA<br>LIN2TX<br>COL<br>ADC1_S[2]<br>SIN_1           | SIUL<br>eMIOS_0<br>I <sup>2</sup> C<br>LINFlexD_2<br>FEC<br>ADC_1<br>DSPI_1 | /O<br> /O<br> /O<br>0<br> <br> <br>           | M/S      | Tristate                  | 131      | 155      | A15        |
| PA[11]      | PCR[11] | AF0<br>AF1<br>AF2<br>AF3<br>—<br>—<br>—<br>— | GPIO[11]<br>E0UC[11]<br>SCL<br><br>RX_ER<br>EIRQ[16]<br>LIN2RX<br>ADC1_S[3]  | SIUL<br>eMIOS_0<br>I <sup>2</sup> C<br>FEC<br>SIUL<br>LINFlexD_2<br>ADC_1   | /O<br> /O<br> /O<br> <br> <br> <br> <br> <br> | M/S      | Tristate                  | 132      | 156      | B14        |
| PA[12]      | PCR[12] | AF0<br>AF1<br>AF2<br>AF3<br>—                | GPIO[12]<br>—<br>E0UC[28]<br>CS3_1<br>EIRQ[17]<br>SIN_0                      | SIUL<br>—<br>eMIOS_0<br>DSPI1<br>SIUL<br>DSPI_0                             | /O<br><br> /O<br>O<br> <br>                   | S        | Tristate                  | 53       | 69       | P6         |

| Table 4. Functional | port pin | descriptions | (continued) |
|---------------------|----------|--------------|-------------|
|---------------------|----------|--------------|-------------|



### Package pinouts and signal descriptions

|             |         |                                         |                                                         |                                          |                               |          |                  | Pir      | n numbe  | er         |
|-------------|---------|-----------------------------------------|---------------------------------------------------------|------------------------------------------|-------------------------------|----------|------------------|----------|----------|------------|
| Port<br>pin | PCR     | Alternate<br>function <sup>1</sup>      | Function                                                | Periphera                                | I/O<br>direction <sup>2</sup> | Pad type | RESET<br>config. | 176 LQFP | 208 LQFP | 256 MAPBGA |
| PD[1]       | PCR[49] | AF0<br>AF1<br>AF2<br>AF3<br>—<br>—<br>— | GPI[49]<br>—<br>—<br>ADC0_P[5]<br>ADC1_P[5]<br>WKPU[28] | SIUL<br>—<br>—<br>ADC_0<br>ADC_1<br>WKPU | <br> -<br> <br> <br>          | I        | Tristate         | 78       | 94       | T13        |
| PD[2]       | PCR[50] | AF0<br>AF1<br>AF2<br>AF3<br>—           | GPI[50]<br>—<br>—<br>ADC0_P[6]<br>ADC1_P[6]             | SIUL<br>—<br>—<br>ADC_0<br>ADC_1         | <br> -<br> <br> <br>          | I        | Tristate         | 79       | 95       | N11        |
| PD[3]       | PCR[51] | AF0<br>AF1<br>AF2<br>AF3<br>—           | GPI[51]<br>—<br>—<br>ADC0_P[7]<br>ADC1_P[7]             | SIUL<br>—<br>—<br>ADC_0<br>ADC_1         | <br> -<br> <br> <br>          | I        | Tristate         | 80       | 96       | R13        |
| PD[4]       | PCR[52] | AF0<br>AF1<br>AF2<br>AF3<br>—           | GPI[52]<br>—<br>—<br>ADC0_P[8]<br>ADC1_P[8]             | SIUL<br>—<br>—<br>ADC_0<br>ADC_1         | <br>                          | I        | Tristate         | 81       | 97       | P12        |
| PD[5]       | PCR[53] | AF0<br>AF1<br>AF2<br>AF3<br>            | GPI[53]<br>—<br>—<br>—<br>ADC0_P[9]<br>ADC1_P[9]        | SIUL<br>—<br>—<br>ADC_0<br>ADC_1         | <br> -<br> <br> <br>          | I        | Tristate         | 82       | 98       | T14        |
| PD[6]       | PCR[54] | AF0<br>AF1<br>AF2<br>AF3<br>—           | GPI[54]<br>—<br>—<br>ADC0_P[10]<br>ADC1_P[10]           | SIUL<br>—<br>—<br>ADC_0<br>ADC_1         | <br> -<br> <br> <br>          | I        | Tristate         | 83       | 99       | R14        |
| PD[7]       | PCR[55] | AF0<br>AF1<br>AF2<br>AF3<br>            | GPI[55]<br>—<br>—<br>ADC0_P[11]<br>ADC1_P[11]           | SIUL<br>—<br>—<br>ADC_0<br>ADC_1         | <br> -<br> <br> <br>          | I        | Tristate         | 84       | 100      | P13        |

| Table 4. Functional | port pin | descriptions | (continued) |  |
|---------------------|----------|--------------|-------------|--|
|---------------------|----------|--------------|-------------|--|



|                     |          |                                    |                                                 |                                              |                               |          |                           | Pin number |          | er         |
|---------------------|----------|------------------------------------|-------------------------------------------------|----------------------------------------------|-------------------------------|----------|---------------------------|------------|----------|------------|
| Port<br>pin         | PCR      | Alternate<br>function <sup>1</sup> | Function                                        | Peripheral                                   | I/O<br>direction <sup>2</sup> | Pad type | RESET<br>config.          | 176 LQFP   | 208 LQFP | 256 MAPBGA |
| PH[5]               | PCR[117] | AF0<br>AF1<br>AF2<br>AF3<br>—      | GPIO[117]<br>E1UC[7]<br>—<br>SIN_7              | SIUL<br>eMIOS_1<br>—<br>DSPI_7               | I/O<br>I/O<br>—<br>I          | S        | Tristate                  | 163        | 187      | B7         |
| PH[6]               | PCR[118] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[118]<br>E1UC[8]<br>SCK_7<br>MA[2]          | SIUL<br>eMIOS_1<br>DSPI_7<br>ADC_0           | I/O<br>I/O<br>I/O<br>O        | M/S      | Tristate                  | 164        | 188      | C7         |
| PH[7]               | PCR[119] | AF0<br>AF1<br>AF2<br>AF3<br>ALT4   | GPIO[119]<br>E1UC[9]<br>CS3_2<br>MA[1]<br>CS0_7 | SIUL<br>eMIOS_1<br>DSPI_2<br>ADC_0<br>DSPI_7 | I/O<br>I/O<br>O<br>I/O        | M/S      | Tristate                  | 165        | 189      | C6         |
| PH[8]               | PCR[120] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[120]<br>E1UC[10]<br>CS2_2<br>MA[0]         | SIUL<br>eMIOS_1<br>DSPI_2<br>ADC_0           | I/O<br>I/O<br>O<br>O          | M/S      | Tristate                  | 166        | 190      | A6         |
| PH[9] <sup>6</sup>  | PCR[121] | AF0<br>AF1<br>AF2<br>AF3<br>—      | GPIO[121]<br>—<br>—<br>—<br>TCK                 | SIUL<br>—<br>—<br>JTAGC                      | I/O<br>—<br>—<br>—<br>I       | S        | Input,<br>weak<br>pull-up | 155        | 179      | A11        |
| PH[10] <sup>6</sup> | PCR[122] | AF0<br>AF1<br>AF2<br>AF3<br>—      | GPIO[122]<br>—<br>—<br>—<br>TMS                 | SIUL<br>—<br>—<br>JTAGC                      | I/O<br>—<br>—<br>—<br>I       | M/S      | Input,<br>weak<br>pull-up | 148        | 172      | D10        |
| PH[11]              | PCR[123] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[123]<br>SOUT_3<br>CS0_4<br>E1UC[5]         | SIUL<br>DSPI_3<br>DSPI_4<br>eMIOS_1          | I/O<br>O<br>I/O<br>I/O        | M/S      | Tristate                  | 140        | 164      | A13        |
| PH[12]              | PCR[124] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[124]<br>SCK_3<br>CS1_4<br>E1UC[25]         | SIUL<br>DSPI_3<br>DSPI_4<br>eMIOS_1          | I/O<br>I/O<br>O<br>I/O        | M/S      | Tristate                  | 141        | 165      | B12        |
| PH[13]              | PCR[125] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[125]<br>SOUT_4<br>CS0_3<br>E1UC[26]        | SIUL<br>DSPI_4<br>DSPI_3<br>eMIOS_1          | I/O<br>O<br>I/O<br>I/O        | M/S      | Tristate                  | 9          | 9        | B1         |

| Table 4. Functional | port pi | in descri | otions | (continued) |
|---------------------|---------|-----------|--------|-------------|
|                     | Poirp   |           |        |             |



|             |          |                                    |                              |                         |                               |          |                  | Pir      | n numbe  | ər         |
|-------------|----------|------------------------------------|------------------------------|-------------------------|-------------------------------|----------|------------------|----------|----------|------------|
| Port<br>pin | PCR      | Alternate<br>function <sup>1</sup> | Function                     | Peripheral              | I/O<br>direction <sup>2</sup> | Pad type | RESET<br>config. | 176 LQFP | 208 LQFP | 256 MAPBGA |
| PL[10]      | PCR[186] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[186]<br>—<br>МСКО<br>—  | SIUL<br>—<br>Nexus<br>— | I/O<br>—<br>O<br>—            | F/S      | Tristate         | _        | _        | M11        |
| PL[11]      | PCR[187] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[187]<br>—<br>—<br>—     | SIUL<br>—<br>—<br>—     | I/O<br>—<br>—<br>—            | M/S      | Tristate         | _        | _        | M12        |
| PL[12]      | PCR[188] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[188]<br>—<br>EVTO<br>—  | SIUL<br>—<br>Nexus<br>— | I/O<br>—<br>O<br>—            | M/S      | Tristate         | _        | _        | F11        |
| PL[13]      | PCR[189] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[189]<br>—<br>MDO6<br>—  | SIUL<br>—<br>Nexus<br>— | I/O<br>—<br>O<br>—            | M/S      | Tristate         |          |          | F10        |
| PL[14]      | PCR[190] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[190]<br>—<br>MDO7<br>—  | SIUL<br>—<br>Nexus<br>— | I/O<br>—<br>O<br>—            | M/S      | Tristate         |          | _        | E12        |
| PL[15]      | PCR[191] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[191]<br><br>MDO8<br>    | SIUL<br>—<br>Nexus<br>— | I/O<br>—<br>O<br>—            | M/S      | Tristate         |          |          | E11        |
| PM[0]       | PCR[192] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[192]<br>—<br>MDO9<br>—  | SIUL<br>—<br>Nexus<br>— | I/O<br>—<br>O<br>—            | M/S      | Tristate         | _        |          | E10        |
| PM[1]       | PCR[193] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[193]<br>—<br>MDO10<br>— | SIUL<br>—<br>Nexus<br>— | I/O<br>—<br>O<br>—            | M/S      | Tristate         | _        | _        | E9         |
| PM[2]       | PCR[194] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[194]<br>—<br>MDO11<br>— | SIUL<br>—<br>Nexus<br>— | I/O<br>—<br>O<br>—            | M/S      | Tristate         |          |          | F12        |
| PM[3]       | PCR[195] | AF0<br>AF1<br>AF2<br>AF3           | GPIO[195]<br>—<br>—<br>—     | SIUL<br>—<br>—<br>—     | I/O<br>—<br>—                 | M/S      | Tristate         |          |          | K12        |

| Table 4 Eurotional  | nort n | in descri | ntions / | (continued) |
|---------------------|--------|-----------|----------|-------------|
| Table 4. Functional | port p | in descri | ptions   | (continued) |

# NOTE

Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions  $(V_{IN} > V_{DD\_HV\_A/HV\_B} \text{ or } V_{IN} < V_{SS\_HV})$ , the voltage on pins with respect to ground  $(V_{SS\_HV})$  must not exceed the recommended values.

#### **Recommended operating conditions** 4.4

| Symbol Parameter                     |    | Paramatar                                                                                                     | Conditions                               | Va                      | Unit                               |      |
|--------------------------------------|----|---------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------|------------------------------------|------|
| Symbol                               |    | Falameter                                                                                                     | Conditions                               | Min                     | Мах                                | Unit |
| V <sub>SS_HV</sub>                   | SR | Digital ground on VSS_HV pins                                                                                 |                                          | 0                       | 0                                  | V    |
| V <sub>DD_HV_A</sub> 1               | SR | Voltage on V <sub>DD_HV_A</sub> pins<br>with respect to ground<br>(V <sub>SS_HV</sub> )                       | _                                        | 3.0                     | 3.6                                | V    |
| V <sub>DD_HV_B</sub> 1               | SR | Voltage on V <sub>DD_HV_B</sub> pins<br>with respect to ground<br>(V <sub>SS_HV</sub> )                       | _                                        | 3.0                     | 3.6                                | V    |
| V <sub>SS_LV</sub> <sup>2</sup>      | SR | Voltage on VSS_LV (low<br>voltage digital supply) pins<br>with respect to ground<br>(V <sub>SS_HV</sub> )     | _                                        | V <sub>SS_HV</sub> -0.1 | V <sub>SS_HV</sub> + 0.1           | V    |
| V <sub>RC_CTRL</sub> <sup>3</sup>    |    | Base control voltage for<br>external BCP68 NPN device                                                         | Relative to V <sub>DD_LV</sub>           | 0                       | V <sub>DD_LV</sub> + 1             | V    |
| V <sub>SS_ADC</sub>                  | SR | Voltage on VSS_HV_ADC0,<br>VSS_HV_ADC1 (ADC<br>reference) pin with respect to<br>ground (V <sub>SS_HV</sub> ) | _                                        | V <sub>SS_HV</sub> -0.1 | V <sub>SS_HV</sub> + 0.1           | V    |
| V <sub>DD_HV_ADC0</sub> <sup>4</sup> | SR | Voltage on VDD_HV_ADC0                                                                                        | _                                        | 3.0 <sup>5</sup>        | 3.6                                | V    |
|                                      |    | (V <sub>SS_HV</sub> )                                                                                         | Relative to $V_{DD_HV_A}^6$              | $V_{DD_HV_A} - 0.1$     | V <sub>DD_HV_A</sub> + 0.1         |      |
| V <sub>DD_HV_ADC1</sub> <sup>7</sup> | SR | Voltage on VDD_HV_ADC1                                                                                        |                                          | 3.0                     | 3.6                                | V    |
|                                      |    | (V <sub>SS_HV</sub> )                                                                                         | Relative to $V_{DD_HV_A}^6$              | $V_{DD_HV_A} - 0.1$     | V <sub>DD_HV_A</sub> + 0.1         |      |
| V <sub>IN</sub>                      | SR | Voltage on any GPIO pin with                                                                                  |                                          | $V_{SS_HV} - 0.1$       | _                                  | V    |
|                                      |    | respect to ground (v <sub>SS_HV</sub> )                                                                       | Relative to<br>V <sub>DD_HV_A/HV_B</sub> |                         | V <sub>DD_HV_A/HV_B</sub><br>+ 0.1 |      |

| Table 9. Recommended | operating | conditions | (3.3 | V) |
|----------------------|-----------|------------|------|----|
|----------------------|-----------|------------|------|----|



# 4.5.2 Power considerations

The average chip-junction temperature, T<sub>J</sub>, in degrees Celsius, may be calculated using Equation 1:

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 1

Where:

 $T_A$  is the ambient temperature in °C.

 $R_{\theta JA}$  is the package junction-to-ambient thermal resistance, in °C/W.

 $P_D$  is the sum of  $P_{INT}$  and  $P_{I/O} (P_D = P_{INT} + P_{I/O})$ .

P<sub>INT</sub> is the product of I<sub>DD</sub> and V<sub>DD</sub>, expressed in watts. This is the chip internal power.

 $P_{I/O}$  represents the power dissipation on input and output pins; user determined.

Most of the time for the applications,  $P_{I/O} < P_{INT}$  and may be neglected. On the other hand,  $P_{I/O}$  may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between  $P_D$  and  $T_J$  (if  $P_{I/O}$  is neglected) is given by:

$$P_{D} = K / (T_{J} + 273 °C)$$
 Eqn. 2

Therefore, solving equations 1 and 2:

$$K = P_{D} \times (T_{A} + 273 \text{ °C}) + R_{\theta JA} \times P_{D}^{2}$$
 Eqn. 3

Where:

K is a constant for the particular part, which may be determined from Equation 3 by measuring  $P_D$  (at equilibrium) for a known  $T_{A.}$  Using this value of K, the values of  $P_D$  and  $T_J$  may be obtained by solving equations 1 and 2 iteratively for any value of  $T_A$ .

# 4.6 I/O pad electrical characteristics

# 4.6.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Fast pads—These pads provide maximum speed. These are used for improved Nexus debugging capability.
- Input only pads—These pads are associated to ADC channels and 32 kHz low power external crystal oscillator providing low input leakage.
- Low power pads—These pads are active in standby mode for wakeup source.

Also, medium/slow and fast/medium pads are available in design which can be configured to behave like a slow/medium and medium/fast pads depending upon the slew-rate control.



| Symbol C Parameter |    | C | 0                        | Parameter |                                                                                         | Conditions <sup>1,2</sup> |          | Unit               |   |
|--------------------|----|---|--------------------------|-----------|-----------------------------------------------------------------------------------------|---------------------------|----------|--------------------|---|
|                    |    |   |                          |           | Тур                                                                                     | Max                       | <b>U</b> |                    |   |
| V <sub>OL</sub>    | СС | Ρ | Output low level<br>SLOW | Push Pull | $I_{OL} = 3 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$      | _                         | _        | 0.1V <sub>DD</sub> | V |
|                    |    | С | configuration            |           | I <sub>OL</sub> = 3 mA,<br>V <sub>DD</sub> = 5.0 V ± 10%, PAD3V5V =<br>1 <sup>(3)</sup> | _                         |          | 0.1V <sub>DD</sub> |   |
|                    |    | Ρ |                          |           | I <sub>OL</sub> = 1.5 mA,<br>V <sub>DD</sub> = 3.3 V ± 10%, PAD3V5V = 1                 | _                         | —        | 0.5                |   |

Table 15. SLOW configuration output buffer electrical characteristics (continued)

NOTES:

 $^1~V_{DD}$  = 3.3 V  $\pm$  10% / 5.0 V  $\pm$  10%,  $T_A$  = –40 to 125 °C, unless otherwise specified.

 $^{2}$  V<sub>DD</sub> as mentioned in the table is V<sub>DD\_HV\_A</sub>/V<sub>DD\_HV\_B</sub>.

<sup>3</sup> The configuration PAD3V5 = 1 when  $\overline{V_{DD}}$  = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

| Table 16. ME | <b>DIUM configuration</b> | output buffer | electrical of | characteristics |
|--------------|---------------------------|---------------|---------------|-----------------|
|--------------|---------------------------|---------------|---------------|-----------------|

| Sum             | bol  | c | Paramotor                                    | Conditions <sup>1</sup> , <sup>2</sup> |                                                                                               | Value                 |     | Unit               |      |
|-----------------|------|---|----------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|-----|--------------------|------|
| J               | IDUI | C | Farameter                                    |                                        |                                                                                               |                       | Тур | Max                | Unit |
| V <sub>OH</sub> | CC   | С | Output high level<br>MEDIUM<br>configuration | Push Pull                              | $I_{OH} = -3 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%,$<br>PAD3V5V = 0                | 0.8V <sub>DD</sub>    | _   | _                  |      |
|                 |      | С |                                              |                                        | $I_{OH} = -1.5 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%,$<br>PAD3V5V = 1 <sup>3</sup> | 0.8V <sub>DD</sub>    | _   | _                  | V    |
|                 |      | С |                                              |                                        | I <sub>OH</sub> = −2 mA,<br>V <sub>DD</sub> = 3.3 V ± 10%,<br>PAD3V5V = 1                     | V <sub>DD</sub> – 0.8 | _   | _                  |      |
| V <sub>OL</sub> | CC   | С | Output low level<br>MEDIUM<br>configuration  | Push Pull                              | $I_{OL} = 3 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%,$<br>PAD3V5V = 0                 | _                     | _   | 0.2V <sub>DD</sub> |      |
|                 |      | С |                                              |                                        | $I_{OL} = 1.5 \text{ mA},$<br>$V_{DD} = 5.0 \text{ V} \pm 10\%,$<br>$PAD3V5V = 1^{(3)}$       | _                     | _   | 0.1V <sub>DD</sub> | V    |
|                 |      | С |                                              |                                        | I <sub>OL</sub> = 2 mA,<br>V <sub>DD</sub> = 3.3 V ± 10%,<br>PAD3V5V = 1                      | —                     |     | 0.5                |      |

NOTES: <sup>1</sup> V<sub>DD</sub> = 3.3 V ± 10% / 5.0 V ± 10%, T<sub>A</sub> = -40 to 125 °C, unless otherwise specified.

 $^2~V_{DD}$  as mentioned in the table is  $V_{DD\_HV\_A}/V_{DD\_HV\_B}.$ 

<sup>3</sup> The configuration PAD3V5 = 1 when  $\overline{V_{DD}}$  = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.





Figure 7. Noise filtering on reset signal

| Symb             |    | C | Parameter                                  | Conditions <sup>1</sup>                                                                             |                     | Value <sup>2</sup> |                       | Unit |
|------------------|----|---|--------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------|--------------------|-----------------------|------|
| Synnb            |    | C | raiametei                                  | Conditions                                                                                          | Min                 | Тур                | Max                   | Onic |
| V <sub>IH</sub>  | SR | Ρ | Input High Level CMOS<br>(Schmitt Trigger) | _                                                                                                   | 0.65V <sub>DD</sub> | _                  | V <sub>DD</sub> + 0.4 | V    |
| V <sub>IL</sub>  | SR | Ρ | Input low Level CMOS<br>(Schmitt Trigger)  | _                                                                                                   | -0.3                | _                  | 0.35V <sub>DD</sub>   | V    |
| V <sub>HYS</sub> | СС | С | Input hysteresis CMOS<br>(Schmitt Trigger) | _                                                                                                   | 0.1V <sub>DD</sub>  |                    | —                     | V    |
| V <sub>OL</sub>  | СС | Ρ | Output low level                           | Push Pull, $I_{OL} = 2 \text{ mA}$ ,<br>V <sub>DD</sub> = 5.0 V ± 10%, PAD3V5V = 0<br>(recommended) | —                   | _                  | 0.1V <sub>DD</sub>    | V    |
|                  |    |   |                                            | Push Pull, $I_{OL} = 1 \text{ mA}$ ,<br>V <sub>DD</sub> = 5.0 V ± 10%, PAD3V5V = 1 <sup>3</sup>     | _                   | _                  | 0.1V <sub>DD</sub>    |      |
|                  |    |   |                                            | Push Pull, $I_{OL} = 1 \text{ mA}$ ,<br>V <sub>DD</sub> = 3.3 V ± 10%, PAD3V5V = 1<br>(recommended) | _                   | _                  | 0.5                   |      |

Table 21. Reset electrical characteristics



| Symbol             |    | C | Parameter                                         | Conditions <sup>1</sup>                                                | Value <sup>2</sup> |     |     | Unit |
|--------------------|----|---|---------------------------------------------------|------------------------------------------------------------------------|--------------------|-----|-----|------|
| Cynno              |    | Ŭ | i diameter                                        | Conditions                                                             | Min                | Тур | Max |      |
| T <sub>tr</sub>    | СС | D | Output transition time<br>output pin <sup>4</sup> | C <sub>L</sub> = 25 pF,<br>V <sub>DD</sub> = 5.0 V ± 10%, PAD3V5V = 0  | _                  | —   | 10  | ns   |
|                    |    |   |                                                   | C <sub>L</sub> = 50 pF,<br>V <sub>DD</sub> = 5.0 V ± 10%, PAD3V5V = 0  | —                  | —   | 20  |      |
|                    |    |   |                                                   | C <sub>L</sub> = 100 pF,<br>V <sub>DD</sub> = 5.0 V ± 10%, PAD3V5V = 0 | —                  | —   | 40  |      |
|                    |    |   |                                                   | C <sub>L</sub> = 25 pF,<br>V <sub>DD</sub> = 3.3 V ± 10%, PAD3V5V = 1  | —                  | —   | 12  |      |
|                    |    |   |                                                   | C <sub>L</sub> = 50 pF,<br>V <sub>DD</sub> = 3.3 V ± 10%, PAD3V5V = 1  | —                  | —   | 25  |      |
|                    |    |   |                                                   | C <sub>L</sub> = 100 pF,<br>V <sub>DD</sub> = 3.3 V ± 10%, PAD3V5V = 1 | —                  | —   | 40  |      |
| $W_{FRST}$         | SR | Ρ | Reset input filtered pulse                        | —                                                                      | _                  | —   | 40  | ns   |
| W <sub>NFRST</sub> | SR | Ρ | Reset input not filtered pulse                    | _                                                                      | 1000               | —   | _   | ns   |
| I <sub>WPU</sub>   | СС | Ρ | Weak pull-up current                              | V <sub>DD</sub> = 3.3 V ± 10%, PAD3V5V = 1                             | 10                 | —   | 150 | μA   |
|                    |    |   | adsolute value                                    | $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$                 | 10                 | —   | 150 | 1    |
|                    |    |   |                                                   | $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^5$               | 10                 | —   | 250 | ]    |

| Table 21. Reset electrical character | ristics (continued) |
|--------------------------------------|---------------------|
|--------------------------------------|---------------------|

NOTES:

 $^{1}$  V<sub>DD</sub> = 3.3 V ± 10% / 5.0 V ± 10%, T<sub>A</sub> = –40 to 125 °C, unless otherwise specified.

<sup>2</sup> V<sub>DD</sub> as mentioned in the table is V<sub>DD HV A</sub>/V<sub>DD HV B</sub>. All values need to be confirmed during device validation.

<sup>3</sup> This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the RGM module section of the device Reference Manual).

<sup>4</sup> C<sub>L</sub> includes device and package capacitance (C<sub>PKG</sub> < 5 pF).

<sup>5</sup> The configuration PAD3V5 = 1 when V<sub>DD</sub> = 5 V is only transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

# 4.8 **Power management electrical characteristics**

# 4.8.1 Voltage regulator electrical characteristics

The device implements an internal voltage regulator to generate the low voltage core supply  $V_{DD_LV}$  from the high voltage supply  $V_{DD_HV}$ . The following supplies are involved:

- HV: High voltage external power supply for voltage regulator module. This must be provided externally through  $V_{DD HV A}$  power pin.
- LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the on-chip VREG with an external ballast (BCP68 NPN device). It is further split into four main domains to ensure noise isolation between critical LV modules within the device:
  - LV\_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.





Figure 9. Low voltage monitor vs. Reset

| Symbol                 |    | C | Parameter                                   | Conditions <sup>1</sup> | Value <sup>2</sup> |       |      | Unit |
|------------------------|----|---|---------------------------------------------|-------------------------|--------------------|-------|------|------|
|                        |    | Ŭ |                                             | Conditione              | Min                | Тур   | Max  | om   |
| V <sub>PORUP</sub>     | SR | Ρ | Supply for functional POR module            | —                       | 1.0                | _     | 5.5  |      |
| V <sub>PORH</sub>      | СС | Ρ | Power-on reset threshold                    | —                       | 1.5                | _     | 2.6  |      |
| V <sub>LVDHV3H</sub>   | СС | Т | LVDHV3 low voltage detector high threshold  | —                       | 2.7                | _     | 2.85 |      |
| V <sub>LVDHV3L</sub>   | СС | Т | LVDHV3 low voltage detector low threshold   | —                       | 2.6                | _     | 2.74 | V    |
| V <sub>LVDHV5H</sub>   | СС | Т | LVDHV5 low voltage detector high threshold  | —                       | 4.3                | —     | 4.5  |      |
| V <sub>LVDHV5L</sub>   | СС | Т | LVDHV5 low voltage detector low threshold   | —                       | 4.2                |       | 4.4  |      |
| V <sub>LVDLVCORL</sub> | СС | Ρ | LVDLVCOR low voltage detector low threshold | $T_A = 25 \ ^\circ C$ , | 1.12               | 1.145 | 1.17 |      |
| V <sub>LVDLVBKPL</sub> | СС | Ρ | LVDLVBKP low voltage detector low threshold | aiter trimming          | 1.12               | 1.145 | 1.17 |      |

| Table 23. Low voltage | e monitor | electrical | characteristics |
|-----------------------|-----------|------------|-----------------|
|-----------------------|-----------|------------|-----------------|

NOTES: <sup>1</sup>  $V_{DD}$  = 3.3 V ± 10% / 5.0 V ± 10%, T<sub>A</sub> = -40 to 125 °C, unless otherwise specified. <sup>2</sup> All values need to be confirmed during device validation.

#### 4.9 Low voltage domain power consumption

Table 24 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application.



NOTES:

- All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
- <sup>2</sup> A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.
- <sup>3</sup> Data based on characterization results, not tested in production.

# 4.11.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply over-voltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

### Table 33. Latch-up results

| Symbol | Parameter             | Conditions                                    | Class      |
|--------|-----------------------|-----------------------------------------------|------------|
| LU     | Static latch-up class | $T_A = 125 \ ^{\circ}C$ conforming to JESD 78 | II level A |

# 4.12 Fast external crystal oscillator (4–40 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 10 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 34 provides the parameter description of 4 MHz to 40 MHz crystals used for the design simulations.



| Symbol                |    | C | Parameter                                                                                                | Conditions <sup>1</sup>                               | Value <sup>2</sup> |     |     | Unit |
|-----------------------|----|---|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------|-----|-----|------|
|                       |    | Ŭ | i arameter                                                                                               | Conditions                                            | Min                | Тур | Max | onne |
| T <sub>SIRCSU</sub>   | СС | Ρ | Slow internal RC oscillator start-up time                                                                | T <sub>A</sub> = 25 °C, V <sub>DD</sub> = 5.0 V ± 10% | _                  | 8   | 12  | μs   |
| $\Delta_{SIRCPRE}$    | СС | С | Slow internal RC oscillator precision after software trimming of f <sub>SIRC</sub>                       | T <sub>A</sub> = 25 °C                                | -2                 | —   | +2  | %    |
|                       | СС | С | Slow internal RC oscillator trimming step                                                                | _                                                     | _                  | 2.7 | —   |      |
| $\Delta_{ m SIRCVAR}$ | СС | С | Variation in f <sub>SIRC</sub> across<br>temperature and fluctuation in<br>supply voltage, post trimming | _                                                     | -10                | —   | +10 | %    |

### Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)

NOTES: <sup>1</sup> V<sub>DD</sub> = 3.3 V ± 10% / 5.0 V ± 10%, T<sub>A</sub> = -40 to 125 °C, unless otherwise specified.

<sup>2</sup> All values need to be confirmed during device validation.

<sup>3</sup> This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

#### 4.17 **ADC** electrical characteristics

#### 4.17.1 Introduction

The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).

## NOTE

Due to ADC limitations, the two ADCs cannot sample a shared channel at the same time i.e., their sampling windows cannot overlap if a shared channel is selected. If this is done, neither of the ADCs can guarantee their conversion accuracies.





Figure 15. ADC\_0 characteristic and error definitions

# 4.17.1.1 Input impedance and ADC accuracy

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device, can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter, can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC Filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.





Figure 20. ADC\_1 characteristic and error definitions



# 4.19.2 DSPI characteristics

\_\_\_\_\_

### Table 49. DSPI timing

| Snoc | Charactoristic                                                                                    | Symbol            |                             | Unit                |    |
|------|---------------------------------------------------------------------------------------------------|-------------------|-----------------------------|---------------------|----|
| Spec | Characteristic                                                                                    | Symbol            | Min                         | Мах                 |    |
| 1    | DSPI Cycle Time                                                                                   | t <sub>SCK</sub>  | Refer<br>note <sup>1</sup>  | —                   | ns |
| _    | Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1->0 | $\Delta t_{CSC}$  | —                           | 115                 | ns |
| _    | Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1->1 | $\Delta t_{ASC}$  | 15                          | —                   | ns |
| 2    | CS to SCK Delay <sup>2</sup>                                                                      | t <sub>csc</sub>  | 7                           | _                   | ns |
| 3    | After SCK Delay <sup>3</sup>                                                                      | t <sub>ASC</sub>  | 15                          | —                   | ns |
| 4    | SCK Duty Cycle                                                                                    | t <sub>SDC</sub>  | $0.4 \times t_{\text{SCK}}$ | $0.6 	imes t_{SCK}$ | ns |
| —    | Slave Setup Time<br>(SS active to SCK setup time)                                                 | t <sub>SUSS</sub> | 5                           | —                   | ns |
| —    | Slave Hold Time<br>(SS active to SCK hold time)                                                   | t <sub>HSS</sub>  | 10                          | _                   | ns |
| 5    | Slave Access Time<br>(SS active to SOUT valid) <sup>4</sup>                                       | t <sub>A</sub>    | —                           | 42                  | ns |
| 6    | Slave SOUT Disable Time<br>(SS inactive to SOUT High-Z or invalid)                                | t <sub>DIS</sub>  | _                           | 25                  | ns |
| 7    | CSx to PCSS time                                                                                  | t <sub>PCSC</sub> | 0                           | —                   | ns |
| 8    | PCSS to PCSx time                                                                                 | t <sub>PASC</sub> | 0                           |                     | ns |





Figure 25. DSPI classic SPI timing-master, CPHA = 0



Figure 26. DSPI classic SPI timing–master, CPHA = 1

MPC5646C Data Sheet, Rev.6





Figure 34. Nexus output timing



Package characteristics

# 5 Package characteristics

- 5.1 Package mechanical data
- 5.1.1 176 LQFP package mechanical drawing