

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z4d, e200z0h
Core Size	32-Bit Dual-Core
Speed	80MHz/120MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	177
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 33x10b, 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-TQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5646ccf0mlt1r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1. MPC5646C family comparison¹ (continued)

Feature	MPC5644B		MPC5644C		MPC5645B		М	MPC5645C		MPC5	5646B	MPC5646		C	
Package	176 LQFP	208 LQFP	176 LQFP	208 LQFP	256 BGA	176 LQFP	208 LQFP	176 LQFP	208 LQFP	256 BGA	176 LQFP	208 LQFP	176 LQFP	208 LQFP	256 BGA
Ethernet	N	No		Yes		N	No		Yes		N	No		Yes	
I ² C		1													
32 kHz oscillator (SXOSC)								Yes							
GPIO ¹²	147	177	147	177	199	147	177	147	177	199	147	177	147	177	199
Debug		JT/	٩G		Nexus 3+		JT	AG		Nexus 3+		JT	AG		Nexus 3+
Cryptographic Services Engine (CSE)								Optional	l						

NOTES:

¹ Feature set dependent on selected peripheral multiplexing; table shows example.

² Based on 125 °C ambient operating temperature and subject to full device characterisation.

³ The e200z0h can run at speeds up to 80 MHz. However, if system frequency is >80 MHz (e.g., e200z4d running at 120 MHz) the e200z0h needs to run at 1/2 system frequency. There is a configurable e200z0 system clock divider for this purpose.

⁴ DMAMUX also included that allows for software selection of 32 out of a possible 57 sources.

⁵ Not shared with 12-bit ADC, but possibly shared with other alternate functions.

⁶ There are 23 dedicated ANS plus 4 dedicated ANX channels on LQPF176. For higher pin count packages, there are 29 dedicated ANS plus 4 dedicated ANX channels.

⁷ 16x precision channels (ANP) and 3x standard (ANS).

⁸ Not shared with 10-bit ADC, but possibly shared with other alternate functions.

⁹ As a minimum, all timer channels can function as PWM or Input Capture and Output Control. Refer to the eMIOS section of the device reference manual for information on the channel configuration and functions.

¹⁰ CAN Sampler also included that allows ID of CAN message to be captured when in low power mode.

¹¹ STCU controls MBIST activation and reporting.

¹² Estimated I/O count for proposed packages based on multiplexing with peripherals.

1

MPC5646C Data Sheet, Rev.6

റ

Package pinouts and signal descriptions

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	PC[15]	PB[2]	PC[13]	PI[1]	PE[7]	PH[8]	PE[2]	PE[4]	PC[4]	PE[3]	PH[9]	PI[4]	PH[11]	PE[14]	PA[10]	PG[11]	A
в	PH[13]	PC[14]	PC[8]	PC[12]	PI[3]	PE[6]	PH[5]	PE[5]	PC[5]	PC[0]	PC[2]	PH[12]	PG[10]	PA[11]	PA[9]	PA[8]	В
с	PH[14]	VDD_HV_ A	PC[9]	PL[0]	PI[0]	PH[7]	PH[6]	VSS_LV	VDD_HV_ A	PA[5]	PC[3]	PE[15]	PG[14]	PE[12]	PA[7]	PE[13]	с
D	PG[5]	PI[6]	PJ[4]	PB[3]	PK[15]	PI[2]	PH[4]	VDD_LV	PC[1]	PH[10]	PA[6]	PI[5]	PG[15]	PF[14]	PF[15]	PH[2]	D
E	PG[3]	PI[7]	PH[15]	PG[2]	VDD_LV	VSS_LV	PK[10]	PK[9]	PM[1]	PM[0]	PL[15]	PL[14]	PG[0]	PG[1]	PH[0]	VDD_HV_ A	E
F	PA[2]	PG[4]	PA[1]	PE[1]	PL[2]	PM[6]	PL[1]	PK[11]	PM[5]	PL[13]	PL[12]	PM[2]	PH[1]	PH[3]	PG[12]	PG[13]	F
G	PE[8]	PE[0]	PE[10]	PA[0]	PL[3]	VSS_HV	VSS_HV	VSS_HV	VSS_HV	VSS_HV	VSS_HV	PK[12]	VDD_HV_ B	PI[13]	PI[12]	PA[3]	G
н	PE[9]	VDD_HV_ A	PE[11]	PK[1]	PL[4]	VSS_LV	VSS_LV	VSS_HV	VSS_HV	VSS_HV	VSS_HV	PK[13]	VDD_HV_ A	VDD_LV	VSS_LV	PI[11]	н
J	VSS_HV	VRC_CTR L	VDD_LV	PG[9]	PL[5]	VSS_LV	VSS_LV	VSS_LV	VSS_HV	VSS_HV	VSS_HV	PK[14]	PD[15]	PI[8]	PI[9]	PI[10]	J
к	RESET	VSS_LV	PG[8]	PC[11]	PL[6]	VSS_LV	VSS_LV	VSS_LV	VSS_LV	VDD_LV	VDD_LV	PM[3]	PD[14]	PD[13]	PB[14]	PB[15]	к
L	PC[10]	PG[7]	PB[0]	PK[2]	PL[7]	VSS_LV	VSS_LV	VSS_LV	VSS_LV	VDD_LV	VDD_LV	PM[4]	PD[12]	PB[12]	PB[13]	VDD_HV_ ADC1	L
М	PG[6]	PB[1]	PK[4]	PF[9]	PK[5]	PK[6]	PK[7]	PK[8]	PL[8]	PL[9]	PL[10]	PL[11]	PB[11]	PD[10]	PD[11]	VSS_HV_ ADC1	м
N	PK[3]	PF[8]	PC[6]	PC[7]	PJ[13]	VDD_HV_ A	PB[10]	PF[6]	VDD_HV_ A	PJ[1]	PD[2]	PJ[5]	PB[5]	PB[6]	PJ[6]	PD[9]	N
Ρ	PF[12]	PF[10]	PF[13]	PA[14]	PJ[9]	PA[12]	PF[0]	PF[5]	PF[7]	PJ[3]	PI[15]	PD[4]	PD[7]	PD[8]	PJ[8]	PJ[7]	Р
R	PF[11]	PA[15]	PJ[11]	PJ[15]	PA[13]	PF[2]	PF[3]	PF[4]	VDD_LV	PJ[2]	PJ[0]	PD[0]	PD[3]	PD[6]	VDD_HV_ ADC0	PB[7]	R
т	PJ[12]	PA[4]	PK[0]	PJ[14]	PJ[10]	PF[1]	XTAL	EXTAL	VSS_LV	PB[9]	PB[8]	PI[14]	PD[1]	PD[5]	VSS_HV_ ADC0	PB[4]	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1

Notes:

1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], PA[3], PA[3], and PM[4]. 2)Availability of port pin alternate functions depends on product selection.

Figure 4. 256-pin BGA configuration

3.1 Pad types

In the device the following types of pads are available for system pins and functional port pins:

 $S = Slow^1$

 $M = Medium^{1, 2}$

1. See the I/O pad electrical characteristics in the device data sheet for details.

MPC5646C Data Sheet, Rev.6

^{2.} All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. For example, Fast/Medium pad will be Medium by default at reset. Similarly, Slow/Medium pad will be Slow by default. Only exception is PC[1] which is in medium configuration by default (refer to PCR.SRC in the reference manual, Pad Configuration Registers (PCR0—PCR198)).

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PB[11]	PCR[27]	AF0 AF1 AF2	GPIO[27] E0UC[3] —	SIUL eMIOS_0 —	I/O I/O —	S	Tristate	97	117	M13
		AF3 —	CS0_0 ADC0_S[3]	DSPI_0 ADC_0	I/O I					
PB[12]	PCR[28]	AF0 AF1 AF2 AF3 —	GPIO[28] E0UC[4] — CS1_0 ADC0_X[0]	SIUL eMIOS_0 DSPI_0 ADC_0	I/O I/O — 0 I	S	Tristate	101	123	L14
PB[13]	PCR[29]	AF0 AF1 AF2 AF3 —	GPIO[29] E0UC[5] — CS2_0 ADC0_X[1]	SIUL eMIOS_0 — DSPI_0 ADC_0	I/O I/O — 0 I	S	Tristate	103	125	L15
PB[14]	PCR[30]	AF0 AF1 AF2 AF3	GPIO[30] E0UC[6] — CS3_0 ADC0_X[2]	SIUL eMIOS_0 DSPI_0 ADC_0	I/O I/O — 0 I	S	Tristate	105	127	K15
PB[15]	PCR[31]	AF0 AF1 AF2 AF3 —	GPIO[31] E0UC[7] — CS4_0 ADC0_X[3]	SIUL eMIOS_0 — DSPI_0 ADC_0	I/O I/O — 0 I	S	Tristate	107	129	K16
PC[0] ⁶	PCR[32]	AF0 AF1 AF2 AF3	GPIO[32] — TDI —	SIUL — JTAGC —	I/O — I —	M/S	Input, weak pull-up	154	178	B10
PC[1] ⁶	PCR[33]	AF0 AF1 AF2 AF3	GPIO[33] — TDO —	SIUL — JTAGC —	I/O 	F/M	Tristate	149	173	D9
PC[2]	PCR[34]	AF0 AF1 AF2 AF3 —	GPIO[34] SCK_1 CAN4TX — EIRQ[5]	SIUL DSPI_1 FlexCAN_4 SIUL	I/O I/O O I	M/S	Tristate	145	169	B11

Table 4. Fun	ctional port p	oin descriptions	(continued)
			(00111111000)

				_				Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Periphera	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PJ[7]	PCR[151]	AF0 AF1 AF2 AF3 —	GPIO[151] — — — ADC0_S[30]	SIUL — — — ADC_0	I/O — — — I	S	Tristate	_	111	P16
PJ[8]	PCR[152]	AF0 AF1 AF2 AF3 —	GPIO[152] — — — ADC0_S[31]	SIUL — — — ADC_0	I/O — — — I	S	Tristate	_	110	P15
PJ[9]	PCR[153]	AF0 AF1 AF2 AF3 —	GPIO[153] — — — ADC1_S[8]	SIUL — — — ADC_1	I/O — — — I	S	Tristate	_	68	P5
PJ[10]	PCR[154]	AF0 AF1 AF2 AF3 —	GPIO[154] — — — ADC1_S[9]	SIUL — — — ADC_1	I/O — — — I	S	Tristate		67	T5
PJ[11]	PCR[155]	AF0 AF1 AF2 AF3 —	GPIO[155] — — — ADC1_S[10]	SIUL — — — ADC_1	I/O — — — I	S	Tristate		60	R3
PJ[12]	PCR[156]	AF0 AF1 AF2 AF3	GPIO[156] — — — ADC1_S[11]	SIUL — — — ADC_1	I/O — — — I	S	Tristate		59	T1
PJ[13]	PCR[157]	AF0 AF1 AF2 AF3 — — — —	GPIO[157] — CS1_7 — CAN4RX ADC1_S[12] CAN1RX WKPU[31]	SIUL DSPI_7 FlexCAN_4 ADC_1 FlexCAN_1 WKPU	I/O - O - I - I - I - I	S	Tristate	_	65	N5
PJ[14]	PCR[158]	AF0 AF1 AF2 AF3	GPIO[158] CAN1TX CAN4TX CS2_7	SIUL FlexCAN_1 FlexCAN_4 DSPI_7	I/O O O O	M/S	Tristate		64	T4

Table 4. Functional	port r	oin descri	ntions ((continued)	•
	PO: 1 P			(ooninaca)	

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PM[4]	PCR[196]	AF0 AF1 AF2 AF3	GPIO[196] — — —	SIUL — — —	I/O — — —	M/S	Tristate	_	_	L12
PM[5]	PCR[197]	AF0 AF1 AF2 AF3	GPIO[197] — — —	SIUL — — —	I/O — — —	M/S	Tristate		_	F9
PM[6]	PCR[198]	AF0 AF1 AF2 AF3	GPIO[198] — — —	SIUL — — —	I/O — —	M/S	Tristate		_	F6

 Table 4. Functional port pin descriptions (continued)

- ¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 000 → AF0; PCR.PA = 001 → AF1; PCR.PA = 010 → AF2; PCR.PA = 011 → AF3; PCR.PA = 100 → ALT4. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".
- ² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
- ³ NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is ignored.
- ⁴ SXOSC's OSC32k_XTAL and OSC32k_EXTAL pins are shared with GPIO functionality. When used as crystal pins, other functionality of the pin cannot be used and it should be ensured that application never programs OBE and PUE bit of the corresponding PCR to "1".
- ⁵ If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature as PB[10] can induce coupling on PB[9] and disturb oscillator frequency.
- ⁶ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
 PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
 It is up to the user to configure these pins as GPIO when needed.
- ⁷ When MBIST is enabled to run (STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V before the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST operation. When MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally drive the pad.
- ⁸ These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development Interface "Port Control Register" rather than the SIUL. Specifically, the debugger can enable the MDO[7:0], MSEO, and MCKO ports by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled by programming NDI ((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]).

Symbol		C	Paramotor		Conditions ^{1,2}			Unit	
Syn	1001	C	Farameter			Min	Тур	Max	
V _{OL}	СС	Ρ	Output low level SLOW	Push Pull	$I_{OL} = 3 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	_	_	0.1V _{DD}	V
		С	configuration		I _{OL} = 3 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽³⁾	_		0.1V _{DD}	
		Ρ			I _{OL} = 1.5 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	0.5	

Table 15. SLOW configuration output buffer electrical characteristics (continued)

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 2 V_{DD} as mentioned in the table is V_{DD_HV_A}/V_{DD_HV_B}.

³ The configuration PAD3V5 = 1 when $\overline{V_{DD}}$ = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Table 16. ME	DIUM configuration	output buffer	electrical of	characteristics
--------------	--------------------	---------------	---------------	-----------------

Sum	hol	c	Paramotor	Conditions ^{1,2}			Value		Unit
J	1001	C	Farameter			Min	Тур	Max	Unit
V _{OH}	CC	С	Output high level MEDIUM configuration	Push Pull	$I_{OH} = -3 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0	0.8V _{DD}	_	_	
		С			$I_{OH} = -1.5 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 1 ³	0.8V _{DD}	_	_	V
		С			I _{OH} = −2 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	V _{DD} – 0.8	_	_	
V _{OL}	CC	С	Output low level MEDIUM configuration	Push Pull	$I_{OL} = 3 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0	_	_	0.2V _{DD}	
		С			$I_{OL} = 1.5 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^{(3)}$	_	_	0.1V _{DD}	V
		С			I _{OL} = 2 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—		0.5	

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

 $^2~V_{DD}$ as mentioned in the table is $V_{DD_HV_A}/V_{DD_HV_B}.$

³ The configuration PAD3V5 = 1 when $\overline{V_{DD}}$ = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Electrical Characteristics

Figure 7. Noise filtering on reset signal

Symbol C		C	Paramotor	Conditions ¹	Value ²				
Synnb		C	raiametei	Conditions	Min	Тур	Max	Onic	
V _{IH}	SR	Ρ	Input High Level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	V _{DD} + 0.4	V	
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	_	-0.3	_	0.35V _{DD}	V	
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}		—	V	
V _{OL}	СС	Ρ	Output low level	Push Pull, $I_{OL} = 2 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	—	_	0.1V _{DD}	V	
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ³	_	_	0.1V _{DD}		
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_	_	0.5		

Table 21. Reset electrical characteristics

Symbol		C	Parameter	Conditions ¹		Unit		
Gymb	01	Ŭ	l'arameter conditions		Min	Тур	Max	
T _{tr}	СС	D	Output transition time output pin ⁴	C _L = 25 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	10	ns
			MEDIUM configuration	C _L = 50 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	20	
				C _L = 100 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	—	40	
				C _L = 25 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	12	
				C _L = 50 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	25	
				C _L = 100 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	40	
W_{FRST}	SR	Ρ	Reset input filtered pulse	—	_	—	40	ns
W _{NFRST}	SR	Ρ	Reset input not filtered pulse	_	1000	—	_	ns
I _{WPU}	СС	Ρ	Weak pull-up current	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10	—	150	μΑ
			adsolute value	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	10	_	150	
				$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^5$	10	_	250	

Table 21. Reset electrical character	istics (continued)
--------------------------------------	--------------------

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = –40 to 125 °C, unless otherwise specified.

² V_{DD} as mentioned in the table is V_{DD HV A}/V_{DD HV B}. All values need to be confirmed during device validation.

³ This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the RGM module section of the device Reference Manual).

⁴ C_L includes device and package capacitance (C_{PKG} < 5 pF).

⁵ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

4.8 **Power management electrical characteristics**

4.8.1 Voltage regulator electrical characteristics

The device implements an internal voltage regulator to generate the low voltage core supply V_{DD_LV} from the high voltage supply V_{DD_HV} . The following supplies are involved:

- HV: High voltage external power supply for voltage regulator module. This must be provided externally through $V_{DD HV A}$ power pin.
- LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the on-chip VREG with an external ballast (BCP68 NPN device). It is further split into four main domains to ensure noise isolation between critical LV modules within the device:
 - LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.

Figure 9. Low voltage monitor vs. Reset

Symbol		C Parameter		Conditions ¹		Unit		
		Ŭ	, and not of	Contailione	Min	Тур	Max	onic
V _{PORUP}	SR	Ρ	Supply for functional POR module	—	1.0	—	5.5	
V _{PORH}	СС	Ρ	Power-on reset threshold	ower-on reset threshold —		_	2.6	
V _{LVDHV3H}	СС	Т	LVDHV3 low voltage detector high threshold	—	2.7	_	2.85	
V _{LVDHV3L}	СС	Т	LVDHV3 low voltage detector low threshold	—	2.6	_	2.74	V
V _{LVDHV5H}	СС	Т	LVDHV5 low voltage detector high threshold	—	4.3	_	4.5	
V _{LVDHV5L}	СС	Т	LVDHV5 low voltage detector low threshold	—	4.2		4.4	
V _{LVDLVCORL}	СС	Ρ	LVDLVCOR low voltage detector low threshold	$T_A = 25 \ ^\circ C$,	1.12	1.145	1.17	
V _{LVDLVBKPL}	СС	Ρ	LVDLVBKP low voltage detector low threshold	aiter trimming	1.12	1.145	1.17	

Table 23. Low voltage	e monitor electrical	characteristics
-----------------------	----------------------	-----------------

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified. ² All values need to be confirmed during device validation.

4.9 Low voltage domain power consumption

Table 24 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application.

Figure 10. Crystal oscillator and resonator connection scheme

NOTE

XTAL/EXTAL must not be directly used to drive external circuits.

Nominal frequency (MHz)	NDK crystal reference	Crystal equivalent series resistance ESR Ω	Crystal motional capacitance (C _m) fF	Crystal motional inductance (L _m) mH	Load on xtalin/xtalout C1 = C2 (pF) ¹	Shunt capacitance between xtalout and xtalin C0 ² (pF)
4	NX8045GB	300	2.68	591.0	21	2.93
8		300	2.46	160.7	17	3.01
10	NX5032GA	150	2.93	86.6	15	2.91
12		120	3.11	56.5	15	2.93
16		120	3.90	25.3	10	3.00
40	NX5032GA	50	6.18	2.56	8	3.49

Table 34. Crystal description

NOTES:

The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

² The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Symbol		C	C Parameter Conditions ¹			Value		Unit	
		C	Farameter	Conditions		Min	Тур	Max	Onit
R _{SW2}	СС	D	Internal resistance of analog source	_	-	_	_	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_	-	_	-	2	kΩ
I _{INJ} 7	SR	_	Input current Injection	Current $V_{DD} =$ injection on3.3 V ± 10%		-5	_	5	mA
				input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	_	5	
INL	СС	Т	Absolute value for integral non-linearity	No overload	No overload		0.5	1.5	LSB
DNL	СС	Т	Absolute differential non-linearity	No overload		_	0.5	1.0	LSB
OFS	СС	Т	Absolute offset error	_	-	_	0.5	_	LSB
GNE	СС	Т	Absolute gain error	_	-	_	0.6	_	LSB
TUEP	СС	Ρ	Total unadjusted	Without curren	t injection	-2	0.6	2	LSB
		Т	channels, input only pins	With current injection		-3		3	
TUEX	СС	Т	Total unadjusted	Without curren	t injection	-3	1	3	LSB
		Т	channel	With current in	jection	-4		4	

Table 42. ADC conversion characteristics (10-bit ADC_0) (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² Analog and digital $V_{SS HV}$ must be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC0} and V_{DD_ADC0} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

- ⁴ During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC0_S} . After the end of the sample time t_{ADC0_S} , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{ADC0_S} depend on programming.
- ⁵ This parameter does not include the sample time t_{ADC0_S}, but only the time for determining the digital result and the time to load the result's register with the conversion result
- ⁶ Refer to ADC conversion table for detailed calculations.

⁷ PB10 should not have any current injected. It can disturb accuracy on other ADC_0 pins.

⁸ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

Symbol		^	Parameter	Conditions ¹	Value				
Symb	01	C	Parameter	Conditions	Min	Тур	Max	Unit	
V _{SS_ADC1}	SR	_	Voltage on VSS_HV_ADC1 (ADC_1 reference) pin with respect to ground (V _{SS_HV}) ²	_	-0.1		0.1	V	
V _{DD_ADC1} ³	SR		Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (V _{SS_HV})	_	V _{DD_HV_A} - 0.1		V _{DD_HV_A} + 0.1	>	
V _{AINx} ^{3,4}	SR	—	Analog input voltage ⁵	_	V _{SS_ADC1} - 0.1		V _{DD_ADC1} + 0.1	V	
f _{ADC1}	SR	—	ADC_1 analog frequency	_	8 + 2%		32 + 2%	MHz	
t _{ADC1_PU}	SR	—	ADC_1 power up delay			1.5		μs	
t _{ADC1_S}	CC	Т	Sample time ⁶ VDD=5.0 V	_	440			ns	
			Sample time ⁽⁶⁾ VDD=3.3 V		530				
t _{ADC1_C}	СС	Р	Conversion time ^{7, 8} VDD=5.0 V	f _{ADC1} = 32 MHz	2				
			Conversion time ^{(7),} (6) VDD =5.0 V	f _{ADC 1} = 30 MHz	2.1			μs	
			Conversion time ^{(7),} (6) VDD=3.3 V	f _{ADC 1} = 20 MHz	3				
			Conversion time ^{(7),} (⁶⁾ VDD =3.3 V	f _{ADC1} = 15 MHz	3.01				
C _S	CC	D	ADC_1 input sampling capacitance			5		pF	
C _{P1}	CC	D	ADC_1 input pin capacitance 1	_		3		pF	
C _{P2}	CC	D	ADC_1 input pin capacitance 2	_		1		pF	
C _{P3}	CC	D	ADC_1 input pin capacitance 3	_		1.5		pF	
R _{SW1}	CC	D	Internal resistance of analog source	_			1	kΩ	

Table 43.	Conversion	characteristics	(12-bit ADC	1)
			(/

Electrical Characteristics

Figure 24. MII serial management channel timing diagram

MPC5646C Data Sheet, Rev.6

4.19 On-chip peripherals

4.19.1 Current consumption

Symbol		C	Parameter		Conditions	Value ²	Unit
Symbol		C	Farameter	Conditions		Тур	Onic
I _{DD_HV_} A(CAN)	CC	D	CAN (FlexCAN) supply current on V _{DD_HV_A}	500 KbpsTotal (static + dynamic) consumption:125 Kbpsconsumption: FlexCAN in loop-back mode XTAL@8 MHz used as CAN engine clock source 		7.652 × f _{periph} + 84.73 8.0743 × f _{periph} + 26.757	Αμ
I _{DD_HV_} A(eMIOS)	CC	D	eMIOS supply current on V _{DD_HV_A}	Static cor eMIOS cl Global pr	nsumption: hannel OFF rescaler enabled	$28.7 \times f_{periph}$	
				Dynamic It does no frequenc	consumption: ot change varying the y (0.003 mA)	3	
I _{DD_HV_} A(SCI)	СС	D	SCI (LINFlex) supply current on V _{DD_HV_A}	Total (sta consump LIN mode Baudrate	tic + dynamic) tion: e :: 20 Kbps	4.7804 × f _{periph} + 30.946	
I _{DD_HV_} A(SPI)	CC	D	SPI (DSPI) supply current	Ballast st clocked)	atic consumption (only	1	
			on V _{DD_HV_A}	Ballast dy (continuc Baudrate Transmis Frame: 1	ynamic consumption bus communication): :: 2 Mbit sion every 8 µs 6 bits	$16.3 \times f_{periph}$	
I _{DD_HV_} A(ADC)	СС	D	ADC supply current on V _{DD_HV_A}	V _{DD} = 5.5 V	Ballast static consumption (no conversion)	$0.0409 \times f_{periph}$	mA
				V _{DD} = Ballast dynamic 5.5 V consumption (continuous conversion)		$0.0049 \times f_{periph}$	-
IDD_HV_ADC0	CC	D	ADC_0 supply current on V _{DD_HV_ADC0}	V _{DD} = Analog static 5.5 V consumption (no conversion)		200	μA
					Analog dynamic consumption (continuous conversion)	4	mA

Table 48. On-chip peripherals current consumption¹

Electrical Characteristics

Snec	Characteristic	Symbol			Unit
opec	onaracteristic	Oymbol	Min	Max	onit
9	Data Setup Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) ⁵ Master (MTFE = 1, CPHA = 1)	t _{SUI}	36 5 36 36		ns ns ns ns
10	Data Hold Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) ⁵ Master (MTFE = 1, CPHA = 1)	t _{HI}	0 4 0 0	 	ns ns ns ns
11	Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1)	t _{SUO}	 	12 37 12 12	ns ns ns ns
12	Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1)	t _{HO}	0 ⁶ 9.5 0 ⁷ 0 ⁸	 	ns ns ns ns

Table 49. DSPI timing (continued)

NOTES:

¹ This value of this parameter is dependent upon the external device delays and the other parameters mentioned in this table.

² The maximum value is programmable in DSPI_CTAR*n* [PSSCK] and DSPI_CTAR*n* [CSSCK]. For MPC5646C, the spec value of t_{CSC} will be attained only if T_{DSPI} x PSSCK x CSSCK > Δ t_{CSC}.

³ The maximum value is programmable in DSPI_CTAR*n* [PASC] and DSPI_CTAR*n* [ASC]. For MPC5646C, the spec value of t_{ASC} will be attained only if T_{DSPI} x PASC x ASC > Δt_{ASC} .

 $^4\,$ The parameter value is obtained from t_{SUSS} and t_{SUO} for slave.

⁵ This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b00.

⁶ For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 0) is -2 ns.

⁷ For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 0) is -2 n.

⁸ For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 1) is -2 ns.

Figure 28. DSPI classic SPI timing-slave, CPHA = 1

Figure 33. DSPI PCS strobe (PCSS) timing

4.19.3 Nexus characteristics

Spec	Characteristic	Symbol	Min	Мах	Unit
1	MCKO Cycle Time ²	t _{MCYC}	16.3	_	ns
2	MCKO Duty Cycle	t _{MDC}	40	60	%
3	MCKO Low to MDO, MSEO, EVTO Data Valid ³	t _{MDOV}	-0.1	0.25	t _{MCYC}
4	EVTI Pulse Width	t _{EVTIPW}	4.0	—	t _{TCYC}
5	EVTO Pulse Width	t _{EVTOPW}	1		t _{MCYC}
6	TCK Cycle Time ⁴	t _{TCYC}	40	—	ns
7	TCK Duty Cycle	t _{TDC}	40	60	%
8	TDI, TMS Data Setup Time	t _{NTDIS} , t _{NTMSS}	8	—	ns
9	TDI, TMS Data Hold Time	t _{NTDIH} , t _{NTMSH}	5	—	ns
10	TCK Low to TDO Data Valid	t _{JOV}	0	25	ns

NOTES:

JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at $V_{DDE} = 4.0 - 5.5$ V, $T_A = T_L$ to T_H , and $C_L = 30$ pF with SRC = 0b11.

² MCKO can run up to 1/2 of full system frequency. It can also run at system frequency when it is <60 MHz.

 3 MDO, $\overline{\text{MSEO}}$, and $\overline{\text{EVTO}}$ data is held valid until next MCKO low cycle.

⁴ The system clock frequency needs to be three times faster than the TCK frequency.

Figure 35. Nexus TDI, TMS, TDO timing

4.19.4 JTAG characteristics

Table 51	. JTAG	characteristics
----------	--------	-----------------

No	Symbol		c	Parameter		Unit			
NO.	Synno		C	raiametei	Min	Тур	Max	Onit	
1	t _{JCYC}	CC	D	TCK cycle time	64	_	_	ns	
2	t _{TDIS}	CC	D	TDI setup time	10	—	—	ns	
3	t _{TDIH}	CC	D	TDI hold time	5	—	_	ns	
4	t _{TMSS}	СС	D	TMS setup time	10	—	—	ns	
5	t _{TMSH}	CC	D	TMS hold time	5	—	_	ns	

MPC5646C Data Sheet, Rev.6

	NOTES:										
	1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25MM PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE DATUM H.										
	 2. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM & DIMENSION BY MORE THEN 0.08MM. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07MM FOR 0.4MM AND 0.5MM PITCH PACKAGES. 										
DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX	DIM	MIN	NOM	МАХ
A			1.6	L1		1 REF					
A1	0.05		0.15	R1	0.08						
A2	1.35	1.4	1.45	R2	0.08		0.2				
b	0.17	0.22	0.27	S	C	.2 REF					
b1	0.17	0.2	0.23	θ	0°	3.5°	7°				
с	0.09		0.2	θ1	0°						
c1	0.09		0.16	θ2	11 °	12 °	13°				
D	26 BSC			θ3	11 °	12 °	13°				
D1	D1 24 BSC										
е	e 0.5 BSC										
E	26 BSC										
E1		24 BSC	<u>}</u>			D	DIMENSION AN				
L	0.45	0.6	0.75						REFERENCE DOCUMENT		
	<u> </u>		10FP 176		MM		ASME 114.	MC	64-	06-280	J-1392
	24	4X24X1.4	+ PKG 0.5		I POD						
				SHEET		3					

Figure 39. 176 LQFP mechanical drawing (Part 3 of 3)

5.1.2 208 LQFP package mechanical drawing

Table 52.	Revision	history ((continued)
-----------	----------	-----------	-------------

Revision	Date	Changes		
Revision	Date 21 June 2012	 Changes Updated the pins 23 and 24 of Figure 2.176-pin LQFP configuration Updated unit of measure in Table 43 Conversion characteristics (12-bit ADC_1) Modified the value to typical value in Table 48 On-chip peripherals current consumption Added footnote to t_{ESRT} parameter in Table 25 Code flash memory—Program and erase specifications Added footnote to t_{ESRT} parameter in Table 26 Data flash memory—Program and erase specifications Updated Table 28 Flash memory read access timing. Updated Table 28 Flash memory read access timing. Updated Notes 2 and Notes 3 of Table 9 Recommended operating conditions (3.3 V) and Table 10 Recommended operating conditions (5.0 V) respectively. Updated the footnote1 of Table 9 Recommended operating conditions (3.3 V) and Table 10 Recommended operating conditions (5.0 V) Updated V_{DD_HV_A} to V_{DD_BV} for C_{DEC2} and I_{DD_HV_A} in Table 22 Voltage regulator electrical characteristics and deleted footnote3 Updated the values of f_{SIRC}, parameters and conditions of Δ_{SIRCVAR} in Table 40 Slow internal RC oscillator (128 kHz) electrical characteristics Updated the value of t_{ADC0_PU} in Table 42, ADC conversion characteristics (10-bit ADC 0) 		
		 Updated second footnote in Table 10, Recommended operating conditions (5.0 V) Updated the value of t_{ADC0_PU} in Table 42, ADC conversion characteristics (10-bit ADC_0) Updated the IDD values in Table 24, Low voltage power domain electrical characteristics Added footnote to Table 24, Low voltage power domain electrical characteristics related to current drawn from V_{DD_HV_A} and V_{DD_HV_B} Updated entire Section 4.17.1.1, "Input impedance and ADC accuracy"- Updated the values of VLPREG in Table 22, Voltage regulator electrical characteristics. 		
		 Updated the values of V_{LPREG} in Table 22, Voltage regulator electrical characteristics. Added T_A = 25 °C, min and max values of V_{MREG} in Table 22, Voltage regulator electrical characteristics Added T_A = 25 °C, min and max values of V_{LPREG} in Table 22, Voltage regulator electrical characteristics Updated the min, max and typical values of V_{LVDLVCORL} and V_{LVDLVBKPL} in Table 23, Low voltage monitor electrical characteristics Updated values of gmFXOSC in Table 35, Fast external crystal oscillator (4 to 40 MHz) electrical characteristicsUpdated values of gmSXOSC in Table 37, Slow external crystal oscillator (32 kHz) electrical characteristics Updated the footnote 5 for T_{ADC0_C} in Table 42, ADC conversion characteristics (10-bit ADC_0) Updated the footnotes of Table 24, Low voltage power domain electrical characteristics 		
5.1	15 Aug 2012	Removed Footer: Preliminary tag		