

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z4d, e200z0h
Core Size	32-Bit Dual-Core
Speed	80MHz/120MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	147
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 27x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=spc5646cf0mlu1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Introd	luction
	1.1	Document Overview
	1.2	Description
2	Block	diagram
3	Packa	age pinouts and signal descriptions
	3.1	Pad types
	3.2	System pins14
	3.3	Functional ports14
4	Elect	rical Characteristics41
	4.1	Parameter classification
	4.2	NVUSRO register
		4.2.1 NVUSRO [PAD3V5V(0)] field description42
		4.2.2 NVUSRO [PAD3V5V(1)] field description42
	4.3	Absolute maximum ratings
	4.4	Recommended operating conditions
	4.5	Thermal characteristics
		4.5.1 Package thermal characteristics
		4.5.2 Power considerations
	4.6	I/O pad electrical characteristics
		4.6.1 I/O pad types
		4.6.2 I/O input DC characteristics
		4.6.3 I/O output DC characteristics
		4.6.4 Output pin transition times
		4.6.5 I/O pad current specification
	4.7	RESET electrical characteristics
	4.8	Power management electrical characteristics
		4.8.1 Voltage regulator electrical characteristics57
		4.8.2 VDD_BV options
		4.8.3 Voltage monitor electrical characteristics 60
	4.9	Low voltage domain power consumption61
	4.10	Flash memory electrical characteristics
		4.10.1 Program/Erase characteristics
		4.10.2 Flash memory power supply DC characteristics65
		4.10.3 Flash memory start-up/switch-off timings66
	4.11	Electromagnetic compatibility (EMC) characteristics66
		4.11.1 Designing hardened software to avoid noise

		problems
		4.11.2 Electromagnetic interference (EMI) 67
		4.11.3 Absolute maximum ratings (electrical sensitivity)67
	4.12	Fast external crystal oscillator (4-40 MHz) electrical
		characteristics
	4.13	Slow external crystal oscillator (32 kHz) electrical
		characteristics
	4.14	FMPLL electrical characteristics
	4.15	Fast internal RC oscillator (16 MHz) electrical
		characteristics
	4.16	Slow internal RC oscillator (128 kHz) electrical
		characteristics
	4.17	ADC electrical characteristics
		4.17.1 Introduction
	4.18	Fast Ethernet Controller 87
		4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV,
		RX_ER, and RX_CLK)
		4.18.2 MII Transmit Signal Timing (TXD[3:0], TX_EN,
		TX_ER, TX_CLK)
		4.18.3 MII Async Inputs Signal Timing (CRS and COL)88
		4.18.4 MII Serial Management Channel Timing (MDIO and
		MDC)89
	4.19	
		4.19.1 Current consumption
		4.19.2 DSPI characteristics
		4.19.3 Nexus characteristics 101
		4.19.4 JTAG characteristics
5		age characteristics
	5.1	Package mechanical data 105
		5.1.1 176 LQFP package mechanical drawing 105
		5.1.2 208 LQFP package mechanical drawing 108
		5.1.3 256 MAPBGA package mechanical drawing . 113
6		ring information
7	Revis	sion history

NP

1 Introduction

1.1 Document Overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the MPC5646C device. To ensure a complete understanding of the device functionality, refer also to the MPC5646C Reference Manual.

1.2 Description

The MPC5646C is a new family of next generation microcontrollers built on the Power Architecture embedded category. This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device.

The MPC5646C family expands the range of the MPC560xB microcontroller family. It provides the scalability needed to implement platform approaches and delivers the performance required by increasingly sophisticated software architectures. The advanced and cost-efficient host processor core of the MPC5646C automotive controller family complies with the Power Architecture embedded category, which is 100 percent user-mode compatible with the original Power Architecture user instruction set architecture (UISA). It operates at speeds of up to 120 MHz and offers high performance processing optimized for low power consumption. It also capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

Table 1. MPC5646C family comparison¹ (continued)

Feature	MPC	MPC5644B		MPC5644C		MPC5645B		MPC5645C		5C	MPC5646B		MPC5646C		6C
Package	176 LQFP	208 LQFP	176 LQFP	208 LQFP	256 BGA	176 LQFP	208 LQFP	176 LQFP	208 LQFP	256 BGA	176 LQFP	208 LQFP	176 LQFP	208 LQFP	256 BGA
Ethernet	N	No Yes No Yes					N	lo	Yes						
l ² C		1													
32 kHz oscillator (SXOSC)								Yes							
GPIO ¹²	147	177	147	177	199	147	177	147	177	199	147	177	147	177	199
Debug		JT	AG		Nexus 3+		JT	AG	1	Nexus 3+		JT	AG	1	Nexus 3+
Cryptographic Services Engine (CSE)					1			Optiona	I		l.				•

NOTES:

¹ Feature set dependent on selected peripheral multiplexing; table shows example.

² Based on 125 °C ambient operating temperature and subject to full device characterisation.

³ The e200z0h can run at speeds up to 80 MHz. However, if system frequency is >80 MHz (e.g., e200z4d running at 120 MHz) the e200z0h needs to run at 1/2 system frequency. There is a configurable e200z0 system clock divider for this purpose.

⁴ DMAMUX also included that allows for software selection of 32 out of a possible 57 sources.

⁵ Not shared with 12-bit ADC, but possibly shared with other alternate functions.

⁶ There are 23 dedicated ANS plus 4 dedicated ANX channels on LQPF176. For higher pin count packages, there are 29 dedicated ANS plus 4 dedicated ANX channels.

⁷ 16x precision channels (ANP) and 3x standard (ANS).

⁸ Not shared with 10-bit ADC, but possibly shared with other alternate functions.

⁹ As a minimum, all timer channels can function as PWM or Input Capture and Output Control. Refer to the eMIOS section of the device reference manual for information on the channel configuration and functions.

¹⁰ CAN Sampler also included that allows ID of CAN message to be captured when in low power mode.

¹¹ STCU controls MBIST activation and reporting.

¹² Estimated I/O count for proposed packages based on multiplexing with peripherals.

1

MPC5646C Data Sheet, Rev.6

റ

Package pinouts and signal descriptions

- $F = Fast^{1, 2}$
- I = Input only with analog feature¹
- A = Analog

3.2 System pins

The system pins are listed in Table 3.

Table 3. System pin descriptions

						er	
Port pin	Function	I/O direction	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
RESET	Bidirectional reset with Schmitt-Trigger characteristics and noise filter.	I/O	Μ	Input, weak pull-up only after PHASE2	29	29	K1
EXTAL	Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator bypass mode is used.	I	A ¹	_	58	74	Т8
XTAL	Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode.	I/O	A ¹	_	56	72	Τ7

NOTES:

For analog pads, it is not recommended to enable IBE if APC is enabled to avoid extra current in middle range voltage.

3.3 Functional ports

The functional port pins are listed in Table 4.

								Pir	n numbe	er
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PI[7]	PCR[135]	AF0 AF1 AF2 AF3 ALT4	GPIO[135] E1UC[31] CS1_4 CS1_5 CS1_6	SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6	I/O I/O O O	S	Tristate	12	12	E2
PI[8]	PCR[136]	AF0 AF1 AF2 AF3 —	GPIO[136] — — — ADC0_S[16]	SIUL - ADC_0	I/O — — — I	S	Tristate	108	130	J14
PI[9]	PCR[137]	AF0 AF1 AF2 AF3 —	GPIO[137] — — — ADC0_S[17]	SIUL — — ADC_0	I/O — — — I	S	Tristate	_	131	J15
PI[10]	PCR[138]	AF0 AF1 AF2 AF3 —	GPIO[138] — — — ADC0_S[18]	SIUL — — ADC_0	I/O — — — I	S	Tristate		134	J16
PI[11]	PCR[139]	AF0 AF1 AF2 AF3 	GPIO[139] — — — ADC0_S[19] SIN_3	SIUL — — ADC_0 DSPI_3	/O 	S	Tristate	111	135	H16
PI[12]	PCR[140]	AF0 AF1 AF2 AF3 —	GPIO[140] CS0_3 CS0_2 — ADC0_S[20]	SIUL DSPI_3 DSPI_2 — ADC_0	I/O I/O I/O I	S	Tristate	112	136	G15
PI[13]	PCR[141]	AF0 AF1 AF2 AF3 —	GPIO[141] CS1_3 CS1_2 — ADC0_S[21]	SIUL DSPI_3 DSPI_2 — ADC_0	I/O O — I	S	Tristate	113	137	G14
PI[14]	PCR[142]	AF0 AF1 AF2 AF3 —	GPIO[142] — — — ADC0_S[22] SIN_4	SIUL — — ADC_0 DSPI_4	/O 	S	Tristate	76	92	T12

Table 4. Functional	port pin	descriptions	(continued)
	P • • • P · · ·	acceriptione ,	

								Pir	n numbe	ər
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET config.	176 LQFP	208 LQFP	256 MAPBGA
PJ[7]	PCR[151]	AF0 AF1 AF2 AF3 —	GPIO[151] — — — ADC0_S[30]	SIUL — — ADC_0	I/O — — — I	S	Tristate		111	P16
PJ[8]	PCR[152]	AF0 AF1 AF2 AF3	GPIO[152] — — — ADC0_S[31]	SIUL — — ADC_0	I/O — — I	S	Tristate	_	110	P15
PJ[9]	PCR[153]	AF0 AF1 AF2 AF3 —	GPIO[153] — — — ADC1_S[8]	SIUL — — — ADC_1	I/O — — — —	S	Tristate	_	68	P5
PJ[10]	PCR[154]	AF0 AF1 AF2 AF3 —	GPIO[154] — — — ADC1_S[9]	SIUL — — — ADC_1	I/O — — — I	S	Tristate		67	Τ5
PJ[11]	PCR[155]	AF0 AF1 AF2 AF3 —	GPIO[155] — — — ADC1_S[10]	SIUL — — — ADC_1	I/O — — — I	S	Tristate		60	R3
PJ[12]	PCR[156]	AF0 AF1 AF2 AF3 —	GPIO[156] — — — ADC1_S[11]	SIUL — — — ADC_1	I/O — — — I	S	Tristate		59	T1
PJ[13]	PCR[157]	AF0 AF1 AF2 AF3 — — — —	GPIO[157] — CS1_7 — CAN4RX ADC1_S[12] CAN1RX WKPU[31]	SIUL DSPI_7 FlexCAN_4 ADC_1 FlexCAN_1 WKPU	/O 	S	Tristate		65	N5
PJ[14]	PCR[158]	AF0 AF1 AF2 AF3	GPIO[158] CAN1TX CAN4TX CS2_7	SIUL FlexCAN_1 FlexCAN_4 DSPI_7	I/O O O O	M/S	Tristate		64	T4

Table 4. Functional port pir	descriptions (continued)
Table III anotienai peri pi	

NOTE

Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions $(V_{IN} > V_{DD_HV_A/HV_B} \text{ or } V_{IN} < V_{SS_HV})$, the voltage on pins with respect to ground (V_{SS_HV}) must not exceed the recommended values.

Recommended operating conditions 4.4

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Faiametei	Conditions	Min	Min Max 0 0 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 $-HV - 0.1$ $V_{SS_HV} + 0.1$ 0 $V_{DD_LV} + 1$ $-HV - 0.1$ $V_{SS_HV} + 0.1$ 3.0^5 3.6 $+VA - 0.1$ $V_{DDHVA} + 0.1$ 3.0 3.6	Onit
V _{SS_HV}	SR	Digital ground on VSS_HV pins		0	0	V
V _{DD_HV_A} 1	SR	Voltage on V _{DD_HV_A} pins with respect to ground (V _{SS_HV})	_	3.0	3.6	V
V _{DD_HV_B} 1	SR	Voltage on V _{DD_HV_B} pins with respect to ground (V _{SS_HV})	_	3.0	3.6	V
V _{SS_LV} ²	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS_HV})	_	V _{SS_HV} – 0.1	V _{SS_HV} + 0.1	V
V _{RC_CTRL} ³		Base control voltage for external BCP68 NPN device	Relative to V _{DD_LV}	0	V _{DD_LV} + 1	V
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V _{SS_HV})	_	V _{SS_HV} - 0.1	V _{SS_HV} + 0.1	V
V _{DD_HV_ADC0} ⁴	SR		_	3.0 ⁵	3.6	V
		with respect to ground (V _{SS_HV})	Relative to V _{DD_HV_A} ⁶	$V_{DD_HV_A} - 0.1$	V _{DD_HV_A} + 0.1	
V _{DD_HV_ADC1} ⁷	SR		—	3.0	3.6	V
		with respect to ground (V _{SS_HV})	Relative to V _{DD_HV_A} ⁶	$V_{DD_HV_A} - 0.1$	V _{DD_HV_A} + 0.1	
V _{IN}	SR	Voltage on any GPIO pin with	—	V _{SS_HV} - 0.1	—	V
		respect to ground (V_{SS_HV})	Relative to V _{DD_HV_} A/HV_B		V _{DD_HV_A/HV_B} + 0.1	

Symbol		с	Parameter	Conditions ^{1,2}		Value ³		Unit
Gymbol		Ŭ	randicter	Conditions	Min	Тур	Max	onne
I _{AVGSEG}	SR			V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	70	mA
			I/O current within a supply segment	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1			65 ⁴	

Table 20. I/O consumption (continued)

NOTES: 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified.

 2 V_{DD} as mentioned in the table is V_{DD_HV_A}/V_{DD_HV_B}.

³ All values need to be confirmed during device validation.

⁴ Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

RESET electrical characteristics 4.7

The device implements a dedicated bidirectional RESET pin.

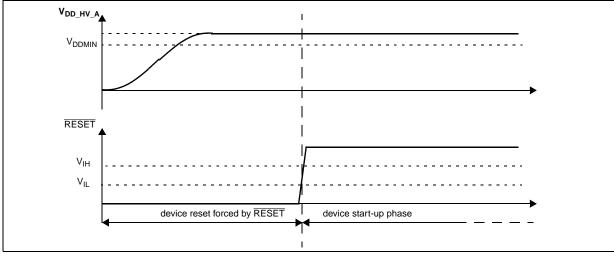


Figure 6. Start-up reset requirements

Symbol		с	Parameter	Conditions ¹		Value ²		Unit
Symbol		C	Falameter	Conditions	Min	Тур Мах		Unit
I _{LPREGINT}	СС	D	Low power regulator module current consumption	I _{LPREG} = 15 mA; T _A = 55 °C	-	—	600	μΑ
				I _{LPREG} = 0 mA; T _A = 55 °C	_	20		
I _{VREGREF}	СС	D	Main LVDs and reference current consumption (low power and main regulator switched off)	T _A = 55 °C	_	2	_	μA
I _{VREDLVD12}	СС	D	Main LVD current consumption (switch-off during standby)	T _A = 55 °C	-	1		μA
I _{DD_HV_A}	СС	D	In-rush current on V _{DD_BV} during power-up	_	-		600 ³	mA

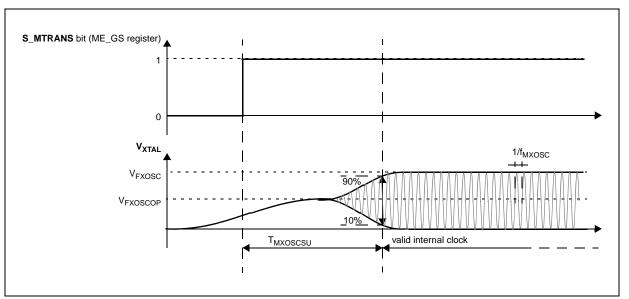
NOTES:

 1 V_{DD HV A} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ Inrush current is seen more like steps of 600 mA peak. The startup of the regulator happens in steps of 50 mV in ~25 steps to reach ~1.2 V V_{DD LV}. Each step peak current is within 600 mA

4.8.3 Voltage monitor electrical characteristics


The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors to monitor the $V_{DD\ HV\ A}$ and the $V_{DD\ LV}$ voltage while device is supplied:

- POR monitors V_{DD_HV_A} during the power-up phase to ensure device is maintained in a safe reset state
- LVDHV3 monitors $V_{DD HV_A}$ to ensure device is reset below minimum functional supply
- LVDHV5 monitors $V_{DD HV A}$ when application uses device in the 5.0 V±10% range
- LVDLVCOR monitors power domain No. 1 (PD1)
- LVDLVBKP monitors power domain No. 0 (PD0). VDD_LV is same as PD0 supply.

NOTE

When enabled, PD2 (RAM retention) is monitored through LVD_DIGBKP.

Symbol	I	с	Parameter	Conditions ¹		Value ²		Unit
Symbol	I		Farameter	Conditions	Min	Тур	Max	Unit
f _{FXOSC}	SR	—	Fast external crystal oscillator frequency	_	4.0	-	40.0	MHz
g _{mFXOSC}	CC	С	Fast external crystal	$V_{DD} = 3.3 \text{ V} \pm 10\%$	4 ³	—	20 ³	mA/V
			oscillator transconductance	$V_{DD} = 5.0 V \pm 10\%$	4 ³	-	20 ³	
V _{FXOSC}	CC	Т	Oscillation amplitude at EXTAL	$f_{OSC} = 40 \text{ MHz}$ For both V _{DD} = 3.3 V ± 10%, V _{DD} = 5.0 V ± 10%	_	0.95	—	V
V _{FXOSCOP}	СС	Ρ	Oscillation operating point	_	—	1.8		V
I _{FXOSC} ,4	СС	Т	Fast external crystal oscillator	$V_{DD} = 3.3 V \pm 10\%,$ $f_{OSC} = 40 \text{ MHz}$	_	2	2.2	
			consumption	$V_{DD} = 5.0 V \pm 10\%,$ $f_{OSC} = 40 MHz$	_	2.3	2.5	mA
				$V_{DD} = 3.3 V \pm 10\%,$ $f_{OSC} = 16 MHz$	_	1.3	1.5	
				$V_{DD} = 5.0 V \pm 10\%,$ $f_{OSC} = 16 MHz$	—	1.6	1.8	
T _{FXOSCSU}	CC	Т	Fast external crystal oscillator start-up time	$f_{OSC} = 40 \text{ MHz}$ For both V _{DD} = 3.3 V ± 10%, V _{DD} = 5.0 V ± 10%	_	—	5	ms

Symbol		с	Parameter	Co	onditions ¹		Value ²		Unit
Cymbol		Ŭ	i alameter			Min	Тур	Мах	Unit
I _{FIRCSTOP}	СС	Т	Fast internal RC oscillator high	T _A = 25 °C	sysclk = off	_	500	_	μA
			frequency and system clock current in stop mode		sysclk = 2 MHz	—	600		
			'		sysclk = 4 MHz	—	700		
					sysclk = 8 MHz	—	900		
					sysclk = 16 MHz	—	1250		
T _{FIRCSU}	СС	С	Fast internal RC oscillator	T _A = 55 °C	$V_{DD} = 5.0 \text{ V} \pm 10\%$	_		2.0	μs
			start-up time		$V_{DD} = 3.3 \text{ V} \pm 10\%$	_		5	
		_		T _A = 125 °C	$V_{DD} = 5.0 \text{ V} \pm 10\%$	—		2.0	
					$V_{DD} = 3.3 \text{ V} \pm 10\%$	_		5	
[∆] fircpre	СС	С	Fast internal RC oscillator precision after software trimming of f _{FIRC}	Т	_A = 25 °C	-1		+1	%
	СС	С	Fast internal RC oscillator trimming step	Т	_A = 25 °C	_	1.6		%
	СС	С	Fast internal RC oscillator variation over temperature and supply with respect to f_{FIRC} at $T_A = 25$ °C in high-frequency configuration	_		-5		+5	%

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.16 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module.

Symbol	Symbol C		Parameter	Conditions ¹		Value ²		Unit
Cymbol		Ŭ	i di di lictori	Conditions	Min	Тур	Max	onn
f _{SIRC}	СС	Ρ	Slow internal RC oscillator low	T _A = 25 °C, trimmed	_	128	_	kHz
	SR		frequency	untrimmed, across temperatures	84	_	205	
I _{SIRC} ^{3,}	СС		Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed	—	_	5	μA

Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics

Symbol		с	Parameter	Conditions ¹		Value ²		Unit
Cymbol			Conditions	Min	Тур	Max		
T _{SIRCSU}	СС	Ρ	Slow internal RC oscillator start-up time	$T_A = 25 \text{ °C}, V_{DD} = 5.0 \text{ V} \pm 10\%$	_	8	12	μs
$\Delta_{SIRCPRE}$	СС	С	Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2		+2	%
	СС	С	Slow internal RC oscillator trimming step	_	_	2.7	—	
[∆] sircvar	СС	С	Variation in f _{SIRC} across temperature and fluctuation in supply voltage, post trimming	_	-10		+10	%

Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)

NOTES: ¹ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² All values need to be confirmed during device validation.

³ This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.17 **ADC** electrical characteristics

4.17.1 Introduction

The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).

NOTE

Due to ADC limitations, the two ADCs cannot sample a shared channel at the same time i.e., their sampling windows cannot overlap if a shared channel is selected. If this is done, neither of the ADCs can guarantee their conversion accuracies.

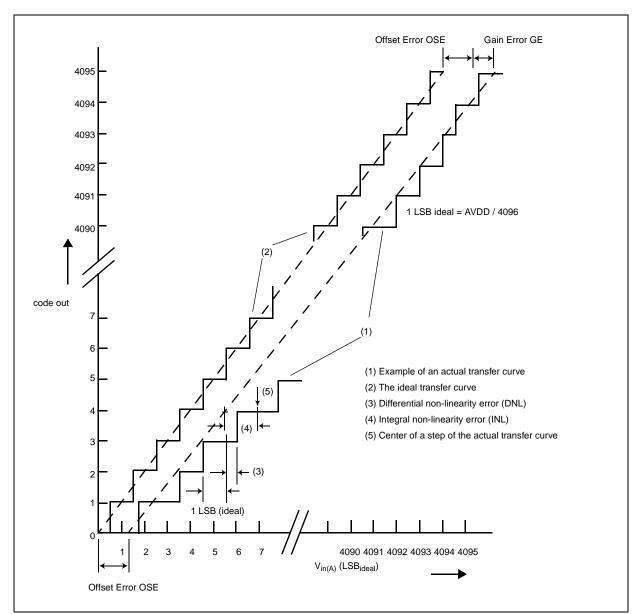


Figure 20. ADC_1 characteristic and error definitions

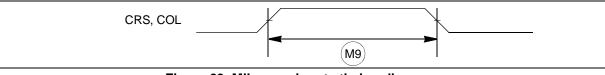


Figure 23. MII async inputs timing diagram

4.18.4 **MII Serial Management Channel Timing (MDIO and MDC)**

The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

Spec	Characteristic	Min	Max	Unit
M10	MDC falling edge to MDIO output invalid (minimum propagation delay)	0	_	ns
M11	MDC falling edge to MDIO output valid (max prop delay)	_	25	ns
M12	MDIO (input) to MDC rising edge setup	28	-	ns
M13	MDIO (input) to MDC rising edge hold	0	—	ns
M14	MDC pulse width high	40%	60%	MDC period
M15	MDC pulse width low	40%	60%	MDC period

Table 47. MII serial management channel timing¹

NOTES: ¹ Output pads configured with SRE = 0b11.

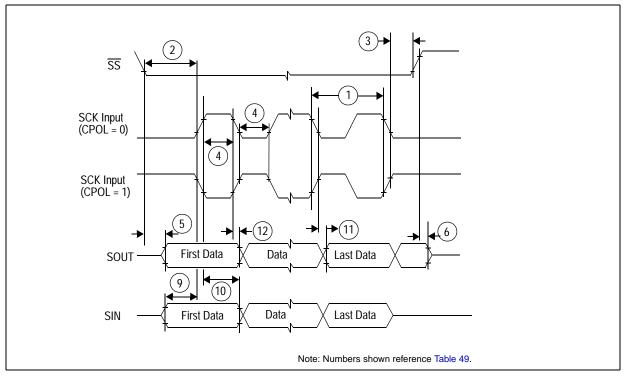
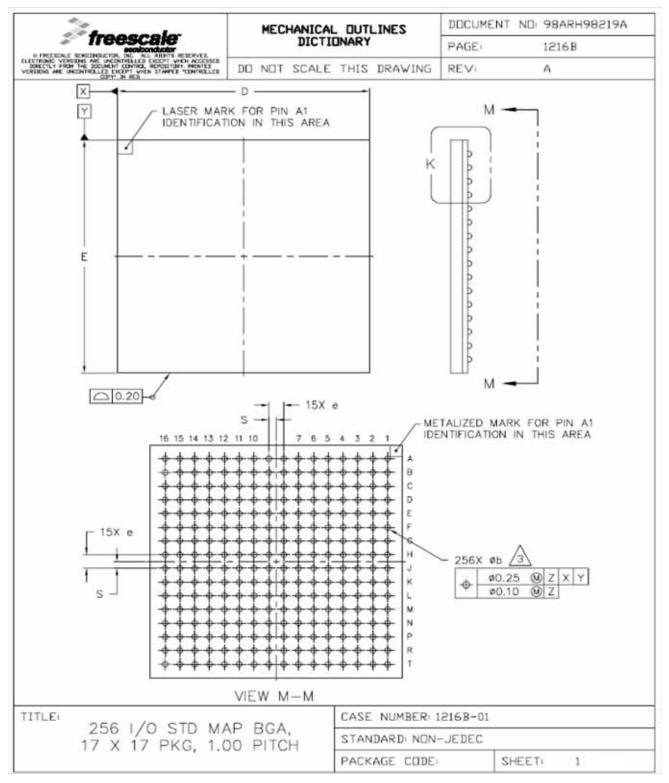



Figure 27. DSPI classic SPI timing–slave, CPHA = 0

5.1.3 256 MAPBGA package mechanical drawing

MPC5646C Data Sheet, Rev.6

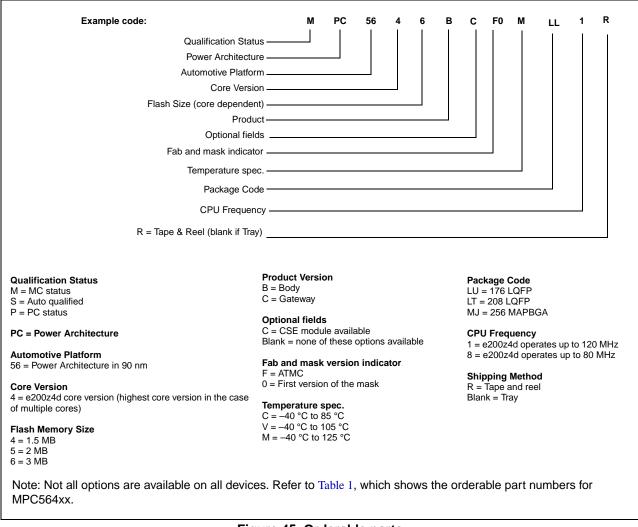


Figure 45. Orderable parts

Revision history

7 Revision history

Table 52 summarizes revisions to this document.

Table 52. Revision history

Revision	Date	Changes			
1	15 April 2010	Initial Release			
2	17 August 2010	 Editing and formatting updates throughout the document. Updated Voltage regulator capacitance connection figure. Added a new sub-section "V_{DD_BV} Options" Program and erase specifications: Updated Tdwprogram TYP to 22 us Updated T128Kpperase Max to 5000 ms Added 128UB parameter Added recommendation in the Voltage regulator electrical characteristics section Added Crystal description table in Fast external crystal oscillator (4 to 140 MHz) electrical characteristics section and corrected the cross-reference to the same. Added a new sections - Pad types, System pins and functional ports Updated TYP numbers in the Flash program and erase specifications table Added a new table: Program and erase specifications (Data Flash) Flash read access timing table: Added Data flash memory numbers Flash power supply DC electrical characteristics table: Updated IDFREAD and IDFMOD values for Data flash, Removed IDFLPW parameter Updated feature list. MPC5646C 3M family comparison table: Updated ADC channels and added ADC footnotes. Functional Port Pin Descriptions table: Added OSC32k_XTAL and OSC32k_EXTAL function at PB8 and PB9 port pins. Electrical Characteristics: Replaced VSS with VSS_HV throughout the section. Absolute maximum ratings, Recommended operating conditions (3.3 V) and Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V) tables: Clarified footnote 2 in both tables. LQFP thermal characteristics section: Updated numbers for LQFP packages. Low voltage power domain electrical characteristics table: Clarified footnotes based upon review comments. Code flash memory—Program and erase specifications: Updated tESRT to 20 ms ADC electrical ch			

Revision history

Revision	Date	Changes
6	12 Feb 2014	 Removed occurrences of 208BGA from Table 3 System pin descriptions. Added PM[3] and PM[4] in the figure note 1 of Figure 4, 256-pin BGA configuration. Added a table note in Table 19 I/O supplies. Updated Figure 8, Voltage regulator capacitance connection and added a note in this figure. Removed max values of V_{LPREG} and V_{MREG}, changed min value of V_{LPREG} to 1.21 V, and updated V_{MREG} and V_{LPREG} after trimming values in Table 22 Voltage regulator electrical characteristics. Updated 1st footnote and updated max values for I_{DDRUN}, I_{DDHALT}, I_{DDSTOP} I_{DDSTDBY3}, I_{DDSTDBY2}, I_{DDSTDBY1} and removed values at 85°C and 105°C in Table 24 Low voltage power domain electrical characteristics. Added a footnote below Table 28 Flash memory read access timing. Updated the formula in Eq. 11 in Section 4.17.1.1, "Input impedance and ADC accuracy. Added Figure 17, Input equivalent circuit (extended channels). Updated t_{ADC0_PU} value to 1.5 as max and added footnote for I_{INJ} in Table 42 ADC conversion characteristics (10-bit ADC_0). Added Category column in Table 43 Conversion characteristics (12-bit ADC_1). Added the IDD_HV_ADC0 values in Table 48 On-chip peripherals current consumption. Added a note in Figure 45, Orderable parts.

Table 52. Revision history (continued)

NOTE

This revision history uses clickable cross-references for ease of navigation. The numbers and titles in each cross-reference are relative to the latest published release.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandCo nditions.html.

Freescale, the Freescale logo, is trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2009-2014 Freescale Semiconductor, Inc.

MPC5646C Rev.6 02/2014

