

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z4d, e200z0h
Core Size	32-Bit Dual-Core
Speed	80MHz/120MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	199
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 33x10b, 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5646ccf0mmj1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

1.1 Document Overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the MPC5646C device. To ensure a complete understanding of the device functionality, refer also to the MPC5646C Reference Manual.

1.2 Description

The MPC5646C is a new family of next generation microcontrollers built on the Power Architecture embedded category. This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device.

The MPC5646C family expands the range of the MPC560xB microcontroller family. It provides the scalability needed to implement platform approaches and delivers the performance required by increasingly sophisticated software architectures. The advanced and cost-efficient host processor core of the MPC5646C automotive controller family complies with the Power Architecture embedded category, which is 100 percent user-mode compatible with the original Power Architecture user instruction set architecture (UISA). It operates at speeds of up to 120 MHz and offers high performance processing optimized for low power consumption. It also capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

Table 2 summarizes the functions of the blocks present on the MPC5646C. Table 2. MPC5646C series block summary

Block	Function
Analog-to-digital converter (ADC)	Converts analog voltages to digital values
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Cryptographic Security Engine (CSE)	Supports the encoding and decoding of any kind of data
Crossbar (XBAR) switch	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width
DMA Channel Multiplexer (DMAMUX)	Allows to route DMA sources (called slots) to DMA channels
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via "n" programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
FMPLL (frequency-modulated phase-locked loop)	Generates high-speed system clocks and supports programmable frequency modulation
FlexRay (FlexRay communication controller)	Provides high-speed distributed control for advanced automotive applications
Fast Ethernet Controller (FEC)	Ethernet Media Access Controller (MAC) designed to support both 10 and 100 Mbps Ethernet/IEEE 802.3 networks
Internal multiplexer (IMUX) SIUL subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests for both e200z0h and e200z4d cores
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode

Package pinouts and signal descriptions

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
А	PC[15]	PB[2]	PC[13]	PI[1]	PE[7]	PH[8]	PE[2]	PE[4]	PC[4]	PE[3]	PH[9]	PI[4]	PH[11]	PE[14]	PA[10]	PG[11]	ļ
в	PH[13]	PC[14]	PC[8]	PC[12]	PI[3]	PE[6]	PH[5]	PE[5]	PC[5]	PC[0]	PC[2]	PH[12]	PG[10]	PA[11]	PA[9]	PA[8]	E
С	PH[14]	VDD_HV _A	PC[9]	PL[0]	PI[0]	PH[7]	PH[6]	VSS_LV	VDD_HV _A	PA[5]	PC[3]	PE[15]	PG[14]	PE[12]	PA[7]	PE[13]	C
D	PG[5]	PI[6]	PJ[4]	PB[3]	PK[15]	PI[2]	PH[4]	VDD_LV	PC[1]	PH[10]	PA[6]	PI[5]	PG[15]	PF[14]	PF[15]	PH[2]	I
Е	PG[3]	PI[7]	PH[15]	PG[2]				I		I		I	PG[0]	PG[1]	PH[0]	VDD_HV _A	E
F	PA[2]	PG[4]	PA[1]	PE[1]									PH[1]	PH[3]	PG[12]	PG[13]	
G	PE[8]	PE[0]	PE[10]	PA[0]			VSS_HV	VSS_HV	VSS_HV	VSS_HV			VDD_HV _B	PI[13]	PI[12]	PA[3]	(
н	PE[9]	VDD_HV _A	PE[11]	PK[1]			VSS_LV	VSS_HV	VSS_HV	VSS_HV			VDD_HV _A	VDD_LV	VSS_LV	PI[11]	ł
J	VSS_HV	VRC_CT RL	VDD_LV	PG[9]			VSS_LV	VSS_LV	VSS_HV	VSS_HV			PD[15]	PI[8]	PI[9]	PI[10]	
к	RESET	VSS_LV	PG[8]	PC[11]			VSS_LV	VSS_LV	VSS_LV	VDD_LV			PD[14]	PD[13]	PB[14]	PB[15]	ł
L	PC[10]	PG[7]	PB[0]	PK[2]							l		PD[12]	PB[12]	PB[13]	VDD_HV _ADC1	I
Μ	PG[6]	PB[1]	PK[4]	PF[9]									PB[11]	PD[10]	PD[11]	VSS_HV _ADC1	N
N	PK[3]	PF[8]	PC[6]	PC[7]	PJ[13]	VDD_HV _A	PB[10]	PF[6]	VDD_HV _A	PJ[1]	PD[2]	PJ[5]	PB[5]	PB[6]	PJ[6]	PD[9]	1
Ρ	PF[12]	PF[10]	PF[13]	PA[14]	PJ[9]	PA[12]	PF[0]	PF[5]	PF[7]	PJ[3]	PI[15]	PD[4]	PD[7]	PD[8]	PJ[8]	PJ[7]	F
R	PF[11]	PA[15]	PJ[11]	PJ[15]	PA[13]	PF[2]	PF[3]	PF[4]	VDD_LV	PJ[2]	PJ[0]	PD[0]	PD[3]	PD[6]	VDD_HV _ADC0	PB[7]	I
т	PJ[12]	PA[4]	PK[0]	PJ[14]	PJ[10]	PF[1]	XTAL	EXTAL	VSS_LV	PB[9]	PB[8]	PI[14]	PD[1]	PD[5]	VSS_HV _ADC0	PB[4]	T
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Notes:

VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3].
 Availability of port pin alternate functions depends on product selection.

Package pinouts and signal descriptions

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PB[5]	PCR[21]	AF0 AF1 AF2 AF3 —	GPI[21] — — ADC0_P[1] ADC1_P[1]	SIUL — — ADC_0 ADC_1	-	I	Tristate	91	107	N13
PB[6]	PCR[22]	AF0 AF1 AF2 AF3 —	GPI[22] — — — ADC0_P[2] ADC1_P[2]	SIUL — — ADC_0 ADC_1	- - - -	I	Tristate	92	108	N14
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 —	GPI[23] — — — ADC0_P[3] ADC1_P[3]	SIUL — — ADC_0 ADC_1		I	Tristate	93	109	R16
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 — — — —	GPI[24] — — ADC0_S[0] ADC1_S[4] WKPU[25] OSC32k_XTAL ⁴	SIUL — — ADC_0 ADC_1 WKPU SXOSC	-	I	_	61	77	T11
PB[9] ⁵	PCR[25]	AF0 AF1 AF2 AF3 — — — —	GPI[25] — — ADC0_S[1] ADC1_S[5] WKPU[26] OSC32k_EXTAL ⁴	SIUL — ADC_0 ADC_1 WKPU SXOSC	 	I		60	76	T10
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 — — —	GPIO[26] SOUT_1 CAN3TX — ADC0_S[2] ADC1_S[6] WKPU[8]	SIUL DSPI_1 FlexCAN_3 ADC_0 ADC_1 WKPU	I/O O I I I	S	Tristate	62	78	N7

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PB[11]	PCR[27]	AF0 AF1 AF2 AF3 —	GPIO[27] E0UC[3] — CS0_0 ADC0_S[3]	SIUL eMIOS_0 — DSPI_0 ADC_0	I/O I/O I/O I	S	Tristate	97	117	M13
PB[12]	PCR[28]	AF0 AF1 AF2 AF3 —	GPIO[28] E0UC[4] — CS1_0 ADC0_X[0]	SIUL eMIOS_0 — DSPI_0 ADC_0	I/O I/O — 0 I	S	Tristate	101	123	L14
PB[13]	PCR[29]	AF0 AF1 AF2 AF3 —	GPIO[29] E0UC[5] — CS2_0 ADC0_X[1]	SIUL eMIOS_0 — DSPI_0 ADC_0	I/O I/O — 0 I	S	Tristate	103	125	L15
PB[14]	PCR[30]	AF0 AF1 AF2 AF3 —	GPIO[30] E0UC[6] — CS3_0 ADC0_X[2]	SIUL eMIOS_0 — DSPI_0 ADC_0	I/O I/O — 0 I	S	Tristate	105	127	K15
PB[15]	PCR[31]	AF0 AF1 AF2 AF3 —	GPIO[31] E0UC[7] — CS4_0 ADC0_X[3]	SIUL eMIOS_0 — DSPI_0 ADC_0	I/O I/O — 0 I	S	Tristate	107	129	K16
PC[0] ⁶	PCR[32]	AF0 AF1 AF2 AF3	GPIO[32] — TDI —	SIUL — JTAGC —	I/O I 	M/S	Input, weak pull-up	154	178	B10
PC[1] ⁶	PCR[33]	AF0 AF1 AF2 AF3	GPIO[33] — TDO —	SIUL — JTAGC —	I/O 	F/M	Tristate	149	173	D9
PC[2]	PCR[34]	AF0 AF1 AF2 AF3 —	GPIO[34] SCK_1 CAN4TX — EIRQ[5]	SIUL DSPI_1 FlexCAN_4 SIUL	I/O I/O O I	M/S	Tristate	145	169	B11

Table 4. Functional port pin descriptions (continued)

Package pinouts and signal descriptions

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PC[3]	PCR[35]	AF0 AF1 AF2 AF3	GPIO[35] CS0_1 MA[0] —	SIUL DSPI_1 ADC_0 —	I/O I/O O	S	Tristate	144	168	C11
		 	CAN1RX CAN4RX EIRQ[6]	FlexCAN_1 FlexCAN_4 SIUL	 					
PC[4]	PCR[36]	AF0 AF1 AF2 AF3 ALT4 — —	GPIO[36] E1UC[31] — FR_B_TX_EN SIN_1 CAN3RX EIRQ[18]	SIUL eMIOS_1 — Flexray DSPI_1 FlexCAN_3 SIUL	/O /O 	M/S	Tristate	159	183	A9
PC[5]	PCR[37]	AF0 AF1 AF2 AF3 ALT4 —	GPIO[37] SOUT_1 CAN3TX — FR_A_TX EIRQ[7]	SIUL DSPI_1 FlexCAN_3 — Flexray SIUL	I/O O O I	M/S	Tristate	158	182	B9
PC[6]	PCR[38]	AF0 AF1 AF2 AF3	GPIO[38] LIN1TX E1UC[28] —	SIUL LINFlexD_1 eMIOS_1 —	I/O O I/O —	S	Tristate	44	52	N3
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 	GPIO[39] — E1UC[29] — LIN1RX WKPU[12]	SIUL — eMIOS_1 — LINFlexD_1 WKPU	/O /O 	S	Tristate	45	53	N4
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX E0UC[3] —	SIUL LINFlexD_2 eMIOS_0 —	I/O O I/O —	S	Tristate	175	207	В3
PC[9]	PCR[41]	AF0 AF1 AF2 AF3	GPIO[41] — E0UC[7] — LIN2RX	SIUL — eMIOS_0 — LINFlexD_2	I/O — I/O — I	S	Tristate	2	2	C3
		_	WKPU[13]	WKPU	I					

Package pinouts and signal descriptions

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PD[15]	PCR[63]	AF0 AF1 AF2 AF3 ALT4	GPIO[63] CS2_1 E0UC[27] — FR_DBG[1]	SIUL DSPI_1 eMIOS_0 — Flexray	1/0 0/0 1/0 0	S	Tristate	106	128	J13
PE[0]	PCR[64]	— AF0 AF1 AF2 AF3 — —	ADC0_S[7] GPIO[64] E0UC[16] CAN5RX WKPU[6]	ADC_0 SIUL eMIOS_0 — FlexCAN_5 WKPU	 /O /O - 	S	Tristate	18	18	G2
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] CAN5TX —	SIUL eMIOS_0 FlexCAN_5 —	I/O I/O O —	M/S	Tristate	20	20	F4
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 ALT4 —	GPIO[66] E0UC[18] — FR_A_TX_EN SIN_1 EIRQ[21]	SIUL eMIOS_0 — Flexray DSPI_1 SIUL	/O /O - 	M/S	Tristate	156	180	A7
PE[3]	PCR[67]	AF0 AF1 AF2 AF3 —	GPIO[67] E0UC[19] SOUT_1 — FR_A_RX WKPU[29]	SIUL eMIOS_0 DSPI_1 — Flexray WKPU	/O /O 	M/S	Tristate	157	181	A10
PE[4]	PCR[68]	AF0 AF1 AF2 AF3 ALT4 —	GPIO[68] E0UC[20] SCK_1 — FR_B_TX EIRQ[9]	SIUL eMIOS_0 DSPI_1 — Flexray SIUL	/O /O /O 0 	M/S	Tristate	160	184	A8
PE[5]	PCR[69]	AF0 AF1 AF2 AF3 —	GPIO[69] E0UC[21] CS0_1 MA[2] FR_B_RX WKPU[30]	SIUL eMIOS_0 DSPI_1 ADC_0 Flexray WKPU	/O /O /O 0 	M/S	Tristate	161	185	B8

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PM[4]	PCR[196]	AF0 AF1 AF2 AF3	GPIO[196] — — —	SIUL — — —	I/O 	M/S	Tristate		_	L12
PM[5]	PCR[197]	AF0 AF1 AF2 AF3	GPIO[197] — — —	SIUL — — —	I/O 	M/S	Tristate	_	_	F9
PM[6]	PCR[198]	AF0 AF1 AF2 AF3	GPIO[198] — — —	SIUL — — —	I/O — — —	M/S	Tristate		_	F6

 Table 4. Functional port pin descriptions (continued)

NOTES:

- ¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 000 → AF0; PCR.PA = 001 → AF1; PCR.PA = 010 → AF2; PCR.PA = 011 → AF3; PCR.PA = 100 → ALT4. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".
- ² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
- ³ NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is ignored.
- ⁴ SXOSC's OSC32k_XTAL and OSC32k_EXTAL pins are shared with GPIO functionality. When used as crystal pins, other functionality of the pin cannot be used and it should be ensured that application never programs OBE and PUE bit of the corresponding PCR to "1".
- ⁵ If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature as PB[10] can induce coupling on PB[9] and disturb oscillator frequency.
- ⁶ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
 PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
 It is up to the user to configure these pins as GPIO when needed.
- ⁷ When MBIST is enabled to run (STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V before the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST operation. When MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally drive the pad.
- ⁸ These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development Interface "Port Control Register" rather than the SIUL. Specifically, the debugger can enable the MDO[7:0], MSEO, and MCKO ports by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled by programming NDI ((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]).

Medium and fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.

4.6.2 I/O input DC characteristics

Table 13 provides input DC electrical characteristics as described in Figure 5.

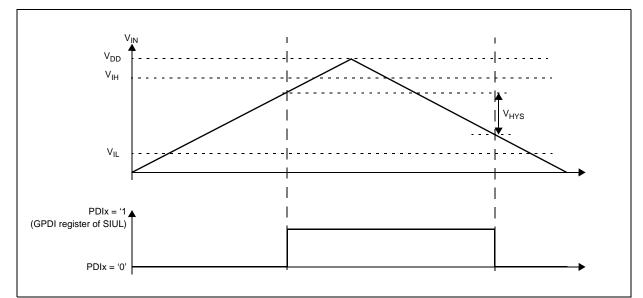


Figure 5. I/O input DC electrical characteristics definition

Symb		с	Parameter	Condi	tions ¹		Value ²		Unit
- Oynic		0	i arameter	Cond		Min	Тур	Мах	onne
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	_	_	0.65V _{DD}	_	V _{DD} + 0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	-	_	-0.3	_	0.35V _{DD}	
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	-	_	0.1V _{DD}	—	_	
I _{LKG}	СС	Ρ	Digital input leakage	No injection $T_A = -40 \text{ °C}$		—	2	_	nA
		Ρ		on adjacent pin	T _A = 25 °C	—	2	_	
		D			T _A = 105 °C	—	12	500	
		Ρ			T _A = 125 °C	—	70	1000	
W _{FI}	SR	Ρ	Width of input pulse rejected by analog filter ³	-	_	—	_	40 ⁴	ns
W _{NFI}	SR	Ρ	Width of input pulse accepted by analog filter ⁽³⁾	-	_	1000 ⁴	—	—	ns

NOTES:

 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

NP

Electrical Characteristics

- 2 V_{DD} as mentioned in the table is V_{DD_HV_A}/V_{DD_HV_B}. All values need to be confirmed during device validation.
- ³ Analog filters are available on all wakeup lines.
- ⁴ The width of input pulse in between 40 ns to 1000 ns is indeterminate. It may pass the noise or may not depending on silicon sample to sample variation.

4.6.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

- Table 14 provides weak pull figures. Both pull-up and pull-down resistances are supported.
- Table 15 provides output driver characteristics for I/O pads when in SLOW configuration.
- Table 16 provides output driver characteristics for I/O pads when in MEDIUM configuration.
- Table 17 provides output driver characteristics for I/O pads when in FAST configuration.

Svm	Symbol		Parameter	Conditio	Value					
Cymbol		С	i di difictei	Contaniono		Min	Тур	Мах	Unit	
I _{WPU}	CC	Р		$V_{IN} = V_{IL}, V_{DD} =$	PAD3V5V = 0	10	_	150	μA	
		С	current absolute 5 value	5.0 V ± 10%	$PAD3V5V = 1^{3}$	10	_	250		
		Ρ		V _{IN} = V _{IL} , V _{DD} = 3.3 V ± 10%	PAD3V5V = 1	10	_	150		
I _{WPD}				PAD3V5V = 0	10		150	μA		
		С	current absolute value	5.0 V ± 10%	PAD3V5V = 1	10		250		
	P		V _{IN} = V _{IH} , V _{DD} = 3.3 V ± 10%	PAD3V5V = 1	10		150			

Table 14. I/O pull-up/pull-down DC electrical characteristics

NOTES:

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 $^2~V_{DD}$ as mentioned in the table is $V_{DD_HV_A}\!/V_{DD_HV_B}.$

³ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Table 15. SLOW configuration output buff	fer electrical characteristics
--	--------------------------------

Sv	Symbol C Parameter		C	Parameter		Conditions ^{1,2}		Value		Unit
Uy,				Conditions	Min	Тур	Мах	Onic		
V _{Oł}	H C	C		SLOW	Push Pull	I _{OH} = -3 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	_	_	V
		(С	configuration		$I_{OH} = -3 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^3$	0.8V _{DD}		_	
			Ρ			I _{OH} = −1.5 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	V _{DD} - 0.8	_	_	

Sum	nbol	с	Parameter		onditions ^{1,2}		Value		Unit
J		C	Farameter				Тур	Мах	Onit
V _{OH}	CC	Р	Output high level FAST configuration	Push Pull	$I_{OH} = -14 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0	0.8V _{DD}		_	V
		С			$I_{OH} = -7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 1 ³	0.8V _{DD}	_	_	
		С			$I_{OH} = -11 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1	V _{DD} – 0.8		—	
V _{OL}	CC	Р	Output low level FAST configuration	Push Pull	I _{OL} = 14 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	0.1V _{DD}	V
		С			$I_{OL} = 7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 1 ⁽³⁾	—	_	0.1V _{DD}	
		С			I _{OL} = 11 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	0.5	

Table 17. FAST configuration output buffer electrical characteristics

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

 $^2~V_{DD}$ as mentioned in the table is $V_{DD_HV_A}/V_{DD_HV_B}.$

³ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus outputs (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Output pin transition times 4.6.4

Table 18. Output pin transition times

6,	Symbol (с	Parameter	Cor	nditions ^{1,2}		Unit		
3			C	Farameter	Conditions		Min	Тур	Max	
Tt	tr	CC	D	Output transition time	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$,		—	50	ns
			Т	output pin ⁴ SLOW configuration	C _L = 50 pF	PAD3V5V = 0		_	100	
			D	-	C _L = 100 pF			—	125	
			D	-	C _L = 25 pF	$V_{DD} = 3.3 V \pm 10\%,$		—	40	
			Т		C _L = 50 pF	PAD3V5V = 1		_	50	
			D		C _L = 100 pF			—	75	

Package				I/O Su	pplies			
176 LQFP	pin6	pin27	pin57	pin85	pin123	pin150	—	_
	(V _{DD_HV_A})	$(V_{DD_HV_A})$	(V _{SS_HV})	$(V_{DD_HV_A})$	(V _{SS_HV})	(V _{SS_HV})		
	pin7	pin28	pin59	pin86	pin124	pin151		
	(V _{SS_HV})	(V _{SS_HV})	(V _{DD_HV_A})	(V _{SS_HV})	(V _{DD_HV_B})	(V _{DD_HV_A})		

Table 19. I/O supplies (continued)

Table 20. I/O consumption

Symbol		с	Parameter	Conditi	ions ^{1,2}		Value ³		Unit
Symbol		C	Farameter	Conditi		Min	Тур	Мах	Unit
I _{SWTSLW} ,4	СС	D	Peak I/O current for SLOW configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	19.9	
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	15.5	mA
I _{SWTMED} ⁽⁴⁾	СС	D	Peak I/O current for MEDIUM	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0		—	28.8	
			configuration		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	16.3	mA
I _{SWTFST} ⁽⁴⁾	СС	D	Peak I/O current for FAST configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	113.5	
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	52.1	mA
I _{RMSSLW}	СС	D	Root mean square	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$		—	2.22	
			I/O current for SLOW configuration	C _L = 25 pF, 4 MHz	PAD3V5V = 0	_	—	3.13	mA
				C _L = 100 pF, 2 MHz		_	_	6.54	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,			1.51	mA
				C _L = 25 pF, 4 MHz	PAD3V5V = 1	_	_	2.14	
				C _L = 100 pF, 2 MHz		_	_	4.33	
IRMSMED	СС	D	Root mean square	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$,			6.5	mA
			I/O current for MEDIUM	C _L = 25 pF, 40 MHz	PAD3V5V = 0			13.32	1
			configuration	C _L = 100 pF, 13 MHz				18.26	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,			4.91	
				C _L = 25 pF, 40 MHz	PAD3V5V = 1			8.47	
				C _L = 100 pF, 13 MHz				10.94	
I _{RMSFST}	СС	D	Root mean square	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$,			21.05	mA
			I/O current for FAST configuration	C _L = 25 pF, 64 MHz	PAD3V5V = 0			33	
				C _L = 100 pF, 40 MHz				55.77	
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$,	_	—	14	
				C _L = 25 pF, 64 MHz	PAD3V5V = 1			20	
				C _L = 100 pF, 40 MHz		_	_	34.89	

MPC5646C Data Sheet, Rev.6

Ok. al		(Descention	Condi			1	Unit	
Symbol		С	Parameter	Condi	tions	Min	Typ ³	Max ⁴	Unit
I _{DDMAX} 5	СС	D	RUN mode maximum average current	_	_	—	210	300 ^{6,7}	mA
IDDRUN	СС	Ρ	RUN mode typical average	at 120 MHz	T _A = 25 °C	_	150	200 ⁹	mA
		D	current ⁸	at 80 MHz	T _A = 25 °C	—	110 ⁸	150 ¹⁰	mA
		С		at 120 MHz	T _A = 125 °C	_	180	270	mA
IDDHALT	СС	Ρ	HALT mode current ¹¹	at 120 MHz	T _A = 25 °C	—	20	27	mA
		С		at 120 MHz	T _A = 125 °C	—	35	113	mA
IDDSTOP	СС	Ρ	STOP mode current ¹²	No clocks active	T _A = 25 °C	_	0.4	3	mA
		С			T _A = 125 °C	_	16	95	mA
I _{DDSTDBY3}	СС	Ρ	STANDBY3 mode	No clocks active	T _A = 25 °C	—	50	99	μA
(96 KB RAM retained)		С	current ¹³		T _A = 125 °C	-	630	3200	μA
IDDSTDBY2	СС	С	STANDBY2 mode	No clocks active	T _A = 25 °C	—	40	94	μΑ
(64 KB RAM retained)		С	current ¹⁴		T _A = 125 °C	-	500	2500	μA
IDDSTDBY1	СС	С		No clocks active	T _A = 25 °C	—	25	87	μΑ
(8 KB RAM retained)		С	current ¹⁵		T _A = 125 °C	-	230	1250	μA
Adders in LP	СС	Т	32 KHz OSC		T _A = 25 °C	—	_	5	μΑ
mode			4–40 MHz OSC	—	T _A = 25 °C	—	_	3	mA
			16 MHz IRC		T _A = 25 °C			500	μA
			128 KHz IRC		T _A = 25 °C	—	—	5	μA

Table 24. Low voltage power domain electrical characteristics ¹
--

NOTES:

¹ Except for I_{DDMAX} , all the current values are total current drawn from $V_{DD_{-HV_{-}A}}$.

- 2 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified All temperatures are based on an ambient temperature.
- ³ Target typical current consumption for the following typical operating conditions and configuration. Process = typical, Voltage = 1.2 V.
- ⁴ Target maximum current consumption for mode observed under typical operating conditions. Process = Fast, Voltage = 1.32 V.
- ⁵ Running consumption is given on voltage regulator supply (V_{DDREG}). It does not include consumption linked to I/Os toggling. This value is highly dependent on the application. The given value is thought to be a worst case value with all cores and peripherals running, and code fetched from code flash while modify operation on-going on data flash. It is to be noticed that this value can be significantly reduced by application: switch-off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.
- ⁶ Higher current may sunk by device during power-up and standby exit. Please refer to in rush current in Table 22.
- ⁷ Maximum "allowed" current is package dependent.
- ⁸ Only for the "P" classification: Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled. RUN current measured with typical application with accesses on both code flash and RAM.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

	Symbol			Cond	itions ²	Frequency	
Sym			Parameter	Code flash memory	Data flash memory	range	Unit
f _{READ}	CC	Ρ	Maximum frequency for Flash reading	5 wait states	13 wait states	120 —100	
		С		4 wait states	11 wait states	100—80	MHz
		D		3 wait states	9 wait states	80—64	
		С		2 wait states	7 wait states	64—40	
		С		1 wait states	4 wait states	40—20	
		С		0 wait states	2 wait states	20—0	

Table 28	Flash	memory	read	access	timing ¹
----------	-------	--------	------	--------	---------------------

NOTES:

¹ Max speed is the maximum speed allowed including PLL frequency modulation (FM).

 $^2~$ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified.

4.10.2 Flash memory power supply DC characteristics

Table 29 shows the flash memory power supply DC characteristics on external supply.

S	Symbol		Parameter	Conditions ¹		Unit			
			i alameter	Conditions	Min	Тур	Max		
I _{CFR}	EAD ³	CC	Sum of the current consumption on $V_{DD_HV_A}$ on read access	Flash memory module read $f_{CPU} = 120 \text{ MHz} + 2\%^4$	Code flash memory			33	mA
I _{DFRE}	EAD ⁽³⁾				Data flash memory			13	
I _{CFM}	OD ⁽³⁾	CC	Sum of the current consumption on $V_{DD_HV_A}$ (program/erase)	Program/Erase on-going while reading flash memory	Code flash memory			52	mA
I _{DFM}	OD ⁽³⁾			registers f _{CPU} = 120 MHz + 2% ⁽⁴⁾	Data flash memory			13	
I _{CFLF}	PW ⁽³⁾	CC	Sum of the current consumption on $V_{DD_HV_A}$ during flash memory low power mode		Code flash memory			1.1	mA
I _{CFP\}	WD ⁽³⁾		Sum of the current consumption on $V_{DD_HV_A}$ during flash		Code flash memory			150	μA
I _{DFP\}	WD ⁽³⁾		memory power down mode		Data flash memory			150	

NOTES: ¹ $V_{DD} = 3.3 \text{ V} \pm 10\% \text{ / } 5.0 \text{ V} \pm 10\%, \text{ T}_{\text{A}} = -40 \text{ to } 125 \text{ °C}, \text{ unless otherwise specified.}$ ² All values need to be confirmed during device validation.

NOTES:

- All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
- ² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.
- ³ Data based on characterization results, not tested in production.

4.11.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply over-voltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 33. Latch-up results

Symbol	Parameter	Conditions	Class
LU	-	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

4.12 Fast external crystal oscillator (4–40 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 10 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 34 provides the parameter description of 4 MHz to 40 MHz crystals used for the design simulations.

Symbol	Symbol		Parameter	Conditions ¹		Value ²		Unit
Gymbol		С	i arameter	Conditions	Min 1		Мах	Onic
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	0.65V _{DD_HV_A}	—	V _{DD_HV_A} + 0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.3	_	0.35V _{DD_HV_} A	V

Table 35. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ Based on ATE Cz

⁴ Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals).

4.13 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

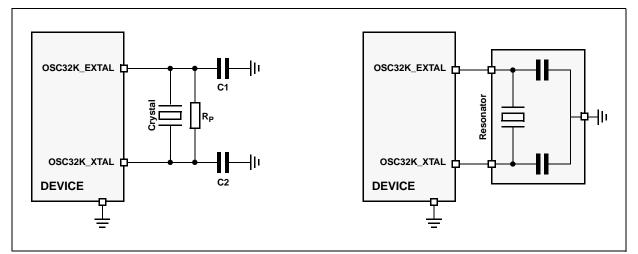


Figure 12. Crystal oscillator and resonator connection scheme

NOTE

OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.

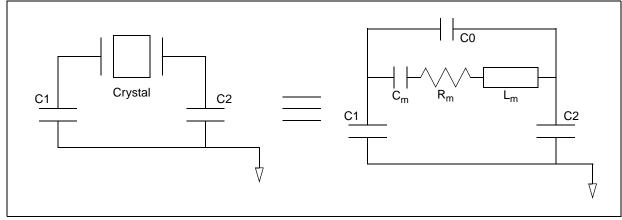


Figure 13. Equivalent circuit of a quartz crystal

Table 36	Crystal	motional	characteristics ¹
----------	---------	----------	------------------------------

Symbol	Parameter	Conditions		Unit		
Symbol	raiametei	Conditions	Min	Тур	Max	Onic
L _m	Motional inductance	—	_	11.796		КН
C _m	Motional capacitance	—	_	2		fF
C1/C2	Load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground ²	_	18	—	28	pF
R _m ³	Motional resistance	AC coupled @ $C0 = 2.85 \text{ pF}^4$	_	—	65	kΩ
		AC coupled @ $C0 = 4.9 \text{ pF}^{(4)}$		—	50	
		AC coupled @ $C0 = 7.0 \text{ pF}^{(4)}$	_	—	35	
		AC coupled @ $C0 = 9.0 \text{ pF}^{(4)}$		—	30	

NOTES: ¹ The crystal used is Epson Toyocom MC306.

 $^2\,$ This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package.

 3 Maximum ESR (R_m) of the crystal is 50 k\Omega.

⁴ C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.

Symbol		с	Parameter	C	onditions ¹		Value ²		Unit
Cymbol		Ŭ	i alameter					Мах	Unit
I _{FIRCSTOP}	CC	Т	Fast internal RC oscillator high	T _A = 25 °C	sysclk = off	_	500		μΑ
			frequency and system clock current in stop mode		sysclk = 2 MHz	—	600		
			,		sysclk = 4 MHz	—	700		
					sysclk = 8 MHz	—	900		
					sysclk = 16 MHz	_	1250	—	
T _{FIRCSU}	СС	С	Fast internal RC oscillator	T _A = 55 °C	$V_{DD} = 5.0 \text{ V} \pm 10\%$	_		2.0	μs
		_	start-up time		$V_{DD} = 3.3 \text{ V} \pm 10\%$	_		5	
		—		T _A = 125 °C	$V_{DD} = 5.0 \text{ V} \pm 10\%$	—		2.0	
		_			$V_{DD} = 3.3 \text{ V} \pm 10\%$	_		5	
^Δ fircpre	СС	С	Fast internal RC oscillator precision after software trimming of f _{FIRC}	Т	_A = 25 °C	-1		+1	%
	СС	С	Fast internal RC oscillator trimming step	Т	_A = 25 °C	_	1.6		%
	CC	С	Fast internal RC oscillator variation over temperature and supply with respect to f_{FIRC} at $T_A = 25$ °C in high-frequency configuration		-5		+5	%	

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.16 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module.

Symbol C		с	Parameter	Conditions ¹		Value ²		Unit
		Ŭ	i di di lictori	Conditions	Min	Тур	Max	•
f _{SIRC}	СС	Ρ	Slow internal RC oscillator low	T _A = 25 °C, trimmed	_	128	_	kHz
	SR		frequency	untrimmed, across temperatures	84	_	205	
I _{SIRC} ^{3,}	СС		Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed	—	_	5	μA

Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics

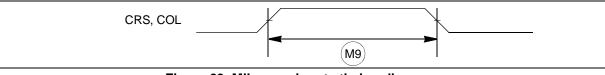
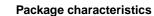


Figure 23. MII async inputs timing diagram


4.18.4 **MII Serial Management Channel Timing (MDIO and MDC)**

The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

Spec	Characteristic	Min	Max	Unit
M10	MDC falling edge to MDIO output invalid (minimum propagation delay)	0	_	ns
M11	MDC falling edge to MDIO output valid (max prop delay)	_	25	ns
M12	MDIO (input) to MDC rising edge setup	28	-	ns
M13	MDIO (input) to MDC rising edge hold	0	_	ns
M14	MDC pulse width high	40%	60%	MDC period
M15	MDC pulse width low	40%	60%	MDC period

Table 47. MII serial management channel timing¹

NOTES: ¹ Output pads configured with SRE = 0b11.

NOTES:												
1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25MM PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE DATUM H.												
2. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM & DIMENSION BY MORE THEN 0.08MM. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07MM FOR 0.4MM AND 0.5MM PITCH PACKAGES.												
DIM MIN NO	XAM MC	DIM	MIN	NOM	МАХ	DIM	MIN	NOM N	ИАХ			
A	1.6	L1		1 REF								
A1 0.05	0.15	R1	0.08									
A2 1.35 1.	.4 1.45	R2	0.08		0.2							
b 0.17 0.	22 0.27	S	().2 REF								
b1 0.17 0	.2 0.23	θ	0°	3.5°	7 °							
c 0.09	0.2	θ1	0°									
c1 0.09	0.16	θ2	11 °	12 °	13 °							
D 26	BSC	θ3	11°	12 °	13°							
D1 24	BSC											
e 0.5	BSC											
E 26	BSC											
E1 24	BSC		UNIT	D	IMENSION /		REED	ENCE DO	CUMENT			
L 0.45 0	.6 0.75				TOLERANCI							
TITLE:	LQFP 176L	<u>ר</u>	ММ		ASME Y14.		04-	06-280-	-1392			
24X24	X1.4 PKG 0.5 2mm FOOTPR	PITCH	I POD		0			7				
					SHEET			3				

Figure 39. 176 LQFP mechanical drawing (Part 3 of 3)

5.1.2 208 LQFP package mechanical drawing