

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5646ccf0vlu1
Supplier Device Package	176-LQFP (24x24)
Package / Case	176-LQFP
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 105°C (TA)
Oscillator Type	Internal
Data Converters	A/D 27x10b, 5x12b
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
RAM Size	256К х 8
EEPROM Size	64K x 8
Program Memory Type	FLASH
Program Memory Size	3MB (3M x 8)
Number of I/O	147
Peripherals	DMA, POR, PWM, WDT
Connectivity	CANbus, Ethernet, I ² C, LINbus, SCI, SPI
Speed	80MHz/120MHz
Core Size	32-Bit Dual-Core
Core Processor	e200z4d, e200z0h
Product Status	Active

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 E0UC[29] —	SIUL DSPI_0 eMIOS_0 —	I/O O I/O —	M/S	Tristate	52	66	R5
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4]	SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL	I/O I/O I/O I/O I	M/S	Tristate	50	58	P4
PA[15]	PCR[15]	AF0 AF1 AF2 AF3 —	GPIO[15] CS0_0 SCK_0 E0UC[1] WKPU[10]	SIUL DSPI_0 DSPI_0 eMIOS_0 WKPU	I/O I/O I/O I/O I	M/S	Tristate	48	56	R2
PB[0]	PCR[16]	AF0 AF1 AF2 AF3	GPIO[16] CAN0TX E0UC[30] LIN0TX	SIUL FlexCAN_0 eMIOS_0 LINFlexD_0	I/O O I/O I	M/S	Tristate	39	39	L3
PB[1]	PCR[17]	AF0 AF1 AF2 — —	GPIO[17] — E0UC[31] LIN0RX WKPU[4] CAN0RX	SIUL — eMIOS_0 LINFlexD_0 WKPU FlexCAN_0	/O /O 	S	Tristate	40	40	M2
PB[2]	PCR[18]	AF0 AF1 AF2 AF3	GPIO[18] LIN0TX SDA E0UC[30]	SIUL LINFlexD_0 I ² C eMIOS_0	I/O O I/O I/O	M/S	Tristate	176	208	A2
PB[3]	PCR[19]	AF0 AF1 AF2 AF3 —	GPIO[19] E0UC[31] SCL WKPU[11] LIN0RX	SIUL eMIOS_0 I ² C WKPU LINFlexD_0	/O /O /O 	S	Tristate	1	1	D4
PB[4]	PCR[20]	AF0 AF1 AF2 AF3 	GPI[20] — — — ADC0_P[0] ADC1_P[0]	SIUL — — ADC_0 ADC_1	-	I	Tristate	88	104	T16

Table 4. Functional	port pir	description	s (continued)
	portpii	i accomption.	

Package pinouts and signal descriptions

								Piı	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PF[13]	PCR[93]	AF0 AF1 AF2 AF3 —	GPIO[93] E1UC[26] — LIN5RX WKPU[16]	SIUL eMIOS_1 LINFlexD_5 WKPU	/O /O 	S	Tristate	49	57	P3
PF[14]	PCR[94]	AF0 AF1 AF2 AF3 ALT4	GPIO[94] CAN4TX E1UC[27] CAN1TX MDIO	SIUL FlexCAN_4 eMIOS_1 FlexCAN_1 FEC	I/O O I/O O I/O	M/S	Tristate	126	150	D14
PF[15]	PCR[95]	AF0 AF1 AF2 AF3 	GPIO[95] E1UC[4] — RX_DV CAN1RX CAN4RX EIRQ[13]	SIUL eMIOS_1 FEC FlexCAN_1 FlexCAN_4 SIUL	/0 /0 	M/S	Tristate	125	149	D15
PG[0]	PCR[96]	AF0 AF1 AF2 AF3 ALT4	GPIO[96] CAN5TX E1UC[23] — MDC	SIUL FlexCAN_5 eMIOS_1 FEC	I/O O I/O — O	F	Tristate	122	146	E13
PG[1]	PCR[97]	AF0 AF1 AF2 AF3 	GPIO[97] — E1UC[24] — TX_CLK CAN5RX EIRQ[14]	SIUL — eMIOS_1 — FEC FlexCAN_5 SIUL	/O /O 	Μ	Tristate	121	145	E14
PG[2]	PCR[98]	AF0 AF1 AF2 AF3	GPIO[98] E1UC[11] SOUT_3 —	SIUL eMIOS_1 DSPI_3 —	I/O I/O O	M/S	Tristate	16	16	E4
PG[3]	PCR[99]	AF0 AF1 AF2 AF3 —	GPIO[99] E1UC[12] CS0_3 — WKPU[17]	SIUL eMIOS_1 DSPI_3 — WKPU	I/O I/O I/O I	S	Tristate	15	15	E1
PG[4]	PCR[100]	AF0 AF1 AF2 AF3	GPIO[100] E1UC[13] SCK_3 —	SIUL eMIOS_1 DSPI_3 —	I/O I/O I/O —	M/S	Tristate	14	14	F2

Package pinouts and signal descriptions

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PH[14]	PCR[126]	AF0 AF1 AF2 AF3	GPIO[126] SCK_4 CS1_3 E1UC[27]	SIUL DSPI_4 DSPI_3 eMIOS_1	I/O I/O O I/O	M/S	Tristate	10	10	C1
PH[15]	PCR[127]	AF0 AF1 AF2 AF3	GPIO[127] SOUT_5 — E1UC[17]	SIUL DSPI_5 — eMIOS_1	I/O O I/O	M/S	Tristate	8	8	E3
PI[0]	PCR[128]	AF0 AF1 AF2 AF3	GPIO[128] E0UC[28] LIN8TX —	SIUL eMIOS_0 LINFlexD_8 —	I/O I/O O	S	Tristate	172	196	C5
PI[1]	PCR[129]	AF0 AF1 AF2 AF3 	GPIO[129] E0UC[29] — WKPU[24] LIN8RX	SIUL eMIOS_0 — WKPU LINFlexD_8	/O /O 	S	Tristate	171	195	A4
PI[2]	PCR[130]	AF0 AF1 AF2 AF3	GPIO[130] E0UC[30] LIN9TX —	SIUL eMIOS_0 LINFlexD_9 —	I/O I/O O	S	Tristate	170	194	D6
PI[3]	PCR[131]	AF0 AF1 AF2 AF3 	GPIO[131] E0UC[31] — WKPU[23] LIN9RX	SIUL eMIOS_0 WKPU LINFlexD_9	/O /O 	S	Tristate	169	193	B5
PI[4]	PCR[132]	AF0 AF1 AF2 AF3	GPIO[132] E1UC[28] SOUT_4 —	SIUL eMIOS_1 DSPI_4 —	I/O I/O O	M/S	Tristate	143	167	A12
PI[5]	PCR[133]	AF0 AF1 AF2 AF3 ALT4	GPIO[133] E1UC[29] SCK_4 CS2_5 CS2_6	SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6	I/O I/O I/O O	M/S	Tristate	142	166	D12
PI[6]	PCR[134]	AF0 AF1 AF2 AF3 ALT4	GPIO[134] E1UC[30] CS0_4 CS0_5 CS0_6	SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6	I/O I/O I/O I/O I/O	S	Tristate	11	11	D2

Table 4. Functional port pin descriptions (continue

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PI[7]	PCR[135]	AF0 AF1 AF2 AF3 ALT4	GPIO[135] E1UC[31] CS1_4 CS1_5 CS1_6	SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6	I/O I/O O O	S	Tristate	12	12	E2
PI[8]	PCR[136]	AF0 AF1 AF2 AF3 —	GPIO[136] — — — ADC0_S[16]	SIUL - ADC_0	I/O — — — I	S	Tristate	108	130	J14
PI[9]	PCR[137]	AF0 AF1 AF2 AF3 —	GPIO[137] — — — ADC0_S[17]	SIUL — — ADC_0	I/O — — — I	S	Tristate	_	131	J15
PI[10]	PCR[138]	AF0 AF1 AF2 AF3 —	GPIO[138] — — — ADC0_S[18]	SIUL — — ADC_0	I/O — — — I	S	Tristate		134	J16
PI[11]	PCR[139]	AF0 AF1 AF2 AF3 	GPIO[139] — — — ADC0_S[19] SIN_3	SIUL — — ADC_0 DSPI_3	/O 	S	Tristate	111	135	H16
PI[12]	PCR[140]	AF0 AF1 AF2 AF3 —	GPIO[140] CS0_3 CS0_2 — ADC0_S[20]	SIUL DSPI_3 DSPI_2 — ADC_0	I/O I/O I/O I	S	Tristate	112	136	G15
PI[13]	PCR[141]	AF0 AF1 AF2 AF3 —	GPIO[141] CS1_3 CS1_2 — ADC0_S[21]	SIUL DSPI_3 DSPI_2 — ADC_0	I/O O — I	S	Tristate	113	137	G14
PI[14]	PCR[142]	AF0 AF1 AF2 AF3 —	GPIO[142] — — — ADC0_S[22] SIN_4	SIUL — — ADC_0 DSPI_4	/O 	S	Tristate	76	92	T12

Table 4. Functional	port pin	descriptions	(continued)
	P • • • P · · ·	acceriptione ,	

O much a l		D		Value				
Symbol		Parameter	Conditions	Min	Max	Unit		
V _{SS_LV} ³	SR	Voltage on VSS_LV (Low voltage digital supply) pins with respect to ground (V _{SS_HV})		V _{SS_HV} -0.1	V _{SS_HV} + 0.1	V		
V _{RC_CTRL} ⁴	Base control voltage for external BCP68 NPN device		Relative to V _{DD_LV}	0	V _{DD_LV} + 1	V		
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V _{SS_HV})	_	V _{SS_HV} – 0.1	V _{SS_HV} + 0.1	V		
$V_{\text{DD}_\text{HV}_\text{ADC0}}{}^5$	SR	Voltage on VDD_HV_ADC0 with	—	4.5	5.5	V		
		respect to ground (V _{SS_HV})	Voltage drop ⁽²⁾	3.0	5.5			
			Relative to V _{DD_HV_A} ⁶	V _{DD_HV_A} - 0.1	V _{DD_HV_A} + 0.1			
V _{DD_HV_ADC1} ⁷	SR	Voltage on VDD_HV_ADC1 with	—	4.5	5.5	V		
		respect to ground (V _{SS_HV})	Voltage drop ⁽²⁾	3.0	5.5			
			Relative to V _{DD_HV_A} ⁶	$V_{DD_HV_A} - 0.1$	$V_{DD_HV_A} + 0.1$			
V _{IN}	SR	Voltage on any GPIO pin with	—	V _{SS_HV} –0.1		V		
		respect to ground (V _{SS_HV})	Relative to V _{DD_HV_A/HV_B}	_	V _{DD_HV_A/HV_B} + 0.1			
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-5	5	mA		
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50			
TV_{DD}	SR	V _{DD_HV_A} slope to ensure correct	—	_	0.5	V/µs		
		power up ⁸	—	0.5	_	V/min		
TA C-Grade Part	SR	Ambient temperature under bias	—	-40	85			
T _{J C-Grade Part}	SR	Junction temperature under bias	—	-40	110			
T _{A V-Grade Part}	SR	Ambient temperature under bias	—	-40	105	°C		
T _{J V-Grade Part}	SR	Junction temperature under bias	—	-40	130			
TA M-Grade Part	SR	Ambient temperature under bias	—	-40	125			
T _{J M-Grade Part}	SR	Junction temperature under bias	—	-40	150			

NOTES:

¹ 100 nF EMI capacitance need to be provided between each VDD/VSS_HV pair.

² Full device operation is guaranteed by design from 3.0 V–5.5 V. OSC functionality is guaranteed from the entire range 3.0V–5.5 V, the parametrics measured are at 3.0V and 5.5V (extreme voltage ranges to cover the range of operation). The parametrics might have some variation in the intermediate voltage range, but there is no impact to functionality.

³ 100 nF EMI capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 10 µF bulk capacitance needs to be provided as CREG on each VDD_LV pin.

- ⁴ This voltage is internally generated by the device and no external voltage should be supplied.
- ⁵ 100 nF capacitance needs to be provided between $V_{DD_HV_(ADC0/ADC1)}/V_{SS_HV_(ADC0/ADC1)}$ pair.
- ⁶ Both the relative and the fixed conditions must be met. For instance: If $V_{DD_{HV_A}}$ is 5.9 V, $V_{DD_{HV_A}DC0}$ maximum value is 6.0 V then, despite the relative condition, the max value is $V_{DD_{HV_A}} + 0.3 = 6.2$ V.
- ⁷ PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from V_{DD-HV_B} domain hence VDD_HV_ADC1 should be within ±100 mV of V_{DD HV B} when these channels are used for ADC_1.
- ⁸ Guaranteed by device validation.

NOTE

SRAM retention guaranteed to LVD levels.

4.5 Thermal characteristics

4.5.1 Package thermal characteristics

Symbol C F		Parameter Conditions ² F		Pin count -		Unit			
		i di di neter	Conditions		Min	Тур	Max	onne	
R_{\thetaJA}	CC	D	Thermal resistance,	Single-layer board—1s	176		_	38 ⁵	°C/W
			junction-to-ambient natural convection ⁴		208		—	41 ⁶	°C/W
R_{\thetaJA}	CC	D	Thermal resistance,	Four-layer	176	_	_	31	°C/W
			junction-to-ambient natural convection ⁷	board—2s2p ⁷	208	—	_	34	°C/W

Table 11. LQFP thermal characteristics¹

NOTES:

¹ Thermal characteristics are targets based on simulation that are subject to change per device characterization.

² $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C.

³ All values need to be confirmed during device validation.

⁴ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

⁵ Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6.

⁶ Junction-to-Ambient thermal resistance determined per JEDEC JESD51-2 and JESD51-6

⁷ Junction-to-Board thermal resistance determined per JEDEC JESD51-8.

Table 12. 256 MAPBGA thermal characteri	stics ¹
---	--------------------

S	ymb	ool	С	Parameter	Conditions	Value	Unit
R _θ	JA	СС			Single-layer board—1s	43 ²	°C/W
				natural convection	Four-layer board—2s2p	26 ³	

NOTES:

¹ Thermal characteristics are targets based on simulation that are subject to change per device characterization.

² Junction-to-ambient thermal resistance determined per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.

³ Junction-to-ambient thermal resistance determined per JEDEC JESD51-6 with the board horizontal.

Sum	nbol	с	Parameter		onditions ^{1,2}		Value		Unit
J		C	Farameter		onutions	Min	Тур	Мах	Onit
V _{OH}	CC	Р	Output high level FAST configuration	Push Pull	$I_{OH} = -14 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0	0.8V _{DD}		_	V
		С			$I_{OH} = -7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 1 ³	0.8V _{DD}	_	_	
		С			$I_{OH} = -11 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1	V _{DD} – 0.8		—	
V _{OL}	CC	Р	Output low level FAST configuration	Push Pull	I _{OL} = 14 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	0.1V _{DD}	V
		С			$I_{OL} = 7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 1 ⁽³⁾	—	_	0.1V _{DD}	
		С			I _{OL} = 11 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	0.5	

Table 17. FAST configuration output buffer electrical characteristics

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

 $^2~V_{DD}$ as mentioned in the table is $V_{DD_HV_A}/V_{DD_HV_B}.$

³ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus outputs (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Output pin transition times 4.6.4

Table 18. Output pin transition times

6,	vm	bol	с	Parameter	Cor	nditions ^{1,2}		Value ³		Unit
3	yın	IDUI	C	Farameter	CO		Min	Тур	Max	
Tt	tr	CC	D	Output transition time	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$,		—	50	ns
			Т	output pin ⁴ SLOW configuration	C _L = 50 pF	PAD3V5V = 0		_	100	
			D	-	C _L = 100 pF			—	125	
			D		C _L = 25 pF	$V_{DD} = 3.3 V \pm 10\%$,		—	40	
			Т		C _L = 50 pF	PAD3V5V = 1		_	50	
			D		C _L = 100 pF			—	75	

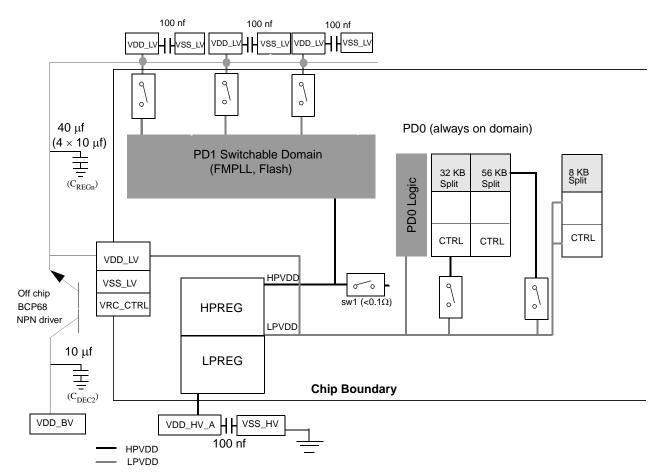

Package				I/O Su	pplies			
176 LQFP	pin6	pin27	pin57	pin85	pin123	pin150	_	_
		$(V_{DD_HV_A})$		$(V_{DD_HV_A})$		(V _{SS_HV})		
	pin7	pin28	pin59	pin86	pin124	pin151		
	(V _{SS_HV})	(V _{SS_HV})	$(V_{DD_HV_A})$	(V _{SS_HV})	(V _{DD_HV_B})	(V _{DD_HV_A})		

Table 19. I/O supplies (continued)

Table 20. I/O consumption

Symbol		с	Parameter	Conditi	ions ^{1,2}		Value ³		Unit
Symbol		C	Farameter	Conditi		Min	Тур	Max	Onit
I _{SWTSLW} ,4	СС	D	Peak I/O current for SLOW configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0		_	19.9	
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	15.5	mA
I _{SWTMED} ⁽⁴⁾	СС	D	Peak I/O current for MEDIUM	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0		—	28.8	
			configuration		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	16.3	mA
I _{SWTFST} ⁽⁴⁾	СС	D	Peak I/O current for FAST configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	—	113.5	
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	52.1	mA
I _{RMSSLW}	СС	D	Root mean square	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$,		—	2.22	
			I/O current for SLOW configuration	C _L = 25 pF, 4 MHz	PAD3V5V = 0		_	3.13	
				C _L = 100 pF, 2 MHz			—	6.54	mA
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,	—	—	1.51	mA
				C _L = 25 pF, 4 MHz	PAD3V5V = 1	_	—	2.14	
				C _L = 100 pF, 2 MHz		_	—	4.33	
IRMSMED	СС	D	Root mean square	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_	—	6.5	mA
			I/O current for MEDIUM	C _L = 25 pF, 40 MHz	PAD3V5V = 0	_	_	13.32	
			configuration	C _L = 100 pF, 13 MHz		_	_	18.26	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,			4.91	
				C _L = 25 pF, 40 MHz	PAD3V5V = 1	_	_	8.47	
				C _L = 100 pF, 13 MHz		_	_	10.94	
I _{RMSFST}	СС	D	Root mean square	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_	—	21.05	mA
			I/O current for FAST configuration	C _L = 25 pF, 64 MHz	PAD3V5V = 0	_	_	33	
				C _L = 100 pF, 40 MHz		_	_	55.77	
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%,$	_	—	14	
				C _L = 25 pF, 64 MHz	PAD3V5V = 1			20	
				C _L = 100 pF, 40 MHz		_		34.89	

- LV_CFLA0/CFLA1: Low voltage supply for the two code Flash modules. It is shorted with LV_COR through double bonding.
- LV_DFLA: Low voltage supply for data Flash module. It is shorted with LV_COR through double bonding.
- LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.

1) All VSS_LV pins must be grounded, as shown for VSS_HV pin.

Figure 8. Voltage regulator capacitance connection

The internal voltage regulator requires external bulk capacitance (C_{REGn}) to be connected to the device to provide a stable low voltage digital supply to the device. Also required for stability is the C_{DEC2} capacitor at ballast collector. This is needed to minimize sharp injection current when ballast is turning ON. Apart from the bulk capacitance, user should connect EMI/decoupling cap (C_{REGP}) at each V_{DD_LV}/V_{SS_LV} pin pair.

4.8.1.1 Recommendations

- The external NPN driver must be BCP68 type.
- V_{DD LV} should be implemented as a power plane from the emitter of the ballast transistor.

- ³ Data based on characterization results, not tested in production.
- ⁴ f_{CPU} 120 MHz + 2% can be achieved over full temperature 125 °C ambient, 150 °C junction temperature.

4.10.3 Flash memory start-up/switch-off timings

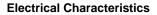
Table 30. Start-up time/Switch-off time

Symbol		с	Parameter		Conditions ¹		Value		Unit
- Cymbol		Ŭ	r drumotor		Conditions	Min	Тур	Max	Onic
T _{FLARSTEXIT}	СС	D	Delay for flash memory module to exit reset mode	Code flash memory	_			125	
				Data flash memory			_		
T _{FLALPEXIT}	СС	Т	Delay for flash memory module to exit low-power mode	Code flash memory	_		_	0.5	μs
T _{FLAPDEXIT}	СС	Т	Delay for flash memory module to exit power-down mode	Code flash memory	—	_	_	30	
				Data flash memory			_		
T _{FLALPENTRY}	СС	Т	Delay for flash memory module to enter low-power mode	Code flash memory	—		_	0.5	

NOTES:

 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

4.11 Electromagnetic compatibility (EMC) characteristics


Susceptibility tests are performed on a sample basis during product characterization.

4.11.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user apply EMC software optimization and pre-qualification tests in relation with the EMC level requested for the application.

- Software recommendations The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter
 - Unexpected reset
 - Critical data corruption (control registers)
- Pre-qualification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

4.11.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI measurements.

Table 31. EMI radiated emission measurement^{1,2}

Symb		С	Parameter	Conditions			Value		Unit
C y III.		Ŭ	i ulullotoi	Contanione		Min	Тур	Max	onic
—	SR		Scan range	—		0.150		1000	MHz
f _{CPU}	SR		Operating frequency	_		—	120	_	MHz
V _{DD_LV}	SR		LV operating voltages	_		—	1.28	_	V
S _{EMI}	СС	Т		$V_{DD} = 5 V$, $T_A = 25 °C$, LQFP176 package	No PLL frequency modulation	—	_	18	dBµV
				Test conforming to IEC 61967-2, f _{OSC} = 40 MHz/f _{CPU} = 120 MHz	± 2% PLL frequency modulation	—		14 ³	dBµV

NOTES:

EMI testing and I/O port waveforms per IEC 61967-1, -2, -4.

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

³ All values need to be confirmed during device validation.

4.11.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

4.11.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

Symbol	Ratings	Conditions	Class	Max value ³	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \text{ °C}$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	$T_A = 25 \text{ °C}$ conforming to AEC-Q100-003	M2	200	
V _{ESD(CDM)}	Electrostatic discharge voltage (Charged Device Model)	$T_A = 25 \ ^{\circ}C$ conforming to AEC-Q100-011	C3A	500 750 (corners)	

Table 32. ESD absolute maximum ratings^{1,2}

Symbol		с	Parameter	Conditions ¹		Value ²		Unit
Gymbol		Ŭ	i arameter	Conditions	Min	Тур	Мах	
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	0.65V _{DD_HV_A}	—	V _{DD_HV_A} + 0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.3	_	0.35V _{DD_HV_} A	V

Table 35. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ Based on ATE Cz

⁴ Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals).

4.13 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

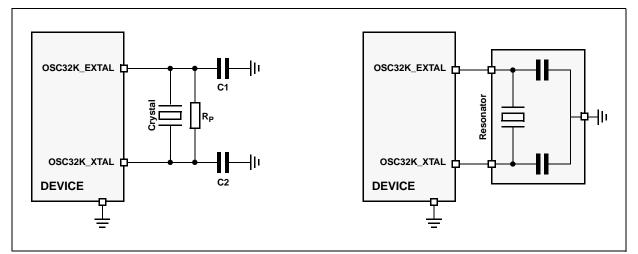


Figure 12. Crystal oscillator and resonator connection scheme

NOTE

OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.

Symbol		с	Parameter	Conditions ¹		Value ²		Unit
Cymbol		Ŭ	rurumeter	Conditions	Min	Тур	Max	onn
T _{SIRCSU}	СС	Ρ	Slow internal RC oscillator start-up time	$T_A = 25 \text{ °C}, V_{DD} = 5.0 \text{ V} \pm 10\%$	_	8	12	μs
$\Delta_{SIRCPRE}$	СС	С	Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2		+2	%
	СС	С	Slow internal RC oscillator trimming step	_	_	2.7	—	
[∆] sircvar	СС	С	Variation in f _{SIRC} across temperature and fluctuation in supply voltage, post trimming	_	-10		+10	%

Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.17 **ADC** electrical characteristics

4.17.1 Introduction

The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).

NOTE

Due to ADC limitations, the two ADCs cannot sample a shared channel at the same time i.e., their sampling windows cannot overlap if a shared channel is selected. If this is done, neither of the ADCs can guarantee their conversion accuracies.

This relation can again be simplified considering C_S as an additional worst condition. In reality, transient is faster, but the A/D converter circuitry has been designed to be robust also in very worst case: the sampling time T_s is always much longer than the internal time constant.

Eqn. 6

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll T_S$$

The charge of C_{P1} and C_{P2} is redistributed on C_S , determining a new value of the voltage V_{A1} on the capacitance according to the following equation

$$Eqn. 7$$

$$V_{A1} \bullet (C_{S} + C_{P1} + C_{P2}) = V_{A} \bullet (C_{P1} + C_{P2})$$

• A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_S , a constraints on R_L sizing is obtained:

Eqn. 9
8.5 •
$$\tau_2 = 8.5 • R_I • (C_S + C_{P1} + C_{P2}) < T_S$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . The following equation must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (T_S). The filter is typically designed to act as anti-aliasing

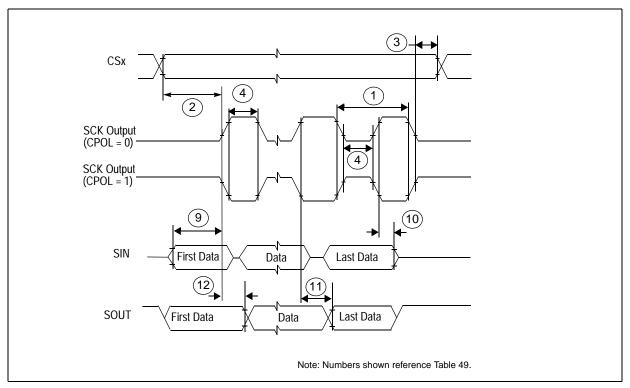


Figure 29. DSPI modified transfer format timing-master, CPHA = 0

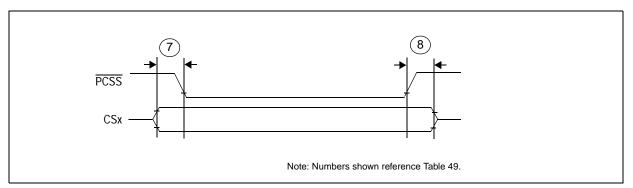


Figure 33. DSPI PCS strobe (PCSS) timing

4.19.3 Nexus characteristics

Spec	Characteristic	Symbol	Min	Max	Unit
1	MCKO Cycle Time ²	t _{MCYC}	16.3	-	ns
2	MCKO Duty Cycle	t _{MDC}	40	60	%
3	MCKO Low to MDO, MSEO, EVTO Data Valid ³	t _{MDOV}	-0.1	0.25	t _{MCYC}
4	EVTI Pulse Width	t _{EVTIPW}	4.0	—	t _{TCYC}
5	EVTO Pulse Width	t _{EVTOPW}	1		t _{MCYC}
6	TCK Cycle Time ⁴	t _{TCYC}	40	—	ns
7	TCK Duty Cycle	t _{TDC}	40	60	%
8	TDI, TMS Data Setup Time	t _{NTDIS} , t _{NTMSS}	8	-	ns
9	TDI, TMS Data Hold Time	t _{NTDIH} , t _{NTMSH}	5	_	ns
10	TCK Low to TDO Data Valid	t _{JOV}	0	25	ns

NOTES:

JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at $V_{DDE} = 4.0 - 5.5$ V, $T_A = T_L$ to T_H , and $C_L = 30$ pF with SRC = 0b11.

² MCKO can run up to 1/2 of full system frequency. It can also run at system frequency when it is <60 MHz.

 3 MDO, $\overline{\text{MSEO}}$, and $\overline{\text{EVTO}}$ data is held valid until next MCKO low cycle.

⁴ The system clock frequency needs to be three times faster than the TCK frequency.

Package characteristics

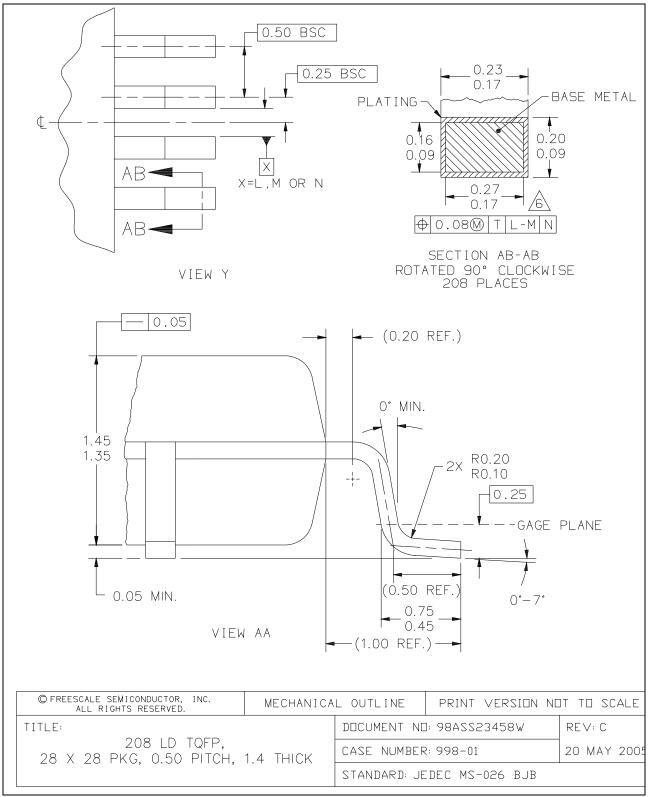


Figure 41. 208 LQFP mechanical drawing (Part 2 of 3)

Package characteristics

5.1.3 256 MAPBGA package mechanical drawing

Figure 43. 256 MAPBGA mechanical drawing (Part 1 of 2)

Package characteristics

Figure 44. 256 MAPBGA mechanical drawing (Part 2 of 2)

Table 52.	Revision	history	(continued)
-----------	----------	---------	-------------

 5 21 June 2012 Updated the pins 23 and 24 of Figure 2.176-pin LQFP configurat Updated unit of measure in Table 43 Conversion characteristics (Modified the value to typical value in Table 48 On-chip peripheral consumption Added footnote to t_{ESRT} parameter in Table 25 Code flash memor erase specifications Added footnote to t_{ESRT} parameter in Table 26 Data flash memor erase specifications Updated Table 28 Flash memory read access timing. Updated Notes 2 and Notes 3 of Table 9 Recommended operatin (3.3 V) and Table 10 Recommended operating conditions (5.0 V) Updated the footnote1 of Table 9 Recommended operating conditions (5.0 V) 	(12-bit ADC_1) Is current ry—Program and ry—Program and ng conditions) respectively.
 Updated V_{DD_HV_A} to V_{DD_BV} for C_{DEC2} and I_{DD_HV_A} in Table 22, regulator electrical characteristics and deleted footnote3 Updated the dedicated number of channels for 12-bit ADC in fair tables Updated the values of f_{SIRC}, parameters and conditions of Δ_{SIRC}. Slow internal RC oscillator (128 kHz) electrical characteristics Updated the value of f_{ADC0_PU} in Table 42, ADC conversion chara ADC_0) Updated the value of t_{ADC0_PU} in Table 42, ADC conversion chara ADC_0) Updated the IDD values in Table 24, Low voltage power domain electrical related to current drawn from V_{DD_HV_A} and V_{DD_HV_B} Updated the values of V_{LPREG} in Table 22, Voltage regulator electrical characteristics. Added footnote to V_{LPREG} in Table 22, Voltage regulator electrical characteristics. Added T_A = 25 °C, min and max values of V_{LPREG} in Table 22, Vo electrical characteristics Updated the min, max and typical values of V_{LDLVCORL} and V_{LV} Table 23, Low voltage of gmFXOSC in Table 35, Fast external crystal oscillator (32 kHz) electrical characteristics Updated the footnote 5 for T_{ADC0_C} in Table 42, ADC conversion (10-bit ADC_0) 	nily comparison _{VAR} in Table 40 conditions (5.0 V) acteristics (10-bit electrical I characteristics curacy"- Updated haracteristics. ctrical oltage regulator oltage regulator rDLVBKPL in oscillator (4 to 40 Table 37, Slow characteristics
5.1 15 Aug 2012 • Removed Footer: Preliminary tag	