

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z4d, e200z0h
Core Size	32-Bit Dual-Core
Speed	80MHz/120MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	177
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 33x10b, 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-TQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5646ccf0mlt1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block	Function
LinFlexD (Local Interconnect Network Flexible with DMA support)	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Memory protection unit (MPU)	Provides hardware access control for all memory references generated in a device
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and modetransition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Non-Maskable Interrupt (NMI)	Handles external events that must produce an immediate response, such as power down detection
Nexus Development Interface (NDI)	Provides real-time development capabilities for e200z0h and e200z4d core processor
Periodic interrupt timer/ Real Time Interrupt Timer (PIT_RTI)	Produces periodic interrupts and triggers
Real-time counter (RTC/API)	A free running counter used for time keeping applications, the RTC can be configured to generate an interrupt at a predefined interval independent of the mode of operation (run mode or low-power mode). Supports autonomous periodic interrupt (API) function to generate a periodic wakeup request to exit a low power mode or an interrupt request
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System integration unit lite (SIUL)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
System status and configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AutoSAR and operating system tasks
Semaphores	Provides the hardware support needed in multi-core systems for sharing resources and provides a simple mechanism to achieve lock/unlock operations via a single write access.
Wake Unit (WKPU)	Supports external sources that can generate interrupts or wakeup events, of which can cause non-maskable interrupt requests or wakeup events.

Package pinouts and signal descriptions

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
А	PC[15]	PB[2]	PC[13]	PI[1]	PE[7]	PH[8]	PE[2]	PE[4]	PC[4]	PE[3]	PH[9]	PI[4]	PH[11]	PE[14]	PA[10]	PG[11]	A
в	PH[13]	PC[14]	PC[8]	PC[12]	PI[3]	PE[6]	PH[5]	PE[5]	PC[5]	PC[0]	PC[2]	PH[12]	PG[10]	PA[11]	PA[9]	PA[8]	В
с	PH[14]	VDD_HV_ A	PC[9]	PL[0]	PI[0]	PH[7]	PH[6]	VSS_LV	VDD_HV_ A	PA[5]	PC[3]	PE[15]	PG[14]	PE[12]	PA[7]	PE[13]	с
D	PG[5]	PI[6]	PJ[4]	PB[3]	PK[15]	PI[2]	PH[4]	VDD_LV	PC[1]	PH[10]	PA[6]	PI[5]	PG[15]	PF[14]	PF[15]	PH[2]	D
Е	PG[3]	PI[7]	PH[15]	PG[2]	VDD_LV	VSS_LV	PK[10]	PK[9]	PM[1]	PM[0]	PL[15]	PL[14]	PG[0]	PG[1]	PH[0]	VDD_HV_ A	E
F	PA[2]	PG[4]	PA[1]	PE[1]	PL[2]	PM[6]	PL[1]	PK[11]	PM[5]	PL[13]	PL[12]	PM[2]	PH[1]	PH[3]	PG[12]	PG[13]	F
G	PE[8]	PE[0]	PE[10]	PA[0]	PL[3]	VSS_HV	VSS_HV	VSS_HV	VSS_HV	VSS_HV	VSS_HV	PK[12]	VDD_HV_ B	PI[13]	PI[12]	PA[3]	G
н	PE[9]	VDD_HV_ A	PE[11]	PK[1]	PL[4]	VSS_LV	VSS_LV	VSS_HV	VSS_HV	VSS_HV	VSS_HV	PK[13]	VDD_HV_ A	VDD_LV	VSS_LV	PI[11]	н
J	VSS_HV	VRC_CTR L	VDD_LV	PG[9]	PL[5]	VSS_LV	VSS_LV	VSS_LV	VSS_HV	VSS_HV	VSS_HV	PK[14]	PD[15]	PI[8]	PI[9]	PI[10]	J
к	RESET	VSS_LV	PG[8]	PC[11]	PL[6]	VSS_LV	VSS_LV	VSS_LV	VSS_LV	VDD_LV	VDD_LV	PM[3]	PD[14]	PD[13]	PB[14]	PB[15]	к
L	PC[10]	PG[7]	PB[0]	PK[2]	PL[7]	VSS_LV	VSS_LV	VSS_LV	VSS_LV	VDD_LV	VDD_LV	PM[4]	PD[12]	PB[12]	PB[13]	VDD_HV_ ADC1	L
м	PG[6]	PB[1]	PK[4]	PF[9]	PK[5]	PK[6]	PK[7]	PK[8]	PL[8]	PL[9]	PL[10]	PL[11]	PB[11]	PD[10]	PD[11]	VSS_HV_ ADC1	М
N	PK[3]	PF[8]	PC[6]	PC[7]	PJ[13]	VDD_HV_ A	PB[10]	PF[6]	VDD_HV_ A	PJ[1]	PD[2]	PJ[5]	PB[5]	PB[6]	PJ[6]	PD[9]	N
Ρ	PF[12]	PF[10]	PF[13]	PA[14]	PJ[9]	PA[12]	PF[0]	PF[5]	PF[7]	PJ[3]	PI[15]	PD[4]	PD[7]	PD[8]	PJ[8]	PJ[7]	Р
R	PF[11]	PA[15]	PJ[11]	PJ[15]	PA[13]	PF[2]	PF[3]	PF[4]	VDD_LV	PJ[2]	PJ[0]	PD[0]	PD[3]	PD[6]	VDD_HV_ ADC0	PB[7]	R
т	PJ[12]	PA[4]	PK[0]	PJ[14]	PJ[10]	PF[1]	XTAL	EXTAL	VSS_LV	PB[9]	PB[8]	PI[14]	PD[1]	PD[5]	VSS_HV_ ADC0	PB[4]	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Notes:

1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], PA[3], PA[3], and PM[4]. 2)Availability of port pin alternate functions depends on product selection.

Figure 4. 256-pin BGA configuration

3.1 Pad types

In the device the following types of pads are available for system pins and functional port pins:

 $S = Slow^1$

 $M = Medium^{1, 2}$

1. See the I/O pad electrical characteristics in the device data sheet for details.

MPC5646C Data Sheet, Rev.6

^{2.} All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. For example, Fast/Medium pad will be Medium by default at reset. Similarly, Slow/Medium pad will be Slow by default. Only exception is PC[1] which is in medium configuration by default (refer to PCR.SRC in the reference manual, Pad Configuration Registers (PCR0—PCR198)).

								Piı	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PA[0]	PCR[0]	AF0 AF1 AF2 AF3 —	GPIO[0] E0UC[0] CLKOUT E0UC[13] WKPU[19] CAN1RX	SIUL eMIOS_0 MC_CGM eMIOS_0 WKPU FlexCAN_1	I/O I/O I/O I	M/S	Tristate	24	24	G4
PA[1]	PCR[1]	AF0 AF1 AF2 AF3 — — —	GPIO[1] E0UC[1] — WKPU[2] CAN3RX NMI[0] ³	SIUL eMIOS_0 — WKPU FlexCAN_3 WKPU	/O /O 	S	Tristate	19	19	F3
PA[2]	PCR[2]	AF0 AF1 AF2 AF3 — —	GPIO[2] E0UC[2] — MA[2] WKPU[3] NMI[1] ³	SIUL eMIOS_0 — ADC_0 WKPU WKPU	/O /O — 0 	S	Tristate	17	17	F1
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 — — —	GPIO[3] E0UC[3] LIN5TX CS4_1 RX_ER_CLK EIRQ[0] ADC1_S[0]	SIUL eMIOS_0 LINFlexD_5 DSPI_1 FEC SIUL ADC_1	I/O I/O O I I I	M/S	Tristate	114	138	G16
PA[4]	PCR[4]	AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] — CS0_1 LIN5RX WKPU[9]	SIUL eMIOS_0 DSPI_1 LINFlexD_5 WKPU	/O /O /O 	S	Tristate	51	61	T2
PA[5]	PCR[5]	AF0 AF1 AF2	GPIO[5] E0UC[5] LIN4TX	SIUL eMIOS_0 LINFlexD_4	I/O I/O O	M/S	Tristate	146	170	C10
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] CS1_1 LIN4RX EIRQ[1]	SIUL eMIOS_0 DSPI_1 LINFlexD_4 SIUL	/O /O — 0 	S	Tristate	147	171	D11

Table 4. Functional	port pi	n descriptions
	P • • • P ··	

Package pinouts and signal descriptions

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PB[5]	PCR[21]	AF0 AF1 AF2 AF3 —	GPI[21] — — ADC0_P[1] ADC1_P[1]	SIUL — — ADC_0 ADC_1	-	I	Tristate	91	107	N13
PB[6]	PCR[22]	AF0 AF1 AF2 AF3 —	GPI[22] — — — ADC0_P[2] ADC1_P[2]	SIUL — — ADC_0 ADC_1	- - - -	I	Tristate	92	108	N14
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 —	GPI[23] — — — ADC0_P[3] ADC1_P[3]	SIUL — — ADC_0 ADC_1		I	Tristate	93	109	R16
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 — — — —	GPI[24] — — ADC0_S[0] ADC1_S[4] WKPU[25] OSC32k_XTAL ⁴	SIUL — — ADC_0 ADC_1 WKPU SXOSC	-	I	_	61	77	T11
PB[9] ⁵	PCR[25]	AF0 AF1 AF2 AF3 — — — —	GPI[25] — — ADC0_S[1] ADC1_S[5] WKPU[26] OSC32k_EXTAL ⁴	SIUL — ADC_0 ADC_1 WKPU SXOSC	 	I		60	76	T10
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 — — —	GPIO[26] SOUT_1 CAN3TX — ADC0_S[2] ADC1_S[6] WKPU[8]	SIUL DSPI_1 FlexCAN_3 ADC_0 ADC_1 WKPU	I/O O I I I	S	Tristate	62	78	N7

Package pinouts and signal descriptions

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PH[14]	PCR[126]	AF0 AF1 AF2 AF3	GPIO[126] SCK_4 CS1_3 E1UC[27]	SIUL DSPI_4 DSPI_3 eMIOS_1	I/O I/O O I/O	M/S	Tristate	10	10	C1
PH[15]	PCR[127]	AF0 AF1 AF2 AF3	GPIO[127] SOUT_5 — E1UC[17]	SIUL DSPI_5 — eMIOS_1	I/O O I/O	M/S	Tristate	8	8	E3
PI[0]	PCR[128]	AF0 AF1 AF2 AF3	GPIO[128] E0UC[28] LIN8TX —	SIUL eMIOS_0 LINFlexD_8 —	I/O I/O O	S	Tristate	172	196	C5
PI[1]	PCR[129]	AF0 AF1 AF2 AF3 	GPIO[129] E0UC[29] — WKPU[24] LIN8RX	SIUL eMIOS_0 — WKPU LINFlexD_8	/O /O 	S	Tristate	171	195	A4
PI[2]	PCR[130]	AF0 AF1 AF2 AF3	GPIO[130] E0UC[30] LIN9TX —	SIUL eMIOS_0 LINFlexD_9 —	I/O I/O O	S	Tristate	170	194	D6
PI[3]	PCR[131]	AF0 AF1 AF2 AF3 	GPIO[131] E0UC[31] — WKPU[23] LIN9RX	SIUL eMIOS_0 WKPU LINFlexD_9	/O /O 	S	Tristate	169	193	B5
PI[4]	PCR[132]	AF0 AF1 AF2 AF3	GPIO[132] E1UC[28] SOUT_4 —	SIUL eMIOS_1 DSPI_4 —	I/O I/O O	M/S	Tristate	143	167	A12
PI[5]	PCR[133]	AF0 AF1 AF2 AF3 ALT4	GPIO[133] E1UC[29] SCK_4 CS2_5 CS2_6	SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6	I/O I/O I/O O	M/S	Tristate	142	166	D12
PI[6]	PCR[134]	AF0 AF1 AF2 AF3 ALT4	GPIO[134] E1UC[30] CS0_4 CS0_5 CS0_6	SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6	I/O I/O I/O I/O I/O	S	Tristate	11	11	D2

Table 4. Functional port pin descriptions (continue

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PM[4]	PCR[196]	AF0 AF1 AF2 AF3	GPIO[196] — — —	SIUL — — —	I/O 	M/S	Tristate		_	L12
PM[5]	PCR[197]	AF0 AF1 AF2 AF3	GPIO[197] — — —	SIUL — — —	I/O 	M/S	Tristate	_	_	F9
PM[6]	PCR[198]	AF0 AF1 AF2 AF3	GPIO[198] — — —	SIUL — — —	I/O — — —	M/S	Tristate		_	F6

 Table 4. Functional port pin descriptions (continued)

NOTES:

- ¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 000 → AF0; PCR.PA = 001 → AF1; PCR.PA = 010 → AF2; PCR.PA = 011 → AF3; PCR.PA = 100 → ALT4. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".
- ² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
- ³ NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is ignored.
- ⁴ SXOSC's OSC32k_XTAL and OSC32k_EXTAL pins are shared with GPIO functionality. When used as crystal pins, other functionality of the pin cannot be used and it should be ensured that application never programs OBE and PUE bit of the corresponding PCR to "1".
- ⁵ If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature as PB[10] can induce coupling on PB[9] and disturb oscillator frequency.
- ⁶ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
 PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
 It is up to the user to configure these pins as GPIO when needed.
- ⁷ When MBIST is enabled to run (STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V before the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST operation. When MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally drive the pad.
- ⁸ These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development Interface "Port Control Register" rather than the SIUL. Specifically, the debugger can enable the MDO[7:0], MSEO, and MCKO ports by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled by programming NDI ((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]).

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS_HV}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

4.1 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 5 are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 5. Parameter classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4.2 NVUSRO register

Portions of the device configuration, such as high voltage supply is controlled via bit values in the Non-Volatile User Options Register (NVUSRO). For a detailed description of the NVUSRO register, see MPC5646C Reference Manual.

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Falameter	Conditions	Min	Max	Onit
I _{INJPAD}	SR	Injected input current on any pin during overload condition		-5	5	mA
I _{INJSUM}		Absolute sum of all injected input currents during overload condition	_	-50	50	
TV _{DD}	SR	V _{DD_HV_A} slope to ensure correct power up ⁸	—	_	0.5	V/µs
		correct power up ^o	—	0.5	—	V/min
T _A	SR	Ambient temperature under bias	f _{CPU} up to 120 MHz + 2%	-40	125	°C
Тј	SR	Junction temperature under bias	—	-40	150	

Table 9. Recommended operating	conditions (3.3 V)	(continued)
--------------------------------	--------------------	-------------

NOTES:

- ¹ 100 nF EMI capacitance need to be provided between each VDD/VSS_HV pair.
- ² 100 nF EMI capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 10 µF bulk capacitance needs to be provided as CREG on each VDD_LV pin. For details refer to the Power Management chapter of the MPC5646C Reference Manual.
- ³ This voltage is internally generated by the device and no external voltage should be supplied.
- $^4~$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.
- ⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.
- ⁶ Both the relative and the fixed conditions must be met. For instance: If $V_{DD_HV_A}$ is 5.9 V, $V_{DD_HV_ADC0}$ maximum value is 6.0 V then, despite the relative condition, the max value is $V_{DD_HV_A} + 0.3 = 6.2$ V.
- ⁷ PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from V_{DD_HV_B} domain hence V_{DD_HV_ADC1} should be within ±100 mV of V_{DD_HV_B} when these channels are used for ADC_1.
- ⁸ Guaranteed by the device validation.

Symbol		Parameter	Conditions	Valu	Value		
Symbol		Falanielei	Conditions	Min	Min Max		
V _{SS_HV}	SR	Digital ground on VSS_HV pins	—	0	0	V	
V _{DD_HV_A} 1	SR	Voltage on VDD_HV_A pins with	—	4.5	5.5	V	
		respect to ground (V_{SS_HV})	Voltage drop ²	3.0	5.5		
V _{DD_HV_B}	SR	Generic GPIO functionality	—	3.0	5.5	V	
		Ethernet/3.3 V functionality (See the notes in all figures in Section 3, "Package pinouts and signal descriptions" for the list of channels operating in V _{DD_HV_B} domain)	_	3.0	3.6	V	

Table 10. Recommended operating conditions (5.0 V)

- ⁴ This voltage is internally generated by the device and no external voltage should be supplied.
- ⁵ 100 nF capacitance needs to be provided between $V_{DD_HV_(ADC0/ADC1)}/V_{SS_HV_(ADC0/ADC1)}$ pair.
- ⁶ Both the relative and the fixed conditions must be met. For instance: If $V_{DD_{HV_A}}$ is 5.9 V, $V_{DD_{HV_A}DC0}$ maximum value is 6.0 V then, despite the relative condition, the max value is $V_{DD_{HV_A}} + 0.3 = 6.2$ V.
- ⁷ PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from V_{DD-HV_B} domain hence VDD_HV_ADC1 should be within ±100 mV of V_{DD HV B} when these channels are used for ADC_1.
- ⁸ Guaranteed by device validation.

NOTE

SRAM retention guaranteed to LVD levels.

4.5 Thermal characteristics

4.5.1 Package thermal characteristics

Symbol		с	Parameter	Conditions ²	Pin count		Unit		
		Ŭ	i di di neter	Conditions		Min	Тур	Max	onne
R_{\thetaJA}	CC	D	Thermal resistance,	Single-layer	176		_	38 ⁵	°C/W
		junction-to-ambient board—1s natural convection ⁴	board—1s	208		—	41 ⁶	°C/W	
R_{\thetaJA}	CC			176	_	_	31	°C/W	
			junction-to-ambient natural convection ⁷	board—2s2p ⁷	208	—	_	34	°C/W

Table 11. LQFP thermal characteristics¹

NOTES:

¹ Thermal characteristics are targets based on simulation that are subject to change per device characterization.

² $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C.

³ All values need to be confirmed during device validation.

⁴ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

⁵ Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6.

⁶ Junction-to-Ambient thermal resistance determined per JEDEC JESD51-2 and JESD51-6

⁷ Junction-to-Board thermal resistance determined per JEDEC JESD51-8.

Table 12. 256 MAPBGA thermal characteri	stics ¹
---	--------------------

S	Symbol C		С	Parameter	Conditions	Value	Unit
R _θ	JA	СС			Single-layer board—1s	43 ²	°C/W
				natural convection	Four-layer board—2s2p	26 ³	

NOTES:

¹ Thermal characteristics are targets based on simulation that are subject to change per device characterization.

² Junction-to-ambient thermal resistance determined per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.

³ Junction-to-ambient thermal resistance determined per JEDEC JESD51-6 with the board horizontal.

Symbol		с	Parameter	Conditions ¹		Value ²		Unit
Symbol			Falameter	Conditions	Min	Тур	Max	Unit
I _{LPREGINT}	СС	D	Low power regulator module current consumption	I _{LPREG} = 15 mA; T _A = 55 °C	-	—	600	μΑ
				I _{LPREG} = 0 mA; T _A = 55 °C	_	20		
I _{VREGREF}	СС	D	Main LVDs and reference current consumption (low power and main regulator switched off)	T _A = 55 °C	_	2	_	μA
I _{VREDLVD12}	СС	D	Main LVD current consumption (switch-off during standby)	T _A = 55 °C	-	1		μA
I _{DD_HV_A}	СС	D	In-rush current on V _{DD_BV} during power-up	_	-		600 ³	mA

NOTES:

 1 V_{DD HV A} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ Inrush current is seen more like steps of 600 mA peak. The startup of the regulator happens in steps of 50 mV in ~25 steps to reach ~1.2 V V_{DD LV}. Each step peak current is within 600 mA

4.8.3 Voltage monitor electrical characteristics

The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors to monitor the $V_{DD\ HV\ A}$ and the $V_{DD\ LV}$ voltage while device is supplied:

- POR monitors V_{DD_HV_A} during the power-up phase to ensure device is maintained in a safe reset state
- LVDHV3 monitors $V_{DD HV_A}$ to ensure device is reset below minimum functional supply
- LVDHV5 monitors $V_{DD HV A}$ when application uses device in the 5.0 V±10% range
- LVDLVCOR monitors power domain No. 1 (PD1)
- LVDLVBKP monitors power domain No. 0 (PD0). VDD_LV is same as PD0 supply.

NOTE

When enabled, PD2 (RAM retention) is monitored through LVD_DIGBKP.

Table 26 shows the data flash memory program and erase characteristics.

Table 26. Data flash memory—Program and erase specifications

				Value							
Symbol		С	C Parameter	Min	Typ ¹	Initial max ²	Max ³	Unit			
T _{wprogram}			Word (32 bits) program time ⁴	_	30	70	500	μs			
T _{16Kpperase}		С	16 KB block pre-program and erase time	_	700	800	5000	ms			
T _{eslat}	сс	сс	сс	сс	D	Erase Suspend Latency	_	—	30	30	μs
t _{ESRT} 5					CC	С	Erase Suspend Request Rate	10	—	—	_
t _{PABT}		D	Program Abort Latency	_	—	12	12	μs			
t _{EAPT}		D	Erase Abort Latency	_	—	30	30	μs			

NOTES:

Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.

⁴ Actual hardware programming times. This does not include software overhead.

⁵ It is time between erase suspend resume and next erase suspend.

Symbol		с	Parameter	Conditions	Va	lue	Unit
		Ŭ	i di dificici	Conditions	Min	Тур	
P/E	CC	С	Number of program/erase cycles per block for 16 Kbyte blocks over the operating temperature range (T _J)	_	100,000	100,000	cycles
			Number of program/erase cycles per block for 32 Kbyte blocks over the operating temperature range (T _J)	_	10,000	100,000	cycles
			Number of program/erase cycles per block for 128 Kbyte blocks over the operating temperature range (T _J)	_	1,000	100,000	cycles
Retention	СС	С	Minimum data retention at 85 °C average ambient temperature ¹	Blocks with 0–1,000 P/E cycles	20		years
				Blocks with 10,000 P/E cycles	10	_	years
				Blocks with 100,000 P/E cycles	5	—	years

Table 27. Flash memory module life

NOTES:

¹ Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

Symbol		C Parameter	Conditions ¹	Value ²			Unit	
Symbol		Ŭ	ruruneter	Conditions	Min	Тур	Max	U
T _{SIRCSU}	СС	Ρ	Slow internal RC oscillator start-up time	$T_A = 25 \text{ °C}, V_{DD} = 5.0 \text{ V} \pm 10\%$	_	8	12	μs
$\Delta_{SIRCPRE}$	СС	С	Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2		+2	%
	СС	С	Slow internal RC oscillator trimming step	_	_	2.7	—	
[∆] sircvar	СС	С	Variation in f _{SIRC} across temperature and fluctuation in supply voltage, post trimming	_	-10		+10	%

Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.17 **ADC** electrical characteristics

4.17.1 Introduction

The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).

NOTE

Due to ADC limitations, the two ADCs cannot sample a shared channel at the same time i.e., their sampling windows cannot overlap if a shared channel is selected. If this is done, neither of the ADCs can guarantee their conversion accuracies.

This relation can again be simplified considering C_S as an additional worst condition. In reality, transient is faster, but the A/D converter circuitry has been designed to be robust also in very worst case: the sampling time T_s is always much longer than the internal time constant.

Eqn. 6

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll T_S$$

The charge of C_{P1} and C_{P2} is redistributed on C_S , determining a new value of the voltage V_{A1} on the capacitance according to the following equation

$$Eqn. 7$$

$$V_{A1} \bullet (C_{S} + C_{P1} + C_{P2}) = V_{A} \bullet (C_{P1} + C_{P2})$$

• A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_S , a constraints on R_L sizing is obtained:

Eqn. 9
8.5 •
$$\tau_2 = 8.5 • R_I • (C_S + C_{P1} + C_{P2}) < T_S$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . The following equation must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (T_S). The filter is typically designed to act as anti-aliasing

4.17.1.2 ADC electrical characteristics

Table 41. ADC input leakage current	
-------------------------------------	--

Sum	Symbol		Parameter		Conditions		Value		Unit
Symbol		C	Falameter	Conditions			Тур	Max	Unit
I _{LKG}	СС	С	Input leakage current	$T_A = -40 \ ^\circ C$	No current injection on adjacent pin	_	1	_	nA
		С		T _A = 25 °C		_	1	_	
		С		T _A = 105 °C		_	8	200	
		Ρ		T _A = 125 °C		—	45	400	1

Table 42. ADC conversion characteristics (10-bit ADC_0)

Symbol		с	Devenueter	Conditions ¹		Value	•	11
Symbo	Gymbol		Parameter	Conditions	Min	Тур	Max	Unit
V _{SS_ADC0}	SR		Voltage on VSS_HV_ADC0 (ADC_0 reference) pin with respect to ground (V _{SS_HV}) ²	_	-0.1	_	0.1	V
V _{DD_ADC0}	SR		Voltage on VDD_HV_ADC0 pin (ADC_0 reference) with respect to ground (V _{SS_HV})	_	V _{DD_HV_A} – 0.1		V _{DD_HV_A} + 0.1	V
V _{AINx}	SR		Analog input voltage ³	_	$V_{SS_ADC0} - 0.1$		V _{DD_ADC0} + 0.1	V
f _{ADC0}	SR		ADC_0 analog frequency	_	6	_	32 + 2%	MHz
t _{ADC0_PU}	SR	_	ADC_0 power up delay	_	—	_	1.5	μs
t _{ADC0_S}	СС	Т	Sample time ⁴	f _{ADC} = 32 MHz	500	—		ns
t _{ADC0_C}	СС	Ρ	Conversion time ^{5,6}	f _{ADC} = 32 MHz	0.625	_		μs
				f _{ADC} = 30 MHz	0.700	_		
C _S	СС	D	ADC_0 input sampling capacitance	_	_		3	pF
C _{P1}	СС	D	ADC_0 input pin capacitance 1	_	—	_	3	pF
C _{P2}	сс	D	ADC_0 input pin capacitance 2	_	—		1	pF
C _{P3}	сс	D	ADC_0 input pin 1 capacitance 3		1	pF		
R _{SW1}	сс	D	Internal resistance of analog source	_	—	—	3	kΩ

Symbol				o 1	Value			
Symb	ol	С	Parameter	Conditions ¹	Min Typ		Max	Unit
V _{SS_ADC1}	SR	—	Voltage on VSS_HV_ADC1 (ADC_1 reference) pin with respect to ground (V _{SS_HV}) ²	_	-0.1		0.1	V
V _{DD_ADC1} ³	SR	_	Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (V _{SS_HV})	_	V _{DD_HV_A} – 0.1		V _{DD_HV_A} + 0.1	V
V _{AINx} ^{3,4}	SR	—	Analog input voltage ⁵	_	V _{SS_ADC1} - 0.1		V _{DD_ADC1} + 0.1	V
f _{ADC1}	SR		ADC_1 analog frequency	_	8 + 2%		32 + 2%	MHz
t _{ADC1_PU}	SR		ADC_1 power up delay	_		1.5		μs
t _{ADC1_S}	CC	Т	Sample time ⁶ VDD=5.0 V	_	440			ns
			Sample time ⁽⁶⁾ VDD=3.3 V	_	530			
t _{ADC1_C}	CC	Р	Conversion time ^{7, 8} VDD=5.0 V	$f_{ADC1} = 32 \text{ MHz}$	2			
			Conversion time ^{(7),} ⁽⁶⁾ VDD =5.0 V	f _{ADC 1} = 30 MHz	2.1			μs
			Conversion time ^{(7),} ⁽⁶⁾ VDD=3.3 V	f _{ADC 1} = 20 MHz	3			
			Conversion time ^{(7),} (6) VDD =3.3 V	f _{ADC1} = 15 MHz	3.01			
C _S	СС	D	ADC_1 input sampling capacitance	_		5		pF
C _{P1}	СС	D	ADC_1 input pin capacitance 1	—		3		pF
C _{P2}	СС	D	ADC_1 input pin capacitance 2	_		1		pF
C _{P3}	СС	D	ADC_1 input pin capacitance 3	_		1.5		pF
R _{SW1}	СС	D	Internal resistance of analog source				1	kΩ

- ⁷ Conversion time = Bit evaluation time + Sampling time + 1 Clock cycle delay.
- ⁸ Refer to ADC conversion table for detailed calculations.
- ⁹ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

4.18 Fast Ethernet Controller

MII signals use CMOS signal levels compatible with devices operating at 3.3 V. Signals are not TTL compatible. They follow the CMOS electrical characteristics.

4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)

The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency in 2:1 mode and two times the RX_CLK frequency in 1:1 mode.

Spec	Characteristic	Min	Max	Unit
M1	RXD[3:0], RX_DV, RX_ER to RX_CLK setup	5	_	ns
M2	RX_CLK to RXD[3:0], RX_DV, RX_ER hold	5	_	ns
M3	RX_CLK pulse width high	35%	65%	RX_CLK period
M4	RX_CLK pulse width low	35%	65%	RX_CLK period

Table 44. MII Receive Signal Timing

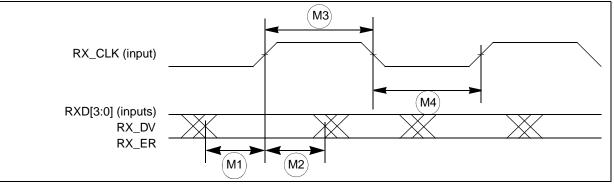


Figure 21. MII receive signal timing diagram

4.18.2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)

The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the TX_CLK frequency in 2:1 mode and two times the TX_CLK frequency in 1:1 mode.

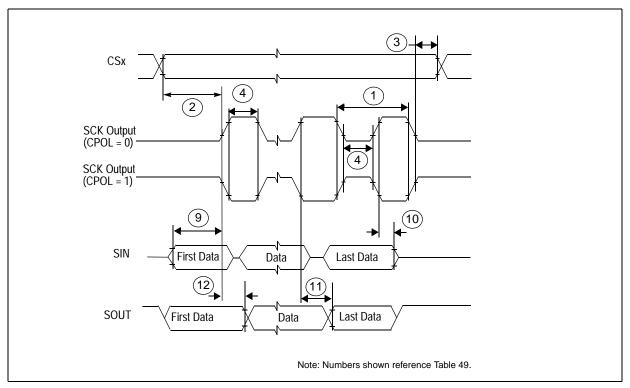


Figure 29. DSPI modified transfer format timing-master, CPHA = 0

No.	Symbol		с	Parameter		Unit		
NO.				r ai ainetei	Min	Тур	Мах	onit
6	t _{TDOV}	CC	D	TCK low to TDO valid			33	ns
7	t _{TDOI}	СС	D	TCK low to TDO invalid	6	—	—	ns
—	t _{TDC}	CC	D	TCK Duty Cycle	40	—	60	%
—	t _{TCKRISE}	СС	D	TCK Rise and Fall Times	—	—	3	ns

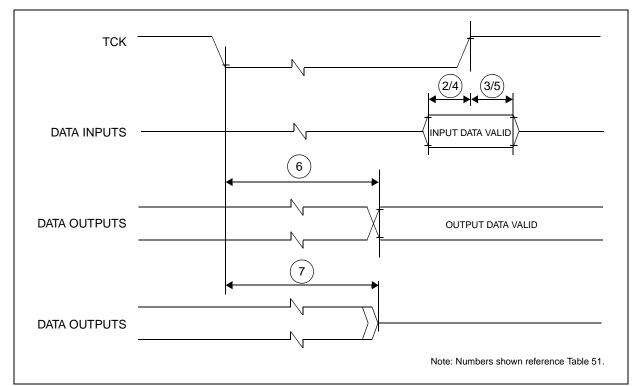


Figure 36. Timing diagram - JTAG boundary scan

Package characteristics

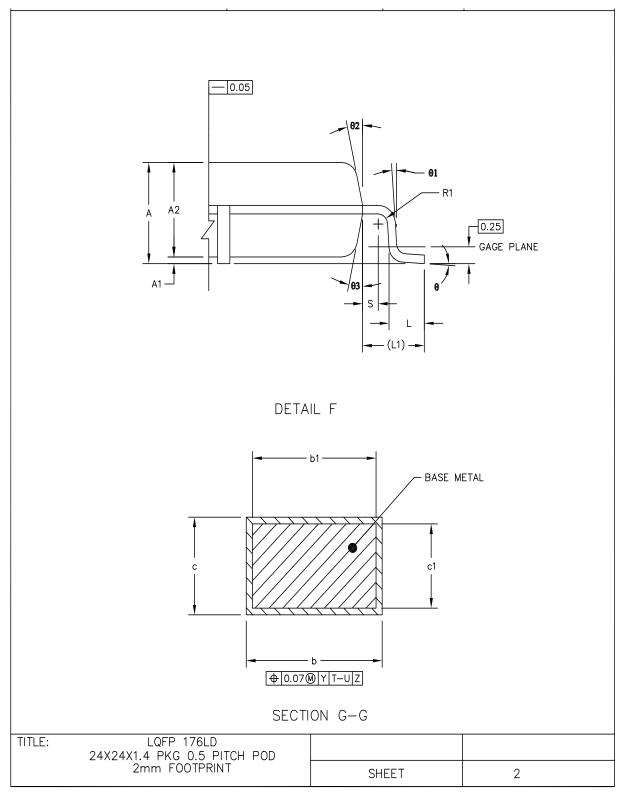


Figure 38. 176 LQFP mechanical drawing (Part 2 of 3)

MPC5646C Data Sheet, Rev.6

Revision history

Revision	Date	Changes
6	12 Feb 2014	 Removed occurrences of 208BGA from Table 3 System pin descriptions. Added PM[3] and PM[4] in the figure note 1 of Figure 4, 256-pin BGA configuration. Added a table note in Table 19 I/O supplies. Updated Figure 8, Voltage regulator capacitance connection and added a note in this figure. Removed max values of V_{LPREG} and V_{MREG}, changed min value of V_{LPREG} to 1.21 V, and updated V_{MREG} and V_{LPREG} after trimming values in Table 22 Voltage regulator electrical characteristics. Updated 1st footnote and updated max values for I_{DDRUN}, I_{DDHALT}, I_{DDSTOP} I_{DDSTDBY3}, I_{DDSTDBY2}, I_{DDSTDBY1} and removed values at 85°C and 105°C in Table 24 Low voltage power domain electrical characteristics. Added a footnote below Table 28 Flash memory read access timing. Updated the formula in Eq. 11 in Section 4.17.1.1, "Input impedance and ADC accuracy. Added Figure 17, Input equivalent circuit (extended channels). Updated t_{ADCO_PU} value to 1.5 as max and added footnote for I_{INJ} in Table 42 ADC conversion characteristics (10-bit ADC_0). Added Category column in Table 43 Conversion characteristics (12-bit ADC_1). Added a note in Figure 45, Orderable parts.

Table 52. Revision history (continued)

NOTE

This revision history uses clickable cross-references for ease of navigation. The numbers and titles in each cross-reference are relative to the latest published release.