

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	e200z4d
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	147
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 27x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5646bf0vlu1r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Introd	luction
	1.1	Document Overview
	1.2	Description
2	Block	diagram
3	Packa	age pinouts and signal descriptions
	3.1	Pad types
	3.2	System pins14
	3.3	Functional ports14
4	Elect	rical Characteristics41
	4.1	Parameter classification41
	4.2	NVUSRO register
		4.2.1 NVUSRO [PAD3V5V(0)] field description42
		4.2.2 NVUSRO [PAD3V5V(1)] field description42
	4.3	Absolute maximum ratings
	4.4	Recommended operating conditions
	4.5	Thermal characteristics
		4.5.1 Package thermal characteristics
		4.5.2 Power considerations
	4.6	I/O pad electrical characteristics
		4.6.1 I/O pad types
		4.6.2 I/O input DC characteristics
		4.6.3 I/O output DC characteristics
		4.6.4 Output pin transition times
		4.6.5 I/O pad current specification
	4.7	RESET electrical characteristics
	4.8	Power management electrical characteristics
		4.8.1 Voltage regulator electrical characteristics57
		4.8.2 VDD_BV options
		4.8.3 Voltage monitor electrical characteristics 60
	4.9	Low voltage domain power consumption
	4.10	Flash memory electrical characteristics
		4.10.1 Program/Erase characteristics
		4.10.2 Flash memory power supply DC characteristics65
		4.10.3 Flash memory start-up/switch-off timings66
	4.11	Electromagnetic compatibility (EMC) characteristics66
		4.11.1 Designing hardened software to avoid noise

		problems
		4.11.2 Electromagnetic interference (EMI) 67
		4.11.3 Absolute maximum ratings (electrical sensitivity)67
	4.12	Fast external crystal oscillator (4-40 MHz) electrical
		characteristics
	4.13	Slow external crystal oscillator (32 kHz) electrical
		characteristics
	4.14	FMPLL electrical characteristics
	4.15	Fast internal RC oscillator (16 MHz) electrical
		characteristics
	4.16	Slow internal RC oscillator (128 kHz) electrical
		characteristics
	4.17	ADC electrical characteristics
		4.17.1 Introduction
	4.18	Fast Ethernet Controller 87
		4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV,
		RX_ER, and RX_CLK)
		4.18.2 MII Transmit Signal Timing (TXD[3:0], TX_EN,
		TX_ER, TX_CLK)
		4.18.3 MII Async Inputs Signal Timing (CRS and COL)88
		4.18.4 MII Serial Management Channel Timing (MDIO and
		MDC)89
	4.19	On-chip peripherals
		4.19.1 Current consumption
		4.19.2 DSPI characteristics
		4.19.3 Nexus characteristics
		4.19.4 JTAG characteristics
5	Pack	age characteristics
	5.1	Package mechanical data 105
		5.1.1 176 LQFP package mechanical drawing 105
		5.1.2 208 LQFP package mechanical drawing 108
		5.1.3 256 MAPBGA package mechanical drawing . 113
6	Orde	ring information
7	Revis	sion history

NP

Other Features

- System clocks sources
 - 4–40 MHz external crystal oscillator
 - 16 MHz internal RC oscillator
 - FMPLL
 - Additionally, there are two low power oscillators: 128 kHz internal RC oscillator, 32 kHz external crystal oscillator
- Real Time Counter (RTC) with clock source from internal 128 kHz or 16 MHz oscillators or external 4–40 MHz crystal
 - Supports autonomous wake-up with 1 ms resolution with max timeout of 2 seconds
 - Optional support from external 32 kHz crystal oscillator, supporting wake-up with 1 second resolution and max timeout of 1 hour
- 1 Real Time Interrupt (RTI) with 32-bit counter resolution
- 1 Safety Enhanced Software Watchdog Timer (SWT) that supports keyed functionality
- 1 dual-channel FlexRay Controller with 128 message buffers
- 1 Fast Ethernet Controller (FEC)
- On-chip voltage regulator (VREG)
- Cryptographic Services Engine (CSE)
- Offered in the following standard package types:
 - 176-pin LQFP, 24 \times 24 mm, 0.5 mm Lead Pitch
 - 208-pin LQFP, 28 \times 28 mm, 0.5 mm Lead Pitch
 - 256-ball MAPBGA, 17 × 17mm, 1.0 mm Lead Pitch

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	PC[15]	PB[2]	PC[13]	PI[1]	PE[7]	PH[8]	PE[2]	PE[4]	PC[4]	PE[3]	PH[9]	PI[4]	PH[11]	PE[14]	PA[10]	PG[11]	A
в	PH[13]	PC[14]	PC[8]	PC[12]	PI[3]	PE[6]	PH[5]	PE[5]	PC[5]	PC[0]	PC[2]	PH[12]	PG[10]	PA[11]	PA[9]	PA[8]	в
С	PH[14]	VDD_HV _A	PC[9]	PL[0]	PI[0]	PH[7]	PH[6]	VSS_LV	VDD_HV _A	PA[5]	PC[3]	PE[15]	PG[14]	PE[12]	PA[7]	PE[13]	С
D	PG[5]	PI[6]	PJ[4]	PB[3]	PK[15]	PI[2]	PH[4]	VDD_LV	PC[1]	PH[10]	PA[6]	PI[5]	PG[15]	PF[14]	PF[15]	PH[2]	D
Е	PG[3]	PI[7]	PH[15]	PG[2]		1	1	1	1	I	I	1	PG[0]	PG[1]	PH[0]	VDD_HV _A	E
F	PA[2]	PG[4]	PA[1]	PE[1]									PH[1]	PH[3]	PG[12]	PG[13]	F
G	PE[8]	PE[0]	PE[10]	PA[0]			VSS_HV	VSS_HV	VSS_HV	VSS_HV			VDD_HV _B	PI[13]	PI[12]	PA[3]	G
н	PE[9]	VDD_HV _A	PE[11]	PK[1]			VSS_LV	VSS_HV	VSS_HV	VSS_HV			VDD_HV _A	VDD_LV	VSS_LV	PI[11]	н
J	VSS_HV	VRC_CT RL	VDD_LV	PG[9]			VSS_LV	VSS_LV	VSS_HV	VSS_HV			PD[15]	PI[8]	PI[9]	PI[10]	J
к	RESET	VSS_LV	PG[8]	PC[11]			VSS_LV	VSS_LV	VSS_LV	VDD_LV			PD[14]	PD[13]	PB[14]	PB[15]	к
L	PC[10]	PG[7]	PB[0]	PK[2]				1			1		PD[12]	PB[12]	PB[13]	VDD_HV _ADC1	L
М	PG[6]	PB[1]	PK[4]	PF[9]									PB[11]	PD[10]	PD[11]	VSS_HV _ADC1	М
N	PK[3]	PF[8]	PC[6]	PC[7]	PJ[13]	VDD_HV _A	PB[10]	PF[6]	VDD_HV _A	PJ[1]	PD[2]	PJ[5]	PB[5]	PB[6]	PJ[6]	PD[9]	N
Ρ	PF[12]	PF[10]	PF[13]	PA[14]	PJ[9]	PA[12]	PF[0]	PF[5]	PF[7]	PJ[3]	PI[15]	PD[4]	PD[7]	PD[8]	PJ[8]	PJ[7]	Ρ
R	PF[11]	PA[15]	PJ[11]	PJ[15]	PA[13]	PF[2]	PF[3]	PF[4]	VDD_LV	PJ[2]	PJ[0]	PD[0]	PD[3]	PD[6]	VDD_HV _ADC0	PB[7]	R
т	PJ[12]	PA[4]	PK[0]	PJ[14]	PJ[10]	PF[1]	XTAL	EXTAL	VSS_LV	PB[9]	PB[8]	PI[14]	PD[1]	PD[5]	VSS_HV _ADC0	PB[4]	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Notes:

VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3].
Availability of port pin alternate functions depends on product selection.

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 — — —	GPIO[7] E0UC[7] LIN3TX — RXD[2] EIRQ[2] ADC1_S[1]	SIUL eMIOS_0 LINFlexD_3 — FEC SIUL ADC_1	I/O I/O O I I I I	M/S	Tristate	128	152	C15
PA[8]	PCR[8]	AF0 AF1 AF2 AF3 — — — —	GPIO[8] E0UC[8] E0UC[14] — RXD[1] EIRQ[3] ABS[0] LIN3RX	SIUL eMIOS_0 eMIOS_0 FEC SIUL MC_RGM LINFlexD_3	/O /O /O 	M/S	Input, weak pull-up	129	153	B16
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 —	GPIO[9] E0UC[9] — CS2_1 RXD[0] FAB	SIUL eMIOS_0 — DSPI1 FEC MC_RGM	/O /O — 0 	M/S	Pull- down	130	154	B15
PA[10]	PCR[10]	AF0 AF1 AF2 AF3 — — —	GPIO[10] E0UC[10] SDA LIN2TX COL ADC1_S[2] SIN_1	SIUL eMIOS_0 I ² C LINFlexD_2 FEC ADC_1 DSPI_1	/O /O /O 0 	M/S	Tristate	131	155	A15
PA[11]	PCR[11]	AF0 AF1 AF2 AF3 — — — —	GPIO[11] E0UC[11] SCL RX_ER EIRQ[16] LIN2RX ADC1_S[3]	SIUL eMIOS_0 I ² C FEC SIUL LINFlexD_2 ADC_1	/O /O /O 	M/S	Tristate	132	156	B14
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 —	GPIO[12] — E0UC[28] CS3_1 EIRQ[17] SIN_0	SIUL — eMIOS_0 DSPI1 SIUL DSPI_0	/O /O O 	S	Tristate	53	69	P6

Table 4. Functional	port pin	descriptions	(continued)
---------------------	----------	--------------	-------------

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PB[5]	PCR[21]	AF0 AF1 AF2 AF3 —	GPI[21] — — ADC0_P[1] ADC1_P[1]	SIUL — — ADC_0 ADC_1	 - 	Ι	Tristate	91	107	N13
PB[6]	PCR[22]	AF0 AF1 AF2 AF3 —	GPI[22] — — — ADC0_P[2] ADC1_P[2]	SIUL — — ADC_0 ADC_1	 - 	I	Tristate	92	108	N14
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 —	GPI[23] — — — ADC0_P[3] ADC1_P[3]	SIUL — — ADC_0 ADC_1	 - 	Ι	Tristate	93	109	R16
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 — — — —	GPI[24] — — ADC0_S[0] ADC1_S[4] WKPU[25] OSC32k_XTAL ⁴	SIUL — ADC_0 ADC_1 WKPU SXOSC	 	Ι	_	61	77	T11
PB[9] ⁵	PCR[25]	AF0 AF1 AF2 AF3 — — — —	GPI[25] — — ADC0_S[1] ADC1_S[5] WKPU[26] OSC32k_EXTAL ⁴	SIUL — ADC_0 ADC_1 WKPU SXOSC	 	I	_	60	76	T10
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 — — —	GPIO[26] SOUT_1 CAN3TX — ADC0_S[2] ADC1_S[6] WKPU[8]	SIUL DSPI_1 FlexCAN_3 — ADC_0 ADC_1 WKPU	I/O O — I I I	S	Tristate	62	78	N7

Table 4. Functional p	oort pin	descriptions	(continued)
-----------------------	----------	--------------	-------------

								Pir	Pin number		
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA	
PD[8]	PCR[56]	AF0 AF1 AF2 AF3 —	GPI[56] — — ADC0_P[12] ADC1_P[12]	SIUL — — ADC_0 ADC_1	 - 	I	Tristate	87	103	P14	
PD[9]	PCR[57]	AF0 AF1 AF2 AF3 —	GPI[57] — — ADC0_P[13] ADC1_P[13]	SIUL — — ADC_0 ADC_1	 - 	Ι	Tristate	94	114	N16	
PD[10]	PCR[58]	AF0 AF1 AF2 AF3 —	GPI[58] — — ADC0_P[14] ADC1_P[14]	SIUL — — ADC_0 ADC_1	 - 	Ι	Tristate	95	115	M14	
PD[11]	PCR[59]	AF0 AF1 AF2 AF3 —	GPI[59] — — ADC0_P[15] ADC1_P[15]	SIUL — — ADC_0 ADC_1	 	I	Tristate	96	116	M15	
PD[12]	PCR[60]	AF0 AF1 AF2 AF3 —	GPIO[60] CS5_0 E0UC[24] — ADC0_S[4]	SIUL DSPI_0 eMIOS_0 — ADC_0	I/O O I/O — I	S	Tristate	100	120	L13	
PD[13]	PCR[61]	AF0 AF1 AF2 AF3 —	GPIO[61] CS0_1 E0UC[25] — ADC0_S[5]	SIUL DSPI_1 eMIOS_0 — ADC_0	I/O I/O I/O I	S	Tristate	102	124	K14	
PD[14]	PCR[62]	AF0 AF1 AF2 AF3 ALT4 —	GPIO[62] CS1_1 E0UC[26] — FR_DBG[0] ADC0_S[6]	SIUL DSPI_1 eMIOS_0 — Flexray ADC_0	/0 0 /0 0 	S	Tristate	104	126	K13	

Table 4. Fun	ctional port p	in descriptions	(continued)
--------------	----------------	-----------------	-------------

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PE[6]	PCR[70]	AF0 AF1 AF2 AF3 —	GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22]	SIUL eMIOS_0 DSPI_0 ADC_0 SIUL	I/O I/O O I	M/S	Tristate	167	191	B6
PE[7]	PCR[71]	AF0 AF1 AF2 AF3 —	GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23]	SIUL eMIOS_0 DSPI_0 ADC_0 SIUL	I/O I/O O I	M/S	Tristate	168	192	A5
PE[8]	PCR[72]	AF0 AF1 AF2 AF3	GPIO[72] CAN2TX E0UC[22] CAN3TX	SIUL FlexCAN_2 eMIOS_0 FlexCAN_3	I/O O I/O O	M/S	Tristate	21	21	G1
PE[9]	PCR[73]	AF0 AF1 AF2 AF3 — — —	GPIO[73] — E0UC[23] — WKPU[7] CAN2RX CAN3RX	SIUL — eMIOS_0 — WKPU FlexCAN_2 FlexCAN_3	/O /O 	S	Tristate	22	22	H1
PE[10]	PCR[74]	AF0 AF1 AF2 AF3 —	GPIO[74] LIN3TX CS3_1 E1UC[30] EIRQ[10]	SIUL LINFlexD_3 DSPI_1 eMIOS_1 SIUL	I/O O O I/O I	S	Tristate	23	23	G3
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 —	GPIO[75] E0UC[24] CS4_1 — LIN3RX WKPU[14]	SIUL eMIOS_0 DSPI_1 — LINFlexD_3 WKPU	/O /O 	S	Tristate	25	25	H3
PE[12]	PCR[76]	AF0 AF1 AF2 AF3 — — — —	GPIO[76] — E1UC[19] — CRS SIN_2 EIRQ[11] ADC1_S[7]	SIUL 	/O - /O 	M/S	Tristate	133	157	C14

Table 4. Functional	port r	oin descri	ntions ((continued)	•
	PO: 1 P			(ooninaca)	

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PH[14]	PCR[126]	AF0 AF1 AF2 AF3	GPIO[126] SCK_4 CS1_3 E1UC[27]	SIUL DSPI_4 DSPI_3 eMIOS_1	I/O I/O O I/O	M/S	Tristate	10	10	C1
PH[15]	PCR[127]	AF0 AF1 AF2 AF3	GPIO[127] SOUT_5 — E1UC[17]	SIUL DSPI_5 — eMIOS_1	I/O O — I/O	M/S	Tristate	8	8	E3
PI[0]	PCR[128]	AF0 AF1 AF2 AF3	GPIO[128] E0UC[28] LIN8TX —	SIUL eMIOS_0 LINFlexD_8 —	I/O I/O O	S	Tristate	172	196	C5
PI[1]	PCR[129]	AF0 AF1 AF2 AF3 —	GPIO[129] E0UC[29] — WKPU[24] LIN8RX	SIUL eMIOS_0 WKPU LINFlexD_8	/O /O 	S	Tristate	171	195	A4
PI[2]	PCR[130]	AF0 AF1 AF2 AF3	GPIO[130] E0UC[30] LIN9TX —	SIUL eMIOS_0 LINFlexD_9 —	I/O I/O O	S	Tristate	170	194	D6
PI[3]	PCR[131]	AF0 AF1 AF2 AF3 —	GPIO[131] E0UC[31] — WKPU[23] LIN9RX	SIUL eMIOS_0 WKPU LINFlexD_9	/O /O 	S	Tristate	169	193	B5
PI[4]	PCR[132]	AF0 AF1 AF2 AF3	GPIO[132] E1UC[28] SOUT_4 —	SIUL eMIOS_1 DSPI_4 —	I/O I/O O	M/S	Tristate	143	167	A12
PI[5]	PCR[133]	AF0 AF1 AF2 AF3 ALT4	GPIO[133] E1UC[29] SCK_4 CS2_5 CS2_6	SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6	I/O I/O I/O O	M/S	Tristate	142	166	D12
PI[6]	PCR[134]	AF0 AF1 AF2 AF3 ALT4	GPIO[134] E1UC[30] CS0_4 CS0_5 CS0_6	SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6	I/O I/O I/O I/O I/O	S	Tristate	11	11	D2

Table 4. Functional	port pin	descriptions	(continued)
----------------------------	----------	--------------	-------------

				_				Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Periphera	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PI[7]	PCR[135]	AF0 AF1 AF2 AF3 ALT4	GPIO[135] E1UC[31] CS1_4 CS1_5 CS1_6	SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6	I/O I/O O O	S	Tristate	12	12	E2
PI[8]	PCR[136]	AF0 AF1 AF2 AF3 —	GPIO[136] — — — ADC0_S[16]	SIUL — — ADC_0	I/O — — — I	S	Tristate	108	130	J14
PI[9]	PCR[137]	AF0 AF1 AF2 AF3 —	GPIO[137] — — — ADC0_S[17]	SIUL — — ADC_0	I/O — — — I	S	Tristate		131	J15
PI[10]	PCR[138]	AF0 AF1 AF2 AF3 —	GPIO[138] — — — ADC0_S[18]	SIUL — — — ADC_0	I/O — — — I	S	Tristate		134	J16
PI[11]	PCR[139]	AF0 AF1 AF2 AF3 —	GPIO[139] — — ADC0_S[19] SIN_3	SIUL — — ADC_0 DSPI_3	I/O — — — — —	S	Tristate	111	135	H16
PI[12]	PCR[140]	AF0 AF1 AF2 AF3 —	GPIO[140] CS0_3 CS0_2 — ADC0_S[20]	SIUL DSPI_3 DSPI_2 — ADC_0	I/O I/O I/O I	S	Tristate	112	136	G15
PI[13]	PCR[141]	AF0 AF1 AF2 AF3 —	GPIO[141] CS1_3 CS1_2 — ADC0_S[21]	SIUL DSPI_3 DSPI_2 — ADC_0	I/O O O I	S	Tristate	113	137	G14
PI[14]	PCR[142]	AF0 AF1 AF2 AF3 —	GPIO[142] — — ADC0_S[22] SIN_4	SIUL — — ADC_0 DSPI_4	/O 	S	Tristate	76	92	T12

Table 4.	Functional	port pir	descriptio	ons (continued)
	i unotionui	portpir	i acourpui		,

Symbol		C Parameter		Conditions ^{1,2}		Unit		
Gymbol			i di dificici	Conditions	Min	Тур	Max	onne
I _{AVGSEG}	SR	D	Sum of all the static	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	70	mA
			supply segment	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			65 ⁴	

Table 20. I/O consumption (continued)

NOTES: 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified.

 2 V_{DD} as mentioned in the table is V_{DD_HV_A}/V_{DD_HV_B}.

³ All values need to be confirmed during device validation.

⁴ Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

RESET electrical characteristics 4.7

The device implements a dedicated bidirectional RESET pin.

Figure 6. Start-up reset requirements

- LV_CFLA0/CFLA1: Low voltage supply for the two code Flash modules. It is shorted with LV_COR through double bonding.
- LV_DFLA: Low voltage supply for data Flash module. It is shorted with LV_COR through double bonding.
- LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.

1) All VSS_LV pins must be grounded, as shown for VSS_HV pin.

Figure 8. Voltage regulator capacitance connection

The internal voltage regulator requires external bulk capacitance (C_{REGn}) to be connected to the device to provide a stable low voltage digital supply to the device. Also required for stability is the C_{DEC2} capacitor at ballast collector. This is needed to minimize sharp injection current when ballast is turning ON. Apart from the bulk capacitance, user should connect EMI/decoupling cap (C_{REGP}) at each V_{DD_LV}/V_{SS_LV} pin pair.

4.8.1.1 Recommendations

- The external NPN driver must be BCP68 type.
- $V_{DD \ LV}$ should be implemented as a power plane from the emitter of the ballast transistor.

Symbol		C	Paramotor	Conditions	Value ²			
Symbol	1	C	Falailletei	Conditions	Min	Тур	Max	Unit
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	0.65V _{DD_HV_A}	_	V _{DD_HV_A} + 0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.3	_	0.35V _{DD_HV_A}	V

Table 35. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ Based on ATE Cz

⁴ Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals).

4.13 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

Figure 12. Crystal oscillator and resonator connection scheme

NOTE

OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.

Figure 15. ADC_0 characteristic and error definitions

4.17.1.1 Input impedance and ADC accuracy

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device, can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter, can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC Filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

Symbol		^	Perameter	Condit	iona ¹			Unit	
Symbo	"	C	Farameter	Conditions		Min	Тур	Max	Onit
R _{SW2}	СС	D	Internal resistance of analog source	—		_	_	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_	-	_	-	2	kΩ
I _{INJ} 7	SR		Input current Injection	Current $V_{DD} =$ injection on3.3 V ± 10%		-5	_	5	mA
				input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	_	5	
INL	СС	Т	Absolute value for integral non-linearity	No overload	No overload		0.5	1.5	LSB
DNL	СС	Т	Absolute differential non-linearity	No overload		_	0.5	1.0	LSB
OFS	СС	Т	Absolute offset error	_	-	_	0.5	_	LSB
GNE	СС	Т	Absolute gain error		-	_	0.6	_	LSB
TUEP	СС	Ρ	Total unadjusted	Without curren	t injection	-2	0.6	2	LSB
		Т	channels, input only pins	With current injection		-3		3	
TUEX	СС	Т	Total unadjusted	Without curren	t injection	-3	1	3	LSB
		Т	channel	With current in	jection	-4		4	

Table 42. ADC conversion characteristics (10-bit ADC_0) (continued)

NOTES:

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² Analog and digital $V_{SS HV}$ must be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC0} and V_{DD_ADC0} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

- ⁴ During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC0_S} . After the end of the sample time t_{ADC0_S} , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{ADC0_S} depend on programming.
- ⁵ This parameter does not include the sample time t_{ADC0_S}, but only the time for determining the digital result and the time to load the result's register with the conversion result
- ⁶ Refer to ADC conversion table for detailed calculations.

⁷ PB10 should not have any current injected. It can disturb accuracy on other ADC_0 pins.

⁸ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

Symb	al	^	Parameter	Cond	itions1		Value		Unit			
Symb	OI	C	Parameter	Conditions		Min	Тур	Max	Onit			
R _{SW2}	CC	D	Internal resistance of analog source	—				2	kΩ			
R _{AD}	CC	D	Internal resistance of analog source	_				0.3	kΩ			
I _{INJ}	SR	SR	SR	SR	—	Input current Injection	Current injection	V _{DD} = 3.3 V ± 10%	-5	_	5	mA
				on one ADC_1 input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	_	5				
INLP	CC	Т	Absolute Integral non-linearity-Preci se channels	No overload			1	3	LSB			
INLS	CC	Т	Absolute Integral non-linearity- Standard channels	No overload			1.5	5	LSB			
DNL	CC	Т	Absolute Differential non-linearity	No ov	verload		0.5	1	LSB			
OFS	CC	Т	Absolute Offset error				2		LSB			
GNE	CC	Т	Absolute Gain error	—			2		LSB			
TUEP ⁹	CC	Ρ	Total Unadjusted Error for precise	Without cu	ırrent	-6		6	LSB			
		Т	channels, input only pins	With curre	nt injection	-8		8	LSB			
TUES ⁽⁹⁾	CC	Т	Total Unadjusted Error for standard	Without cu injection	ırrent	-10		10	LSB			
		Т	cnannel	With curre	nt injection	-12		12	LSB			

Table 43. Conversion characteristics (12-bit ADC_1) (continued)

NOTES:

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 $^2~$ Analog and digital V_{SS~HV} must be common (to be tied together externally).

³ PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from V_{DD_HV_B} domain hence VDD_HV_ADC1 should be within ±100 mV of VDD_HV_B when these channels are used for ADC_1.

⁴ VDD_HV_ADC1 can operate at 5V condition while $V_{DD_HV_B}$ can operate at 3.3V provided that ADC_1 channels coming from $V_{DD_HV_B}$ domain are limited in max swing as $V_{DD_HV_B}$.

⁵ V_{AINx} may exceed V_{SS_ADC1} and V_{DD_ADC1} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0xFFF.

⁶ During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC1_S} . After the end of the sample time t_{ADC1_S} , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{ADC1_S} depend on programming.

- ⁷ Conversion time = Bit evaluation time + Sampling time + 1 Clock cycle delay.
- ⁸ Refer to ADC conversion table for detailed calculations.
- ⁹ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

4.18 Fast Ethernet Controller

MII signals use CMOS signal levels compatible with devices operating at 3.3 V. Signals are not TTL compatible. They follow the CMOS electrical characteristics.

4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)

The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency in 2:1 mode and two times the RX_CLK frequency in 1:1 mode.

Spec	Characteristic	Min	Max	Unit
M1	RXD[3:0], RX_DV, RX_ER to RX_CLK setup	5	_	ns
M2	RX_CLK to RXD[3:0], RX_DV, RX_ER hold	5	_	ns
М3	RX_CLK pulse width high	35%	65%	RX_CLK period
M4	RX_CLK pulse width low	35%	65%	RX_CLK period

Table 44. MII Receive Signal Timing

Figure 21. MII receive signal timing diagram

4.18.2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)

The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the TX_CLK frequency in 2:1 mode and two times the TX_CLK frequency in 1:1 mode.

Figure 27. DSPI classic SPI timing–slave, CPHA = 0

Figure 28. DSPI classic SPI timing-slave, CPHA = 1

Package characteristics

5 Package characteristics

- 5.1 Package mechanical data
- 5.1.1 176 LQFP package mechanical drawing

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandCo nditions.html.

Freescale, the Freescale logo, is trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2009-2014 Freescale Semiconductor, Inc.

MPC5646C Rev.6 02/2014

