

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	e200z4d, e200z0h
Core Size	32-Bit Dual-Core
Speed	80MHz/120MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	177
Program Memory Size	3MB (3M × 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 33x10b, 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-TQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5646ccf0vlt1r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2 summarizes the functions of the blocks present on the MPC5646C. Table 2. MPC5646C series block summary

Block	Function
Analog-to-digital converter (ADC)	Converts analog voltages to digital values
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Cryptographic Security Engine (CSE)	Supports the encoding and decoding of any kind of data
Crossbar (XBAR) switch	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width
DMA Channel Multiplexer (DMAMUX)	Allows to route DMA sources (called slots) to DMA channels
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via "n" programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
FMPLL (frequency-modulated phase-locked loop)	Generates high-speed system clocks and supports programmable frequency modulation
FlexRay (FlexRay communication controller)	Provides high-speed distributed control for advanced automotive applications
Fast Ethernet Controller (FEC)	Ethernet Media Access Controller (MAC) designed to support both 10 and 100 Mbps Ethernet/IEEE 802.3 networks
Internal multiplexer (IMUX) SIUL subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests for both e200z0h and e200z4d cores
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode

Package pinouts and signal descriptions

3 Package pinouts and signal descriptions

The available LQFP pinouts and the MAPBGA ballmaps are provided in the following figures. For functional port pin description, see Table 4.

Figure 2. 176-pin LQFP configuration

Package pinouts and signal descriptions

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PB[5]	PCR[21]	AF0 AF1 AF2 AF3 —	GPI[21] — — ADC0_P[1] ADC1_P[1]	SIUL — — ADC_0 ADC_1	 - 	Ι	Tristate	91	107	N13
PB[6]	PCR[22]	AF0 AF1 AF2 AF3 —	GPI[22] — — — ADC0_P[2] ADC1_P[2]	SIUL — — ADC_0 ADC_1	 - 	I	Tristate	92	108	N14
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 —	GPI[23] — — — ADC0_P[3] ADC1_P[3]	SIUL — — ADC_0 ADC_1	 - 	Ι	Tristate	93	109	R16
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 — — — —	GPI[24] — — ADC0_S[0] ADC1_S[4] WKPU[25] OSC32k_XTAL ⁴	SIUL — ADC_0 ADC_1 WKPU SXOSC	 	Ι	_	61	77	T11
PB[9] ⁵	PCR[25]	AF0 AF1 AF2 AF3 — — — —	GPI[25] — — ADC0_S[1] ADC1_S[5] WKPU[26] OSC32k_EXTAL ⁴	SIUL — — ADC_0 ADC_1 WKPU SXOSC	 	I	_	60	76	T10
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 — — —	GPIO[26] SOUT_1 CAN3TX — ADC0_S[2] ADC1_S[6] WKPU[8]	SIUL DSPI_1 FlexCAN_3 — ADC_0 ADC_1 WKPU	I/O O — I I I	S	Tristate	62	78	N7

Table 4. Functional p	oort pin	descriptions	(continued)
-----------------------	----------	--------------	-------------

.

				_			Pir	n numbe	ər	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PG[5]	PCR[101]	AF0 AF1 AF2 AF3 —	GPIO[101] E1UC[14] — WKPU[18] SIN_3	SIUL eMIOS_1 — WKPU DSPI_3	/O /O 	S	Tristate	13	13	D1
PG[6]	PCR[102]	AF0 AF1 AF2 AF3	GPIO[102] E1UC[15] LIN6TX —	SIUL eMIOS_1 LINFlexD_6 —	I/O I/O O	M/S	Tristate	38	38	M1
PG[7]	PCR[103]	AF0 AF1 AF2 AF3 —	GPIO[103] E1UC[16] E1UC[30] — LIN6RX WKPU[20]	SIUL eMIOS_1 eMIOS_1 LINFlexD_6 WKPU	/O /O /O 	S	Tristate	37	37	L2
PG[8]	PCR[104]	AF0 AF1 AF2 AF3 —	GPIO[104] E1UC[17] LIN7TX CS0_2 EIRQ[15]	SIUL eMIOS_1 LINFlexD_7 DSPI_2 SIUL	I/O I/O 0 I/O I	S	Tristate	34	34	КЗ
PG[9]	PCR[105]	AF0 AF1 AF2 AF3 —	GPIO[105] E1UC[18] — SCK_2 LIN7RX WKPU[21]	SIUL eMIOS_1 DSPI_2 LINFlexD_7 WKPU	/O /O /O 	S	Tristate	33	33	J4
PG[10]	PCR[106]	AF0 AF1 AF2 AF3	GPIO[106] E0UC[24] E1UC[31] SIN_4	SIUL eMIOS_0 eMIOS_1 DSPI_4	I/O I/O I/O I	S	Tristate	138	162	B13
PG[11]	PCR[107]	AF0 AF1 AF2 AF3	GPIO[107] E0UC[25] CS0_4 CS0_6	SIUL eMIOS_0 DSPI_4 DSPI_6	I/O I/O I/O I/O	M/S	Tristate	139	163	A16
PG[12]	PCR[108]	AF0 AF1 AF2 AF3 ALT4	GPIO[108] E0UC[26] SOUT_4 — TXD[2]	SIUL eMIOS_0 DSPI_4 — FEC	I/O I/O O O	M/S	Tristate	116	140	F15

Fable 4. Functional	port pin	descriptions ((continued)
----------------------------	----------	----------------	-------------

Symbol		Parameter	Conditions	Value		
Symbol	Symbol I arameter		Conditions		Мах	Unit
V _{RC_CTRL} ²		Base control voltage for external BCP68 NPN device	Relative to V _{DD_LV}	0	V _{DD_LV} + 1	V
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V _{SS_HV})	_	V _{SS_HV} – 0.1	V _{SS_HV} + 0.1	V
V _{DD_HV_ADC0}	SR	Voltage on VDD_HV_ADC0	—	-0.3	6.0	V
		(V _{SS_HV})	Relative to V _{DD_HV_A} ³	$V_{DD_HV_A} - 0.3$	$V_{DD_HV_A}$ +0.3	
V _{DD_HV_ADC1} ⁴	SR	Voltage on VDD_HV_ADC1	—	-0.3	6.0	V
		(V _{SS_HV})	Relative to V _{DD_HV_A} ²	V _{DD_HV_A} -0.3	$V_{DD_HV_A}$ +0.3	
V _{IN}	SR	Voltage on any GPIO pin with respect to ground (V_{SS_HV})	Relative to V _{DD_HV_A/HV_B}	V _{DD_HV_A/HV_B} -0.3	V _{DD_HV_A/HV_B} +0.3	V
I _{INJPAD}	SR	Injected input current on any pin during overload condition		-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	
I _{AVGSEG} 5	SR	Sum of all the static I/O current within a supply	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		70	mA
	Segment (V _{DD_HV_A} or V _{DD_HV_B})		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		64	
T _{STORAGE}	SR	Storage temperature	—	-55 ⁶	150	°C

Table 6. Absolute maximum ratings (continued	Table 8.	Absolute	maximum	ratings	(continued)
--	----------	----------	---------	---------	-------------

NOTES:

 $V_{DD_{-}HV_{-}B}$ can be independently controlled from $V_{DD_{-}HV_{-}A}$. These can ramp up or ramp down in any order. Design is robust against any supply order.

² This voltage is internally generated by the device and no external voltage should be supplied.

³ Both the relative and the fixed conditions must be met. For instance: If $V_{DD_HV_A}$ is 5.9 V, $V_{DD_HV_ADC0}$ maximum value is 6.0 V then, despite the relative condition, the max value is $V_{DD_HV_A} + 0.3 = 6.2$ V.

⁴ PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from V_{DD_HV_B} domain hence V_{DD_HV_ADC1} should be within ±300 mV of $V_{DD_HV_B}$ when these channels are used for ADC_1.

⁵ Any temperature beyond 125 °C should limit the current to 50 mA (max).

⁶ This is the storage temperature for the flash memory.

Symbol		Parameter Conditions		Va	Unit	
Cymbol	Symbol Parameter		oonations	Min	Мах	onne
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	
TV _{DD}	SR	V _{DD_HV_A} slope to ensure	—	_	0.5	V/µs
		correct power up	—	0.5	—	V/min
T _A	SR	Ambient temperature under bias	f _{CPU} up to 120 MHz + 2%	-40	125	°C
TJ	SR	Junction temperature under bias	_	-40	150	

Table 9. Recommended	operating conditions	s (3.3 V)	(continued)
----------------------	----------------------	-----------	-------------

NOTES:

- ¹ 100 nF EMI capacitance need to be provided between each VDD/VSS_HV pair.
- ² 100 nF EMI capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 10 µF bulk capacitance needs to be provided as CREG on each VDD_LV pin. For details refer to the Power Management chapter of the MPC5646C Reference Manual.
- ³ This voltage is internally generated by the device and no external voltage should be supplied.
- $^4~$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.
- ⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.
- ⁶ Both the relative and the fixed conditions must be met. For instance: If $V_{DD_HV_A}$ is 5.9 V, $V_{DD_HV_ADC0}$ maximum value is 6.0 V then, despite the relative condition, the max value is $V_{DD_HV_A}$ + 0.3 = 6.2 V.
- ⁷ PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from V_{DD_HV_B} domain hence V_{DD_HV_ADC1} should be within ±100 mV of V_{DD_HV_B} when these channels are used for ADC_1.
- ⁸ Guaranteed by the device validation.

Symbol		Parameter	Conditions	Valu	Unit	
Symbol		Faiametei	Conditions	Min	Max	
V _{SS_HV}	SR	Digital ground on VSS_HV pins	_	0	0	V
V _{DD_HV_A} 1	SR	Voltage on VDD_HV_A pins with	—	4.5	5.5	V
		respect to ground (V _{SS_HV})	Voltage drop ²	3.0	5.5	
V _{DD_HV_B}	D_HV_B SR Generic GPIO functionality		—	3.0	5.5	V
		Ethernet/3.3 V functionality (See the notes in all figures in Section 3, "Package pinouts and signal descriptions" for the list of channels operating in V _{DD_HV_B} domain)	_	3.0	3.6	V

Table 10. Recommended operating conditions (5.0 V)

Symbol C		c	C		hal C	Paramotor		Conditions ^{1,2}		Value		Unit
Syn	1001	C	Farameter			Min	Тур	Max	Unit			
V _{OL}	СС	Ρ	Output low level SLOW	Push Pull	$I_{OL} = 3 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	_	_	0.1V _{DD}	V			
		С	configuration		I _{OL} = 3 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽³⁾	_		0.1V _{DD}				
		Ρ			I _{OL} = 1.5 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	0.5				

Table 15. SLOW configuration output buffer electrical characteristics (continued)

NOTES:

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 2 V_{DD} as mentioned in the table is V_{DD_HV_A}/V_{DD_HV_B}.

³ The configuration PAD3V5 = 1 when $\overline{V_{DD}}$ = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Table 16. ME	DIUM configuration	output buffer	electrical of	characteristics
--------------	--------------------	---------------	---------------	-----------------

Sum	hol	c	Paramotor	eter Conditions ¹ , ²			Value		Unit
J	1001	C	Farameter			Min	Тур	Max	Unit
V _{OH}	CC	С	Output high level MEDIUM configuration	Push Pull	$I_{OH} = -3 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0	0.8V _{DD}	_	_	
		С			$I_{OH} = -1.5 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 1 ³	0.8V _{DD}	_	_	V
		С			I _{OH} = −2 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	V _{DD} – 0.8	_	_	
V _{OL}	CC	С	Output low level MEDIUM configuration	Push Pull	$I_{OL} = 3 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0	_	_	0.2V _{DD}	
		С			$I_{OL} = 1.5 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^{(3)}$	_	_	0.1V _{DD}	V
		С			I _{OL} = 2 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—		0.5	

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

 $^2~V_{DD}$ as mentioned in the table is $V_{DD_HV_A}/V_{DD_HV_B}.$

³ The configuration PAD3V5 = 1 when $\overline{V_{DD}}$ = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Svn	Symbol		Parameter	Co	$ditions^{1,2}$		Value ³		Unit
- Oyn		U	i arameter		oonanions		Тур	Мах	Unit
T _{tr}	CC	D	Output transition time	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$	_	—	10	ns
		Т		C _L = 50 pF	SIUL.PCRx.SRC = 1	_	—	20	
		D	configuration	C _L = 100 pF		_	—	40	
		D		C _L = 25 pF	$V_{DD} = 3.3 V \pm 10\%$,	_	—	12	
		Т		C _L = 50 pF	SIUL.PCRx.SRC = 1	_	—	25	
		D		C _L = 100 pF		_	—	40	
T _{tr}	CC	D	Output transition time $\frac{(4)}{(4)}$	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$,	_	—	4	ns
			FAST configuration	C _L = 50 pF	PAD3V5V = 0	_	—	6	
				C _L = 100 pF		_	—	12	
				C _L = 25 pF	$V_{DD} = 3.3 V \pm 10\%$,	_	—	4	
				C _L = 50 pF	PAD3V5V = 1	_	—	7	
				C _L = 100 pF			—	12	

Table 18. Output pin transition times (continued)

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

 2 V_{DD} as mentioned in the table is V_{DD_HV_A}/V_{DD_HV_B}.

³ All values need to be confirmed during device validation.

⁴ C_L includes device and package capacitances (C_{PKG} < 5 pF).

I/O pad current specification 4.6.5

The I/O pads are distributed across the I/O supply segment. Each I/O supply is associated to a $V_{DD}/V_{SS HV}$ supply pair as described in Table 19.

Table 20 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG maximum value.

In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single segment should remain below the I_{DYNSEG} maximum value.

Package		I/O Supplies								
256 MAPBGA		Equivalent to 208-pin LQFP segment pad distribution + G6, G11, H11, J11								
208 LQFP	pin6 (V _{DD_HV_A}) pin7 (V _{SS_HV})	pin27 (V _{DD_HV_A}) pin28 (V _{SS_HV})	pin73 (V _{SS_HV}) pin75 (V _{DD_HV_A})	pin101 (V _{DD_HV_A}) pin102 (V _{SS_HV})	pin132 (V _{SS_HV}) pin133 (V _{DD_HV_A})	pin147 (V _{SS_HV}) pin148 (V _{DD_HV_B})	pin174 (V _{SS_HV}) pin175 (V _{DD_HV_A})	_		

Table 19. I/O supplies

Package				I/O Su	pplies			
176 LQFP	pin6	pin27	pin57	pin85	pin123	pin150	—	—
	(V _{DD_HV_A})	(V _{DD_HV_A})	(V _{SS_HV})	(V _{DD_HV_A})	(V _{SS_HV})	(V _{SS_HV})		
	pin7	pin28	pin59	pin86	pin124	pin151		
	(V _{SS_HV})	(V _{SS_HV})	(V _{DD_HV_A})	(V _{SS_HV})	(V _{DD_HV_B})	(V _{DD_HV_A})		

Table 19. I/O supplies (continued)

Table 20. I/O consumption

Symbol		~	Parameter	Conditi	iona ^{1,2}		Value ³		Unit
Symbol		C	Farameter	Conditions ^{1,2}		Min	Тур	Max	Unit
I _{SWTSLW} ,4	CC	D	Peak I/O current for SLOW configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	—	19.9	
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		—	15.5	mA
I _{SWTMED} ⁽⁴⁾	СС	D	Peak I/O current for MEDIUM	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	28.8	
			configuration		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		—	16.3	mA
I _{SWTFST} ⁽⁴⁾	СС	D	Peak I/O current for FAST configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	—	113.5	
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		—	52.1	mA
I _{RMSSLW}	СС	D	Root mean square	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$,		_	2.22	
			configuration	C _L = 25 pF, 4 MHz	PAD3V5V = 0	—	_	3.13	
			C _L = 100 pF, 2 MHz		_		6.54	m۸	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%,$			1.51	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1	_		2.14	
				C _L = 100 pF, 2 MHz		—	_	4.33	
IRMSMED	СС	D	Root mean square	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_		6.5	mA
			MEDIUM	C _L = 25 pF, 40 MHz	PAD3V5V = 0	—	_	13.32	
			configuration	C _L = 100 pF, 13 MHz		—	_	18.26	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,	_		4.91	
				C _L = 25 pF, 40 MHz	PAD3V5V = 1	_		8.47	
				C _L = 100 pF, 13 MHz		_		10.94	
I _{RMSFST}	СС	D	Root mean square	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_		21.05	mA
			I/O current for FAST	C _L = 25 pF, 64 MHz	PAD3V5V = 0	_		33	
				C _L = 100 pF, 40 MHz		—	_	55.77	
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$,	_		14	
				C _L = 25 pF, 64 MHz	PAD3V5V = 1	—		20	
				C _L = 100 pF, 40 MHz		—		34.89	

MPC5646C Data Sheet, Rev.6

- LV_CFLA0/CFLA1: Low voltage supply for the two code Flash modules. It is shorted with LV_COR through double bonding.
- LV_DFLA: Low voltage supply for data Flash module. It is shorted with LV_COR through double bonding.
- LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.

1) All VSS_LV pins must be grounded, as shown for VSS_HV pin.

Figure 8. Voltage regulator capacitance connection

The internal voltage regulator requires external bulk capacitance (C_{REGn}) to be connected to the device to provide a stable low voltage digital supply to the device. Also required for stability is the C_{DEC2} capacitor at ballast collector. This is needed to minimize sharp injection current when ballast is turning ON. Apart from the bulk capacitance, user should connect EMI/decoupling cap (C_{REGP}) at each V_{DD_LV}/V_{SS_LV} pin pair.

4.8.1.1 Recommendations

- The external NPN driver must be BCP68 type.
- V_{DD LV} should be implemented as a power plane from the emitter of the ballast transistor.

⁹ Subject to change, Configuration: 1 × e200z4d + 4 kbit/s Cache, 1 × e200z0h (1/2 system frequency), CSE, 1 × eDMA (10 ch.), 6 × FlexCAN (4 × 500 kbit/s, 2 × 125 kbit/s), 4 × LINFlexD (20 kbit/s), 6 × DSPI (2 × 2 Mbit/s, 3 × 4 Mbit/s, 1 × 10 Mbit/s), 16 × Timed I/O, 16 × ADC Input, 1 × FlexRay (2 ch., 10 Mbit/s), 1 × FEC (100 Mbit/s), 1 × RTC, 4 PIT channels, 1 × SWT, 1 × STM. For lower pin count packages reduce the amount of timed I/O's and ADC channels. RUN current measured with typical application with accesses on both code flash and RAM.

¹⁰ This value is obtained from limited sample set.

- ¹¹ Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz ON. 16 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but no reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission), instance: 3-9 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]-PA[11] and PC[12]-PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication, instance: 1-7 clocks gated). RTC/API ON. PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs.
- ¹² Only for the "P" classification: No clock, FIRC 16 MHz OFF, SIRC128 kHz ON, PLL OFF, HPvreg OFF, LPVreg ON. All possible peripherals off and clock gated. Flash in power down mode.
- ¹³ Only for the "P" classification: LPreg ON, HPVreg OFF, 96 KB RAM ON, device configured for minimum consumption, all possible modules switched-off.
- ¹⁴ Only for the "P" classification: LPreg ON, HPVreg OFF, 64 KB RAM ON, device configured for minimum consumption, all possible modules switched-off.
- ¹⁵ LPreg ON, HPVreg OFF, 8 KB RAM ON, device configured for minimum consumption, all possible modules switched OFF.

4.10 Flash memory electrical characteristics

4.10.1 **Program/Erase characteristics**

Table 25 shows the code flash memory program and erase characteristics.

Table 25. Code flash memory—Program and erase specifications

Symbol					Va	lue		
		С	Parameter	Min	Typ ¹	Initial max ²	Max ³	Unit
T _{dwprogram}			Double word (64 bits) program time ⁴		18	50	500	μs
T _{16Kpperase}		С	16 KB block pre-program and erase time	_	200	500	5000	ms
T _{32Kpperase}			32 KB block pre-program and erase time	_	300	600	5000	ms
T _{128Kpperase}			128 KB block pre-program and erase time	_	600	1300	5000	ms
T _{eslat}	СС	D	Erase Suspend Latency	_	_	30	30	μs
t _{ESRT} 5		С	Erase Suspend Request Rate	20	_	_	—	ms
t _{PABT}		D	Program Abort Latency	_	_	10	10	μs
t _{EAPT}		D	Erase Abort Latency	_	_	30	30	μs

NOTES:

Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

- ² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
- ³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
- ⁴ Actual hardware programming times. This does not include software overhead.
- ⁵ It is Time between erase suspend resume and the next erase suspend request.

MPC5646C Data Sheet, Rev.6

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

4.11.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI measurements.

Table 31. EMI radiated emission measurement^{1,2}

Symbol		C	Parameter	Conditions			Value			
Cynn		Ŭ	i didilotoi	Conditione		Min	Тур	Max	onne	
—	SR		Scan range	— (0.150		1000	MHz	
f _{CPU}	SR		Operating frequency			—	120	—	MHz	
V _{DD_LV}	SR		LV operating voltages	_		—	1.28	—	V	
S _{EMI}	СС	Т	Peak level	$V_{DD} = 5 V$, $T_A = 25 °C$, LQFP176 package	No PLL frequency modulation	—	_	18	dBµV	
				$f_{OSC} = 40 \text{ MHz/}f_{CPU} = 120 \text{ MHz}$	± 2% PLL frequency modulation			14 ³	dBµV	

NOTES:

EMI testing and I/O port waveforms per IEC 61967-1, -2, -4.

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

³ All values need to be confirmed during device validation.

4.11.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

4.11.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

Symbol	Ratings	Conditions	Class	Max value ³	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \text{ °C}$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	$T_A = 25 \text{ °C}$ conforming to AEC-Q100-003	M2	200	
V _{ESD(CDM)}	Electrostatic discharge voltage	$T_{A} = 25 ^{\circ}C$	C3A	500	
	(Charged Device Model)	conforming to AEC-Q100-011		750 (corners)	

Table 32. ESD absolute maximum ratings^{1,2}

Figure 13. Equivalent circuit of a quartz crystal

Table 36	. Crystal	motional	characteristics ¹
----------	-----------	----------	------------------------------

Symbol	Parameter	Conditions		Unit		
Symbol	raiametei	Conditions	Min	Тур	Max	• · · · ·
L _m	Motional inductance	—	_	11.796	_	KH
Cm	Motional capacitance	—	_	2	_	fF
C1/C2	Load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground ²	_	18		28	pF
R _m ³	Motional resistance	AC coupled @ $C0 = 2.85 \text{ pF}^4$	_	—	65	kΩ
		AC coupled @ $C0 = 4.9 \text{ pF}^{(4)}$	_	—	50	
		AC coupled @ $C0 = 7.0 \text{ pF}^{(4)}$	_	_	35	
		AC coupled @ $C0 = 9.0 \text{ pF}^{(4)}$	_	_	30	

NOTES: ¹ The crystal used is Epson Toyocom MC306.

 $^2\,$ This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package.

 3 Maximum ESR (R_m) of the crystal is 50 k\Omega.

⁴ C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.

This relation can again be simplified considering C_S as an additional worst condition. In reality, transient is faster, but the A/D converter circuitry has been designed to be robust also in very worst case: the sampling time T_s is always much longer than the internal time constant.

Eqn. 6

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll T_S$$

The charge of C_{P1} and C_{P2} is redistributed on C_S , determining a new value of the voltage V_{A1} on the capacitance according to the following equation

$$Eqn. 7$$

$$V_{A1} \bullet (C_{S} + C_{P1} + C_{P2}) = V_{A} \bullet (C_{P1} + C_{P2})$$

• A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_S , a constraints on R_L sizing is obtained:

Eqn. 9
8.5 •
$$\tau_2 = 8.5 • R_I • (C_S + C_{P1} + C_{P2}) < T_S$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . The following equation must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (T_S). The filter is typically designed to act as anti-aliasing

Figure 20. ADC_1 characteristic and error definitions

Symbol		^	Parameter	Conditions ¹			Unit	
Symb	01	C	Parameter	Conditions	Min	Тур	Max	Unit
V _{SS_ADC1}	SR	_	Voltage on VSS_HV_ADC1 (ADC_1 reference) pin with respect to ground (V _{SS_HV}) ²	_	-0.1		0.1	V
V _{DD_ADC1} ³	SR		Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (V _{SS_HV})	_	V _{DD_HV_A} - 0.1		V _{DD_HV_A} + 0.1	>
V _{AINx} ^{3,4}	SR	—	Analog input voltage ⁵	_	V _{SS_ADC1} - 0.1		V _{DD_ADC1} + 0.1	V
f _{ADC1}	SR	—	ADC_1 analog frequency	_	8 + 2%		32 + 2%	MHz
t _{ADC1_PU}	SR	—	ADC_1 power up delay			1.5		μs
t _{ADC1_S}	CC	Т	Sample time ⁶ VDD=5.0 V	_	440			ns
			Sample time ⁽⁶⁾ VDD=3.3 V		530			
t _{ADC1_C}	СС	Р	Conversion time ^{7, 8} VDD=5.0 V	f _{ADC1} = 32 MHz	2			
			Conversion time ^{(7),} (6) VDD =5.0 V	f _{ADC 1} = 30 MHz	2.1			μs
			Conversion time ^{(7),} (6) VDD=3.3 V	f _{ADC 1} = 20 MHz	3			
			Conversion time ^{(7),} (⁶⁾ VDD =3.3 V	f _{ADC1} = 15 MHz	3.01			
C _S	CC	D	ADC_1 input sampling capacitance			5		pF
C _{P1}	CC	D	ADC_1 input pin capacitance 1	_		3		pF
C _{P2}	CC	D	ADC_1 input pin capacitance 2	_		1		pF
C _{P3}	CC	D	ADC_1 input pin capacitance 3	_		1.5		pF
R _{SW1}	CC	D	Internal resistance of analog source	_			1	kΩ

Table 43.	Conversion	characteristics	(12-bit ADC	1)
			(/

The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs.

Refer to the Fast Ethernet Controller (FEC) chapter of the MPC5646C Reference Manual for details of this option and how to enable it.

Spec	Characteristic	Min	Max	Unit	
M5	TX_CLK to TXD[3:0], TX_EN, TX_ER invalid	5	_	ns	
M6	TX_CLK to TXD[3:0], TX_EN, TX_ER valid		25	ns	
M7	TX_CLK pulse width high	35%	65%	TX_CLK period	
M8	TX_CLK pulse width low	35%	65%	TX_CLK period	

Table 45. MII transmit signal timing¹

NOTES: 1

Output pads configured with SRE = 0b11.

Figure 22. MII transmit signal timing diagram

MII Async Inputs Signal Timing (CRS and COL) 4.18.3

Table 46. MII Async Inputs Signal Timing¹

Spec	Characteristic	Min	Мах	Unit
M9	CRS, COL minimum pulse width	1.5	_	TX_CLK period

NOTES: ¹ Output pads configured with SRE = 0b11.

Symbol		C	Parameter		Conditions	Value ²	Unit
Gymbol					Тур		
IDD_HV_ADC1	CC	D	ADC_1 supply current on V _{DD_HV_ADC1}	V _{DD} = 5.5 V	Analog static consumption (no conversion)	300 × f _{periph}	μA
				V _{DD} = 5.5 V	Analog dynamic consumption (continuous conversion)	6	mA
I _{DD_HV} (FLASH)	CC	D	CFlash + DFlash supply current on V _{DD_HV_ADC}	V _{DD} = 5.5 V	_	13.25	mA
I _{DD_HV(PLL)}	CC	D	PLL supply current on V _{DD_HV}	V _{DD} = 5.5 V	_	$0.0031 \times f_{periph}$	

Table 48. On-chip peripherals current consumption¹

NOTES: ¹ Operating conditions: $T_A = 25$ °C, $f_{periph} = 8$ MHz to 120 MHz. ² f_{periph} is in absolute value.

Figure 30. DSPI modified transfer format timing-master, CPHA = 1

	NOTES:										
1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25MM PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE DATUM H.											
2. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM & DIMENSION BY MORE THEN 0.08MM. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07MM FOR 0.4MM AND 0.5MM PITCH PACKAGES.											
DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX	DIM	MIN	NOM	МАХ
A			1.6	L1		1 REF					
A1	0.05		0.15	R1	0.08						
A2	1.35	1.4	1.45	R2	0.08		0.2				
b	0.17	0.22	0.27	S	C	.2 REF					
b1	0.17	0.2	0.23	θ	0°	3.5°	7°				
с	0.09		0.2	θ1	0°						
c1	0.09		0.16	θ2	11 °	12 °	13°				
D	26 BSC			θ3	11 °	12 °	13°				
D1		24 BSC	;								
е		0.5 BSC	2								
E	26 BSC										
E1		24 BSC			DIMENSION 4		 AND				
L	0.45 0.6 0.75			UNII		TOLERANCES		KEFERENCE DOCUMENT			
	<u> </u>						ASME 114.	MC	64-	06-280	J-1392
	24	4X24X1.4	+ PKG 0.5		I POD						
2mm F001PR				an i		SHEET		3			

Figure 39. 176 LQFP mechanical drawing (Part 3 of 3)

5.1.2 208 LQFP package mechanical drawing