

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z4d, e200z0h
Core Size	32-Bit Dual-Core
Speed	80MHz/120MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	199
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 33x10b, 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5646ccf0vmj1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Other Features

- System clocks sources
 - 4–40 MHz external crystal oscillator
 - 16 MHz internal RC oscillator
 - FMPLL
 - Additionally, there are two low power oscillators: 128 kHz internal RC oscillator, 32 kHz external crystal oscillator
- Real Time Counter (RTC) with clock source from internal 128 kHz or 16 MHz oscillators or external 4–40 MHz crystal
 - Supports autonomous wake-up with 1 ms resolution with max timeout of 2 seconds
 - Optional support from external 32 kHz crystal oscillator, supporting wake-up with 1 second resolution and max timeout of 1 hour
- 1 Real Time Interrupt (RTI) with 32-bit counter resolution
- 1 Safety Enhanced Software Watchdog Timer (SWT) that supports keyed functionality
- 1 dual-channel FlexRay Controller with 128 message buffers
- 1 Fast Ethernet Controller (FEC)
- On-chip voltage regulator (VREG)
- Cryptographic Services Engine (CSE)
- Offered in the following standard package types:
 - 176-pin LQFP, 24 \times 24 mm, 0.5 mm Lead Pitch
 - 208-pin LQFP, 28 \times 28 mm, 0.5 mm Lead Pitch
 - 256-ball MAPBGA, 17 × 17mm, 1.0 mm Lead Pitch

1 Introduction

1.1 Document Overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the MPC5646C device. To ensure a complete understanding of the device functionality, refer also to the MPC5646C Reference Manual.

1.2 Description

The MPC5646C is a new family of next generation microcontrollers built on the Power Architecture embedded category. This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device.

The MPC5646C family expands the range of the MPC560xB microcontroller family. It provides the scalability needed to implement platform approaches and delivers the performance required by increasingly sophisticated software architectures. The advanced and cost-efficient host processor core of the MPC5646C automotive controller family complies with the Power Architecture embedded category, which is 100 percent user-mode compatible with the original Power Architecture user instruction set architecture (UISA). It operates at speeds of up to 120 MHz and offers high performance processing optimized for low power consumption. It also capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

Table 2 summarizes the functions of the blocks present on the MPC5646C. Table 2. MPC5646C series block summary

Block	Function
Analog-to-digital converter (ADC)	Converts analog voltages to digital values
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Cryptographic Security Engine (CSE)	Supports the encoding and decoding of any kind of data
Crossbar (XBAR) switch	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width
DMA Channel Multiplexer (DMAMUX)	Allows to route DMA sources (called slots) to DMA channels
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via "n" programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
FMPLL (frequency-modulated phase-locked loop)	Generates high-speed system clocks and supports programmable frequency modulation
FlexRay (FlexRay communication controller)	Provides high-speed distributed control for advanced automotive applications
Fast Ethernet Controller (FEC)	Ethernet Media Access Controller (MAC) designed to support both 10 and 100 Mbps Ethernet/IEEE 802.3 networks
Internal multiplexer (IMUX) SIUL subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests for both e200z0h and e200z4d cores
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode

Package pinouts and signal descriptions

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
А	PC[15]	PB[2]	PC[13]	PI[1]	PE[7]	PH[8]	PE[2]	PE[4]	PC[4]	PE[3]	PH[9]	PI[4]	PH[11]	PE[14]	PA[10]	PG[11]	A
в	PH[13]	PC[14]	PC[8]	PC[12]	PI[3]	PE[6]	PH[5]	PE[5]	PC[5]	PC[0]	PC[2]	PH[12]	PG[10]	PA[11]	PA[9]	PA[8]	В
с	PH[14]	VDD_HV_ A	PC[9]	PL[0]	PI[0]	PH[7]	PH[6]	VSS_LV	VDD_HV_ A	PA[5]	PC[3]	PE[15]	PG[14]	PE[12]	PA[7]	PE[13]	с
D	PG[5]	PI[6]	PJ[4]	PB[3]	PK[15]	PI[2]	PH[4]	VDD_LV	PC[1]	PH[10]	PA[6]	PI[5]	PG[15]	PF[14]	PF[15]	PH[2]	D
Е	PG[3]	PI[7]	PH[15]	PG[2]	VDD_LV	VSS_LV	PK[10]	PK[9]	PM[1]	PM[0]	PL[15]	PL[14]	PG[0]	PG[1]	PH[0]	VDD_HV_ A	E
F	PA[2]	PG[4]	PA[1]	PE[1]	PL[2]	PM[6]	PL[1]	PK[11]	PM[5]	PL[13]	PL[12]	PM[2]	PH[1]	PH[3]	PG[12]	PG[13]	F
G	PE[8]	PE[0]	PE[10]	PA[0]	PL[3]	VSS_HV	VSS_HV	VSS_HV	VSS_HV	VSS_HV	VSS_HV	PK[12]	VDD_HV_ B	PI[13]	PI[12]	PA[3]	G
н	PE[9]	VDD_HV_ A	PE[11]	PK[1]	PL[4]	VSS_LV	VSS_LV	VSS_HV	VSS_HV	VSS_HV	VSS_HV	PK[13]	VDD_HV_ A	VDD_LV	VSS_LV	PI[11]	н
J	VSS_HV	VRC_CTR L	VDD_LV	PG[9]	PL[5]	VSS_LV	VSS_LV	VSS_LV	VSS_HV	VSS_HV	VSS_HV	PK[14]	PD[15]	PI[8]	PI[9]	PI[10]	J
к	RESET	VSS_LV	PG[8]	PC[11]	PL[6]	VSS_LV	VSS_LV	VSS_LV	VSS_LV	VDD_LV	VDD_LV	PM[3]	PD[14]	PD[13]	PB[14]	PB[15]	к
L	PC[10]	PG[7]	PB[0]	PK[2]	PL[7]	VSS_LV	VSS_LV	VSS_LV	VSS_LV	VDD_LV	VDD_LV	PM[4]	PD[12]	PB[12]	PB[13]	VDD_HV_ ADC1	L
м	PG[6]	PB[1]	PK[4]	PF[9]	PK[5]	PK[6]	PK[7]	PK[8]	PL[8]	PL[9]	PL[10]	PL[11]	PB[11]	PD[10]	PD[11]	VSS_HV_ ADC1	М
N	PK[3]	PF[8]	PC[6]	PC[7]	PJ[13]	VDD_HV_ A	PB[10]	PF[6]	VDD_HV_ A	PJ[1]	PD[2]	PJ[5]	PB[5]	PB[6]	PJ[6]	PD[9]	N
Ρ	PF[12]	PF[10]	PF[13]	PA[14]	PJ[9]	PA[12]	PF[0]	PF[5]	PF[7]	PJ[3]	PI[15]	PD[4]	PD[7]	PD[8]	PJ[8]	PJ[7]	Р
R	PF[11]	PA[15]	PJ[11]	PJ[15]	PA[13]	PF[2]	PF[3]	PF[4]	VDD_LV	PJ[2]	PJ[0]	PD[0]	PD[3]	PD[6]	VDD_HV_ ADC0	PB[7]	R
т	PJ[12]	PA[4]	PK[0]	PJ[14]	PJ[10]	PF[1]	XTAL	EXTAL	VSS_LV	PB[9]	PB[8]	PI[14]	PD[1]	PD[5]	VSS_HV_ ADC0	PB[4]	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Notes:

1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], PA[3], PA[3], and PM[4]. 2)Availability of port pin alternate functions depends on product selection.

Figure 4. 256-pin BGA configuration

3.1 Pad types

In the device the following types of pads are available for system pins and functional port pins:

 $S = Slow^1$

 $M = Medium^{1, 2}$

1. See the I/O pad electrical characteristics in the device data sheet for details.

MPC5646C Data Sheet, Rev.6

^{2.} All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. For example, Fast/Medium pad will be Medium by default at reset. Similarly, Slow/Medium pad will be Slow by default. Only exception is PC[1] which is in medium configuration by default (refer to PCR.SRC in the reference manual, Pad Configuration Registers (PCR0—PCR198)).

Package pinouts and signal descriptions

								Piı	n numb	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 — —	GPI[49] — — ADC0_P[5] ADC1_P[5] WKPU[28]	SIUL — — ADC_0 ADC_1 WKPU	 	I	Tristate	78	94	T13
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 —	GPI[50] — — ADC0_P[6] ADC1_P[6]	SIUL — — ADC_0 ADC_1	 - 	Ι	Tristate	79	95	N11
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 —	GPI[51] — — ADC0_P[7] ADC1_P[7]	SIUL — — ADC_0 ADC_1	 - 	Ι	Tristate	80	96	R13
PD[4]	PCR[52]	AF0 AF1 AF2 AF3 —	GPI[52] — — ADC0_P[8] ADC1_P[8]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	81	97	P12
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 —	GPI[53] — — ADC0_P[9] ADC1_P[9]	SIUL — — ADC_0 ADC_1	 - 	Ι	Tristate	82	98	T14
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPI[54] — — ADC0_P[10] ADC1_P[10]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	83	99	R14
PD[7]	PCR[55]	AF0 AF1 AF2 AF3 —	GPI[55] — — ADC0_P[11] ADC1_P[11]	SIUL — — ADC_0 ADC_1	 	I	Tristate	84	100	P13

Table 4. Functional pe	ort pin descri	iptions (continued)
------------------------	----------------	---------------------

.

								Piı	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PG[5]	PCR[101]	AF0 AF1 AF2 AF3 —	GPIO[101] E1UC[14] — WKPU[18] SIN_3	SIUL eMIOS_1 — WKPU DSPI_3	/O /O 	S	Tristate	13	13	D1
PG[6]	PCR[102]	AF0 AF1 AF2 AF3	GPIO[102] E1UC[15] LIN6TX —	SIUL eMIOS_1 LINFlexD_6 —	I/O I/O O	M/S	Tristate	38	38	M1
PG[7]	PCR[103]	AF0 AF1 AF2 AF3 	GPIO[103] E1UC[16] E1UC[30] — LIN6RX WKPU[20]	SIUL eMIOS_1 eMIOS_1 LINFlexD_6 WKPU	/O /O /O 	S	Tristate	37	37	L2
PG[8]	PCR[104]	AF0 AF1 AF2 AF3 —	GPIO[104] E1UC[17] LIN7TX CS0_2 EIRQ[15]	SIUL eMIOS_1 LINFlexD_7 DSPI_2 SIUL	I/O I/O O I/O I	S	Tristate	34	34	КЗ
PG[9]	PCR[105]	AF0 AF1 AF2 AF3 	GPIO[105] E1UC[18] — SCK_2 LIN7RX WKPU[21]	SIUL eMIOS_1 DSPI_2 LINFlexD_7 WKPU	/O /O /O 	S	Tristate	33	33	J4
PG[10]	PCR[106]	AF0 AF1 AF2 AF3 —	GPIO[106] E0UC[24] E1UC[31] SIN_4	SIUL eMIOS_0 eMIOS_1 — DSPI_4	I/O I/O I/O I	S	Tristate	138	162	B13
PG[11]	PCR[107]	AF0 AF1 AF2 AF3	GPIO[107] E0UC[25] CS0_4 CS0_6	SIUL eMIOS_0 DSPI_4 DSPI_6	I/O I/O I/O I/O	M/S	Tristate	139	163	A16
PG[12]	PCR[108]	AF0 AF1 AF2 AF3	GPIO[108] E0UC[26] SOUT_4 —	SIUL eMIOS_0 DSPI_4 —	I/O I/O O	M/S	Tristate	116	140	F15
		ALT4	TXD[2]	FEC	0					

Table 4. Functional	port pir	n descriptions	(continued)	
---------------------	----------	----------------	-------------	--

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PI[7]	PCR[135]	AF0 AF1 AF2 AF3 ALT4	GPIO[135] E1UC[31] CS1_4 CS1_5 CS1_6	SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6	I/O I/O O O	S	Tristate	12	12	E2
PI[8]	PCR[136]	AF0 AF1 AF2 AF3 —	GPIO[136] — — — ADC0_S[16]	SIUL - ADC_0	I/O — — — I	S	Tristate	108	130	J14
PI[9]	PCR[137]	AF0 AF1 AF2 AF3 —	GPIO[137] — — — ADC0_S[17]	SIUL — — ADC_0	I/O — — — I	S	Tristate	_	131	J15
PI[10]	PCR[138]	AF0 AF1 AF2 AF3 —	GPIO[138] — — — ADC0_S[18]	SIUL — — ADC_0	I/O — — — I	S	Tristate		134	J16
PI[11]	PCR[139]	AF0 AF1 AF2 AF3 	GPIO[139] — — — ADC0_S[19] SIN_3	SIUL — — ADC_0 DSPI_3	/O 	S	Tristate	111	135	H16
PI[12]	PCR[140]	AF0 AF1 AF2 AF3 —	GPIO[140] CS0_3 CS0_2 — ADC0_S[20]	SIUL DSPI_3 DSPI_2 — ADC_0	I/O I/O I/O I	S	Tristate	112	136	G15
PI[13]	PCR[141]	AF0 AF1 AF2 AF3 —	GPIO[141] CS1_3 CS1_2 — ADC0_S[21]	SIUL DSPI_3 DSPI_2 — ADC_0	I/O O — I	S	Tristate	113	137	G14
PI[14]	PCR[142]	AF0 AF1 AF2 AF3 —	GPIO[142] — — — ADC0_S[22] SIN_4	SIUL — — ADC_0 DSPI_4	/O 	S	Tristate	76	92	T12

Table 4. Functional	port pin	descriptions	(continued)
	P • • • P · · ·	acceriptione ,	

NVUSRO [PAD3V5V(0)] field description 4.2.1

Table 6 shows how NVUSRO [PAD3V5V(0)] controls the device configuration for $V_{DD_{HV_A}}$ domain.

Table 6. PAD3V5V(0) field description

Value ¹	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

NOTES:

'1' is delivery value. It is part of shadow flash memory, thus programmable by customer.

The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.

NVUSRO [PAD3V5V(1)] field description 4.2.2

Table 7 shows how NVUSRO [PAD3V5V(1)] controls the device configuration the device configuration for V_{DD HV B} domain.

Table 7. PAD3V5V(1) field description

Value ¹	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

NOTES: ¹ '1' is delivery value. It is part of shadow flash memory, thus programmable by customer.

The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.

4.3 Absolute maximum ratings

Table 8. Absolute maximum ratings

Symbol		Parameter	Conditions	Va	Unit	
Cymbol		i diamotor	oonaliono	Min	Мах	
V _{SS_HV}	SR	Digital ground on VSS_HV pins	_	0	0	V
V _{DD_HV_} A		Voltage on VDD_HV_A pins with respect to ground (V _{SS_HV})	_	-0.3	6.0	V
V _{DD_HV_B} ¹	SR	Voltage on VDD_HV_B pins with respect to common ground (V _{SS_HV})	_	-0.3	6.0	V
V _{SS_LV}	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS_HV})	_	V _{SS_HV} -0.1	V _{SS_HV} + 0.1	V

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Falameter	Conditions	Min	Max	Onic
I _{INJPAD}	SR	Injected input current on any pin during overload condition		-5	5	mA
I _{INJSUM}		Absolute sum of all injected input currents during overload condition	_	-50	50	
TV _{DD}	SR	V _{DD_HV_A} slope to ensure correct power up ⁸	—	_	0.5	V/µs
		correct power up ^o	—	0.5	—	V/min
T _A	SR	Ambient temperature under bias	f _{CPU} up to 120 MHz + 2%	-40	125	°C
Тј	SR	Junction temperature under bias	—	-40	150	

Table 9. Recommended operating	conditions (3.3 V)	(continued)
--------------------------------	--------------------	-------------

NOTES:

- ¹ 100 nF EMI capacitance need to be provided between each VDD/VSS_HV pair.
- ² 100 nF EMI capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 10 µF bulk capacitance needs to be provided as CREG on each VDD_LV pin. For details refer to the Power Management chapter of the MPC5646C Reference Manual.
- ³ This voltage is internally generated by the device and no external voltage should be supplied.
- $^4~$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.
- ⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.
- ⁶ Both the relative and the fixed conditions must be met. For instance: If $V_{DD_HV_A}$ is 5.9 V, $V_{DD_HV_ADC0}$ maximum value is 6.0 V then, despite the relative condition, the max value is $V_{DD_HV_A} + 0.3 = 6.2$ V.
- ⁷ PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from V_{DD_HV_B} domain hence V_{DD_HV_ADC1} should be within ±100 mV of V_{DD_HV_B} when these channels are used for ADC_1.
- ⁸ Guaranteed by the device validation.

Symbol		Parameter	Conditions	Valu	Value		
Symbol		Falanielei	Conditions	Min	Мах	Unit	
V _{SS_HV}	SR	Digital ground on VSS_HV pins	—	0	0	V	
V _{DD_HV_A} 1	SR	Voltage on VDD_HV_A pins with	—	4.5	5.5	V	
		respect to ground (V_{SS_HV})	Voltage drop ²	3.0	5.5		
V _{DD_HV_B}	SR	Generic GPIO functionality	—	3.0	5.5	V	
		Ethernet/3.3 V functionality (See the notes in all figures in Section 3, "Package pinouts and signal descriptions" for the list of channels operating in V _{DD_HV_B} domain)	_	3.0	3.6	V	

Table 10. Recommended operating conditions (5.0 V)

Sum	nbol	с	Parameter		onditions ^{1,2}		Value		Unit
J		C	Farameter		onutions	Min	Тур	Мах	Onit
V _{OH}	CC	Р	Output high level FAST configuration	Push Pull	$I_{OH} = -14 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0	0.8V _{DD}		_	V
		С			$I_{OH} = -7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 1 ³	0.8V _{DD}	_	_	
		С			$I_{OH} = -11 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1	V _{DD} – 0.8		—	
V _{OL}	CC	Р	Output low level FAST configuration	Push Pull	I _{OL} = 14 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	0.1V _{DD}	V
		С			$I_{OL} = 7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 1 ⁽³⁾	—	_	0.1V _{DD}	
		С			I _{OL} = 11 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	0.5	

Table 17. FAST configuration output buffer electrical characteristics

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

 $^2~V_{DD}$ as mentioned in the table is $V_{DD_HV_A}/V_{DD_HV_B}.$

³ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus outputs (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Output pin transition times 4.6.4

Table 18. Output pin transition times

6,	vm	bol	с	Parameter	Cor	nditions ^{1,2}			Unit	
3			Farameter	Conditions		Min	Тур	Max		
Tt	tr	CC	D	Output transition time	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$,		—	50	ns
			Т	SLOW configuration	C _L = 50 pF	PAD3V5V = 0		_	100	
			D		C _L = 100 pF			—	125	
			D			$V_{DD} = 3.3 V \pm 10\%$,		—	40	
			Т		C _L = 50 pF	PAD3V5V = 1		_	50	
			D		C _L = 100 pF			—	75	

Package				I/O Su	pplies			
176 LQFP	pin6	pin27	pin57	pin85	pin123	pin150	_	_
		$(V_{DD_HV_A})$		$(V_{DD_HV_A})$		(V _{SS_HV})		
	pin7	pin28	pin59	pin86	pin124	pin151		
	(V _{SS_HV})	(V _{SS_HV})	$(V_{DD_HV_A})$	(V _{SS_HV})	(V _{DD_HV_B})	(V _{DD_HV_A})		

Table 19. I/O supplies (continued)

Table 20. I/O consumption

Symbol		с	Parameter	Conditi	ions ^{1,2}		Value ³		Unit
Symbol		C	Farameter	Conditi		Min	Тур	Max	Onit
I _{SWTSLW} ,4	СС	D	Peak I/O current for SLOW configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0		_	19.9	
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	15.5	mA
I _{SWTMED} ⁽⁴⁾	СС	D	Peak I/O current for MEDIUM	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0		—	28.8	
			configuration		V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	16.3	mA
I _{SWTFST} ⁽⁴⁾	СС	D	Peak I/O current for FAST configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	113.5	
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	52.1	mA
I _{RMSSLW}	СС	D	Root mean square	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$,		—	2.22	
			I/O current for SLOW configuration	C _L = 25 pF, 4 MHz	PAD3V5V = 0		_	3.13	
				C _L = 100 pF, 2 MHz			—	6.54	mA
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,	—	—	1.51	mA
				C _L = 25 pF, 4 MHz	PAD3V5V = 1	_	—	2.14	
				C _L = 100 pF, 2 MHz		_	—	4.33	
IRMSMED	СС	D	Root mean square	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_	—	6.5	mA
			I/O current for MEDIUM	C _L = 25 pF, 40 MHz	PAD3V5V = 0	_	_	13.32	
			configuration	C _L = 100 pF, 13 MHz		_	_	18.26	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,			4.91	
				C _L = 25 pF, 40 MHz	PAD3V5V = 1	_	_	8.47	
				C _L = 100 pF, 13 MHz		_	_	10.94	
I _{RMSFST}	СС	D	Root mean square	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$,	_	—	21.05	mA
			I/O current for FAST configuration	C _L = 25 pF, 64 MHz	PAD3V5V = 0	_	_	33	
				C _L = 100 pF, 40 MHz		_	_	55.77	
				C _L = 25 pF, 40 MHz	66		—	14	
				C _L = 25 pF, 64 MHz	PAD3V5V = 1			20	
				C _L = 100 pF, 40 MHz		_	_	34.89	

MPC5646C Data Sheet, Rev.6

Ok. al		(Descention	Q ₂ and			Value	1	Unit
Symbol		С	Parameter	Conditions ²			Typ ³	Max ⁴	Unit
I _{DDMAX} 5	СС	D	RUN mode maximum average current	_	_	—	210	300 ^{6,7}	mA
IDDRUN	СС	Ρ	RUN mode typical average	at 120 MHz	T _A = 25 °C	_	150	200 ⁹	mA
		D	current ⁸	at 80 MHz	T _A = 25 °C	—	110 ⁸	150 ¹⁰	mA
		С		at 120 MHz	T _A = 125 °C	_	180	270	mA
IDDHALT	СС	Ρ	HALT mode current ¹¹	at 120 MHz	T _A = 25 °C	—	20	27	mA
		С		at 120 MHz	T _A = 125 °C	—	35	113	mA
IDDSTOP	СС	Ρ	STOP mode current ¹²	No clocks active	T _A = 25 °C	_	0.4	3	mA
		С			T _A = 125 °C	_	16	95	mA
I _{DDSTDBY3}	СС	Ρ	STANDBY3 mode	No clocks active	T _A = 25 °C	—	50	99	μA
(96 KB RAM retained)		С	current ¹³		T _A = 125 °C	-	630	3200	μA
IDDSTDBY2	СС	С	STANDBY2 mode	No clocks active	T _A = 25 °C	—	40	94	μΑ
(64 KB RAM retained)		С	current ¹⁴		T _A = 125 °C	-	500	2500	μA
IDDSTDBY1	СС	С		No clocks active	T _A = 25 °C	—	25	87	μΑ
(8 KB RAM retained)		С	current ¹⁵		T _A = 125 °C	-	230	1250	μA
Adders in LP	СС	Т	32 KHz OSC		T _A = 25 °C	—	_	5	μΑ
mode			4–40 MHz OSC	—	T _A = 25 °C	—	_	3	mA
			16 MHz IRC		T _A = 25 °C			500	μA
			128 KHz IRC		T _A = 25 °C	—	—	5	μA

Table 24. Low voltage power domain electrical characteristics ¹
--

NOTES:

¹ Except for I_{DDMAX} , all the current values are total current drawn from $V_{DD_{-HV_{-}A}}$.

- 2 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified All temperatures are based on an ambient temperature.
- ³ Target typical current consumption for the following typical operating conditions and configuration. Process = typical, Voltage = 1.2 V.
- ⁴ Target maximum current consumption for mode observed under typical operating conditions. Process = Fast, Voltage = 1.32 V.
- ⁵ Running consumption is given on voltage regulator supply (V_{DDREG}). It does not include consumption linked to I/Os toggling. This value is highly dependent on the application. The given value is thought to be a worst case value with all cores and peripherals running, and code fetched from code flash while modify operation on-going on data flash. It is to be noticed that this value can be significantly reduced by application: switch-off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.
- ⁶ Higher current may sunk by device during power-up and standby exit. Please refer to in rush current in Table 22.
- ⁷ Maximum "allowed" current is package dependent.
- ⁸ Only for the "P" classification: Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled. RUN current measured with typical application with accesses on both code flash and RAM.

Table 26 shows the data flash memory program and erase characteristics.

Table 26. Data flash memory—Program and erase specifications

				Value							
Symbol		С	Parameter	Min	Typ ¹	Initial max ²	Max ³	Unit			
T _{wprogram}		_	Word (32 bits) program time ⁴		30	70	500	μs			
T _{16Kpperase}	С		16 KB block pre-program and erase time	_	700	800	5000	ms			
T _{eslat}	~~	~~	~~	сс	<u> </u>	Erase Suspend Latency	_	_	30	30	μs
t _{ESRT} 5	CC	С	Erase Suspend Request Rate	10	_	_	—	ms			
t _{PABT}		D	Program Abort Latency	_	_	12	12	μs			
t _{EAPT}		D	Erase Abort Latency	_	_	30	30	μs			

NOTES:

Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.

⁴ Actual hardware programming times. This does not include software overhead.

⁵ It is time between erase suspend resume and next erase suspend.

Symbo		с	Parameter	Conditions	Va	lue	Unit
Cymbo	51	Ŭ	i di dificici	Conditions	Min	Тур	Onic
P/E CC		С	Number of program/erase cycles per block for 16 Kbyte blocks over the operating temperature range (T _J)	_	100,000	100,000	cycles
		Number of program/erase cycles per block for 32 Kbyte blocks over the operating temperature range (T _J)		_	10,000	100,000	cycles
			Number of program/erase cycles per block for 128 Kbyte blocks over the operating temperature range (T _J)	_	1,000	100,000	cycles
Retention	СС	С	Minimum data retention at 85 °C average ambient temperature ¹	Blocks with 0–1,000 P/E cycles	20		years
				Blocks with 10,000 P/E cycles	10	_	years
				Blocks with 100,000 P/E cycles	5	_	years

Table 27. Flash memory module life

NOTES:

¹ Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

4.11.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI measurements.

Table 31. EMI radiated emission measurement^{1,2}

Symb	Symbol		Parameter	Conditions			Value	/alue	
C y III.			i ulullotoi	Contanione				Max	Unit
—	SR		Scan range	—		0.150		1000	MHz
f _{CPU}	SR		Operating frequency	_		—	120	_	MHz
V _{DD_LV}	SR		LV operating voltages	_		—	1.28	_	V
S _{EMI}	СС	Т		$V_{DD} = 5 V$, $T_A = 25 °C$, LQFP176 package	No PLL frequency modulation	—	_	18	dBµV
				Test conforming to IEC 61967-2, f _{OSC} = 40 MHz/f _{CPU} = 120 MHz	± 2% PLL frequency modulation	—		14 ³	dBµV

NOTES:

EMI testing and I/O port waveforms per IEC 61967-1, -2, -4.

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

³ All values need to be confirmed during device validation.

4.11.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

4.11.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

Symbol	Ratings	Conditions	Class	Max value ³	Unit	
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \text{ °C}$ conforming to AEC-Q100-002	H1C	2000	V	
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	$T_A = 25 \text{ °C}$ conforming to AEC-Q100-003	M2	200		
V _{ESD(CDM)}	Electrostatic discharge voltage (Charged Device Model)	$T_A = 25 \ ^{\circ}C$ conforming to AEC-Q100-011	C3A	500 750 (corners)		

Table 32. ESD absolute maximum ratings^{1,2}

Symbol		с	C Parameter	Conditions ¹	Value ²			
		Ŭ			Min	Тур	Мах	Unit
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	0.65V _{DD_HV_A}	—	V _{DD_HV_A} + 0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.3	_	0.35V _{DD_HV_} A	V

Table 35. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ Based on ATE Cz

⁴ Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals).

4.13 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

Figure 12. Crystal oscillator and resonator connection scheme

NOTE

OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.

Figure 14. Slow external crystal oscillator (32 kHz) electrical characteristics

Symbol		~		0	Value ²			
		C Parameter		Conditions ¹	Min	Min Typ I		Unit Max
f _{SXOSC}	SR	_	Slow external crystal oscillator frequency	_	32	32.768	40	kHz
g _{mSXOSC} C	СС	—	Slow external crystal oscillator	$V_{DD} = 3.3 \text{ V} \pm 10\%,$	13 ³	—	33 ³	µA/V
			transconductance	$V_{DD} = 5.0 \text{ V} \pm 10\%$	15 ³	—	35 ³	1
V _{SXOSC}	СС	Т	Oscillation amplitude	_	1.2	1.4	1.7	V
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	_	1.2	—	4.4	μA
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	—	-	-	7	μA
T _{SXOSCSU}	СС	Т	Slow external crystal oscillator start-up time	_	-		2 ⁴	s

Table 37. Slow external cr	vstal oscillator (32 kH	z) electrical characteristics
	yotal ocolliator (of this	

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = –40 to 125 °C, unless otherwise specified.

 2 All values need to be confirmed during device validation.

³ Based on ATE CZ

⁴ Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

FMPLL electrical characteristics 4.14

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

Symbol		с	Parameter	Conditions ¹	Value ²			Unit
		Ŭ	rurumeter	oonalions	Min	Тур	Max	U
T _{SIRCSU}	СС	Ρ	Slow internal RC oscillator start-up time	T _A = 25 °C, V _{DD} = 5.0 V ± 10%	_	8	12	μs
$\Delta_{SIRCPRE}$	СС	С	Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2		+2	%
	СС	С	Slow internal RC oscillator trimming step	_	_	2.7	—	
	СС	С	Variation in f _{SIRC} across temperature and fluctuation in supply voltage, post trimming	_	-10		+10	%

Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.17 **ADC** electrical characteristics

4.17.1 Introduction

The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).

NOTE

Due to ADC limitations, the two ADCs cannot sample a shared channel at the same time i.e., their sampling windows cannot overlap if a shared channel is selected. If this is done, neither of the ADCs can guarantee their conversion accuracies.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being CS and Cp₂ substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1MHz, with CS+Cp₂ equal to 3pF, a resistance of 330K Ω is obtained (Reqiv = 1 / (fc*(CS+Cp₂)), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS+Cp₂) and the sum of R_S + R_F, the external circuit must be designed to respect the following relation

Eqn. 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

The formula above provides a constraint for external network design, in particular on resistive path.

Figure 16. Input equivalent circuit (precise channels)

Figure 27. DSPI classic SPI timing–slave, CPHA = 0

Package characteristics

5 Package characteristics

- 5.1 Package mechanical data
- 5.1.1 176 LQFP package mechanical drawing