

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z7
Core Size	32-Bit Tri-Core
Speed	264MHz
Connectivity	EBI/EMI, Ethernet, FlexCANbus, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	8MB (8M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16b Sigma-Delta, eQADC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	516-BGA
Supplier Device Package	516-MAPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5777cak3mmo3r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Parameter	Conditional	Va	Unit	
Symbol	Farameter	Conditions	Min	Max	Unit
Cycle	Lifetime power cycles	—		1000k	—
V _{DD}	1.2 V core supply voltage ^{2, 3, 4}	—	-0.3	1.5	V
V _{DDEHx}	I/O supply voltage (medium I/O pads) ⁵		-0.3	6.0	V
V _{DDEx}	I/O supply voltage (fast I/O pads) ⁵	—	-0.3	6.0	V
V _{DDPMC}	Power Management Controller supply voltage ⁵	_	-0.3	6.0	V
V _{DDFLA}	Decoupling pin for flash regulator ⁶	—	-0.3	4.5	V
V _{STBY}	RAM standby supply voltage ⁵	—	-0.3	6.0	V
V _{SSA_SD}	SDADC ground voltage	Reference to V _{SS}	-0.3	0.3	V
V _{SSA_EQ}	eQADC ground voltage	Reference to V _{SS}	-0.3	0.3	V
V _{DDA_EQA/B}	eQADC supply voltage	Reference to V _{SSA_EQ}	-0.3	6.0	V
V _{DDA_SD}	SDADC supply voltage	Reference to V _{SSA_SD}	-0.3	6.0	V
V _{RL_SD}	SDADC ground reference	Reference to V _{SS}	-0.3	0.3	V
V _{RL_EQ}	eQADC ground reference	Reference to V _{SS}	-0.3	0.3	V
V _{RH_EQ}	eQADC alternate reference	Reference to V _{RL_EQ}	-0.3	6.0	V
V _{RH_SD}	SDADC alternate reference	Reference to V _{RL_SD}	-0.3	6.0	V
V _{REFBYPC}	eQADC reference decoupling capacitor pins	REFBYPCA25, REFBYPCA75, REFBYPCB25, REFBYPC75	-0.3	6.0	V
V _{DDA_MISC}	TRNG and IRC supply voltage	—	-0.3	6.0	V
V _{DDPWR}	SMPS driver supply pin	—	-0.3	6.0	V
V _{SSPWR}	SMPS driver supply pin	Reference to V _{SS}	-0.3	0.3	V
$V_{SS} - V_{SSA_EQ}$	V _{SSA_EQ} differential voltage	—	-0.3	0.3	V
$V_{SS} - V_{SSA_SD}$	V _{SSA_SD} differential voltage	—	-0.3	0.3	V
$V_{SS} - V_{RL_{EQ}}$	V _{RL_EQ} differential voltage	—	-0.3	0.3	V
$V_{SS} - V_{RL_{SD}}$	V _{RL_SD} differential voltage	—	-0.3	0.3	V
V _{IN}	I/O input voltage range ⁷	—	-0.3	6.0	V
		Relative to V _{DDEx} /V _{DDEHx}	—	0.3	V
		Relative to V _{SS}	-0.3	_	V
I _{INJD}	Maximum DC injection current for digital pad	Per pin, applies to all digital pins	-5	5	mA
I _{INJA}	Maximum DC injection current for analog pad	Per pin, applies to all analog pins	-5	5	mA
I _{MAXSEG} ^{8, 9}	Maximum current per I/O power segment	_	-120	120	mA
T _{STG}	Storage temperature range and non- operating times	_	-55	175	°C
STORAGE	Maximum storage time, assembled part programmed in ECU	No supply; storage temperature in range –40 °C to 60 °C	—	20	years
T _{SDR}	Maximum solder temperature ¹⁰ Pb-free package		-	260	°C

Table 1. Absolute maximum ratings

Table continues on the next page ...

- 1. I_{DD} measured on an application-specific pattern with all cores enabled at full frequency, T_J = 40°C to 150°C. Flash memory program/erase current on the V_{DD} supply not included.
- 2. This value is considering the use of the internal core regulator with the simulation of an external transistor with the minimum value of h_{FE} of 60.
- 3. This bandgap reference is for EQADC calibration and Temperature Sensors.

3.6 I/O pad specifications

Input-only pads

The following table describes the different pad types on the chip.

Pad type	Description
General-purpose I/O pads	General-purpose I/O and EBI data bus pads with four selectable output slew rate settings; also called SR pads
EBI pads	Provide necessary speed for fast external memory interfaces on the EBI CLKOUT, address, and control signals; also called FC pads
LVDS pads	Low Voltage Differential Signal interface pads

Low-input-leakage pads that are associated with the ADC channels

Table 5. I/O pad specification descriptions

NOTE

Each I/O pin on the device supports specific drive configurations. See the signal description table in the device reference manual for the available drive configurations for each I/O pin.

NOTE

Throughout the I/O pad specifications, the symbol V_{DDEx} represents all V_{DDEx} and V_{DDEHx} segments.

3.6.1 Input pad specifications

Table 6 provides input DC electrical characteristics as described in Figure 4.

Symbol	Parameter	Conditions		Unit		
Symbol		Conditions	Min	Тур	Max	
I _{WPU}	Weak pullup current	$V_{IN} = 0.35 * V_{DDEx}$	40	—	120	μA
		4.5 V < V _{DDEx} < 5.5 V				
		$V_{IN} = 0.35 * V_{DDEx}$	25	—	80	
		3.0 V < V _{DDEx} < 3.6 V				
I _{WPD}	Weak pulldown current	V _{IN} = 0.65 * V _{DDEx}	40	—	120	μA
		4.5 V < V _{DDEx} < 5.5 V				
		$V_{IN} = 0.65 * V_{DDEx}$	25	_	80	
		3.0 V < V _{DDEx} < 3.6 V				

Table 7. I/O pullup/pulldown DC electrical characteristics

The specifications in Table 8 apply to the pins ANA0_SDA0 to ANA7, ANA16_SDB0 to ANA23_SDC3, and ANB0_SDD0 to ANB7_SDD7.

 Table 8. I/O pullup/pulldown resistance electrical characteristics

Symbol	Parameter	Conditions		Unit		
			Min	Тур	Мах	
R _{PUPD}	PUPD Analog input bias / diagnostic pullup/ pulldown resistance	200 kΩ	130	200	280	kΩ
		100 kΩ	65	100	140	
		5 kΩ	1.4	5	7.5	
Δ _{PUPD}	R _{PUPD} pullup/pulldown resistance mismatch	—			5	%

3.6.2 Output pad specifications

Figure 5 shows output DC electrical characteristics.

Table 9. GPIO and EBI data pad output buffer electrical characteristics (SR pads)¹ (continued)

Symbol	Poromotor	arameter Conditions ²			Value ³		Unit
Symbol	Farameter			Min	Тур	Max	Onit
t _{R_F}	GPIO pad output	PCR[SRC] = 11b	C _L = 25 pF	—	_	1.2	ns
	transition time (rise/fall)	4.5 V < V _{DDEx} < 5.5 V	C _L = 50 pF	—	_	2.5	
			C _L = 200 pF	—	_	8	
		PCR[SRC] = 11b	C _L = 25 pF	_		1.7	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 50 pF			3.25	
			C _L = 200 pF	—	_	12	
		PCR[SRC] = 10b	C _L = 50 pF	—	—	5	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	—	_	18]
		PCR[SRC] = 10b	C _L = 50 pF	—	_	7	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF	_	_	25	
		PCR[SRC] = 01b	C _L = 50 pF	_		13	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	_		24	
		PCR[SRC] = 01b	C _L = 50 pF	_		25	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF	_	_	30	
		PCR[SRC] = 00b	C _L = 50 pF	_		24	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	_	_	50	
		PCR[SRC] = 00b	C _L = 50 pF	_	_	40	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF	_	_	51	
t _{PD}	GPIO pad output	PCR[SRC] = 11b	C _L = 50 pF	_		6	ns
	propagation delay time	4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	_		13	
		PCR[SRC] = 11b	C _L = 50 pF	_	_	8.25	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF	_		19.5	
		PCR[SRC] = 10b	C _L = 50 pF	_	_	9	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	—		22	
		PCR[SRC] = 10b	C _L = 50 pF	_		12.5	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF	_	_	35	
		PCR[SRC] = 01b	C _L = 50 pF	_		27	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	—	—	40	
		PCR[SRC] = 01b	C _L = 50 pF	_		45	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF	_		65	
		PCR[SRC] = 00b	C _L = 50 pF	_	_	40	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	_		65	
		PCR[SRC] = 00b	C _L = 50 pF	_		75	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF	_	_	100	
It _{SKEW_W} I	Difference between rise and fall time	-	1			25	%

1. All GPIO pad output specifications are valid for 3.0 V < V_{DDEx} < 5.5 V, except where explicitly stated.

Symbol	Parameter	Conditions		Unit		
Symbol	Faranieter	Conditions	Min	Тур	Max	Onit
f _{PLL1IN}	PLL1 input clock ¹	—	38	—	78	MHz
Δ _{PLL1IN}	PLL1 input clock duty cycle ¹	—	35		65	%
f _{PLL1VCO}	PLL1 VCO frequency	—	600	_	1250	MHz
f _{PLL1PHI}	PLL1 output clock PHI	—	4.762	—	264	MHz
t _{PLL1LOCK}	PLL1 lock time	—	—		100	μs
Δ _{PLL1PHISPJ}	PLL1_PHI single period peak-to- peak jitter	f _{PLL1PHI} = 200 MHz, 6- sigma	_	_	500 ²	ps
f _{PLL1MOD}	PLL1 modulation frequency	—	—		250	kHz
δ _{PLL1MOD}	PLL1 modulation depth (when	Center spread	0.25	_	2	%
	enabled)	Down spread	0.5		4	%
I _{PLL1}	PLL1 consumption	FINE LOCK state	—	—	6	mA

Table 13. PLL1 electrical characteristics

1. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock. Input characteristics are granted when using internal PLL0 or external oscillator in functional mode.

2. Noise on the V_{DD} supply with frequency content below 40 kHz and above 50 MHz is filtered by the PLL. Noise on the V_{DD} supply with frequency content in the range of 40 kHz – 50 MHz must be filtered externally to the device.

3.7.2 Oscillator electrical specifications

NOTE

All oscillator specifications in Table 14 are valid for $V_{DDEH6} = 3.0 \text{ V}$ to 5.5 V.

Table 14. External oscillator (XOSC) electrical specifications

Symbol	Devemeter	Conditions	Va	Unit	
Symbol	Faranieter	Conditions	Min	Мах	Unit
f _{XTAL}	Crystal frequency range	_	8	40	MHz
t _{cst}	Crystal start-up time ^{1, 2}	T _J = 150 °C	_	5	ms
t _{rec}	Crystal recovery time ³		_	0.5	ms
VIHEXT	EXTAL input high voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	V _{REF} + 0.6	_	V
V _{ILEXT}	EXTAL input low voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	_	V _{REF} – 0.6	V
C _{S_EXTAL}	Total on-chip stray capacitance on EXTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.1	2.8	
C _{S_XTAL}	Total on-chip stray capacitance on XTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.2	2.9	
9 _m	Oscillator transconductance ⁵	Low	3	10	mA/V
		Medium	10	27	
		High	12	35	

Table continues on the next page ...

Electrical characteristics

Cumhal	Sumhal Devenator Conditions			Value	9	11
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{rolloff}	Stop band attenuation	[0.5 * f _{ADCD_S} , 1.0 * f _{ADCD_S}]	40	_	—	dB
		[1.0 * f _{ADCD_S} , 1.5 * f _{ADCD_S}]	45	—	—	1
		[1.5 * f _{ADCD_S} , 2.0 * f _{ADCD_S}]	50	_	—	1
		[2.0 * f _{ADCD_S} , 2.5 * f _{ADCD_S}]	55	_	_	1
		[2.5 * f _{ADCD_S} , f _{ADCD_M} /2]	60	_	—	1
δ _{GROUP}	Group delay	Within pass band: Tclk is $f_{ADCD_M} / 2$	—	_	—	—
		OSR = 24	—	_	235.5	Tclk
		OSR = 28	—	_	275	1
		OSR = 32	—		314.5	1
		OSR = 36	_		354	
		OSR = 40	—		393.5	1
		OSR = 44	—		433	1
		OSR = 48	—		472.5	1
		OSR = 56	—		551.5	
		OSR = 64	—		630.5	
		OSR = 72	—		709.5	
		OSR = 75	—		696	
		OSR = 80	—		788.5	
		OSR = 88	—		867.5	
		OSR = 96	—		946.5	
		OSR = 112	—		1104.5	
		OSR = 128	—		1262.5	
		OSR = 144	—		1420.5	
		OSR = 160	—		1578.5	1
		OSR = 176	—		1736.5	1
		OSR = 192	—		1894.5	
		OSR = 224			2210.5	
		OSR = 256	—	_	2526.5	
		Distortion within pass band	-0.5/ f _{ADCD_S}	_	+0.5/ f _{ADCD_S}	—
f _{HIGH}	High pass filter 3 dB frequency	Enabled	—	10e–5* fADCD_S		-
tSTARTUP	Startup time from power down state	_	—	—	100	μs
tLATENCY	Latency between input data and converted	HPF = ON	—	_	δ _{GROUP} + f _{ADCD_} s	-
	data when input mux does not change ¹⁵	HPF = OFF	—		δ _{GROUP}	

Table 18. SDADC electrical specifications (continued)

Table continues on the next page...

Symbol	Parameter Conditions			Value	9	Unit	
Symbol	Falameter	Conditions	Min	Тур	Мах		
t _{SETTLING}	Settling time after mux	Analog inputs are muxed	—	—	2*δ _{GROUP} +	_	
	change	HPF = ON			3*f _{ADCD_S}		
		HPF = OFF	_	_	2*δ _{GROUP} + 2*f _{ADCD_S}		
todrecovery	Overdrive recovery time	After input comes within range from saturation	_	_	2*δ _{GROUP} + f _{ADCD_S}	-	
		HPF = ON					
		HPF = OFF	_		2*δ _{GROUP}		
C _{S_D}	SDADC sampling	GAIN = 1, 2, 4, 8	—		75*GAIN	fF	
	capacitance after sampling switch ¹⁶	GAIN = 16	—		600	fF	
I _{BIAS}	Bias consumption	At least one SDADC enabled		—	3.5	mA	
I _{ADV_D}	SDADC supply consumption	Per SDADC enabled	—		4.325	mA	
I _{ADR_D}	SDADC reference current consumption	Per SDADC enabled	_	_	20	μA	

Table 18. SDADC electrical specifications (continued)

- 1. For input voltage above the maximum and below the clamp voltage of the input pad, there is no latch-up concern, and the signal will only be "clipped."
- 2. VINP is the input voltage applied to the positive terminal of the SDADC
- 3. VINM is the input voltage applied to the negative terminal of the SDADC
- 4. Sampling is generated internally $f_{SAMPLING} = f_{ADCD_M}/2$
- 5. For Gain = 16, SDADC resolution is 15 bit.
- Calibration of gain is possible when gain = 1. Offset Calibration should be done with respect to 0.5^{*}V_{RH_SD} for differential mode and single ended mode with negative input = 0.5^{*}V_{RH_SD}. Offset Calibration should be done with respect to 0 for single ended mode with negative input = 0. Both Offset and Gain Calibration is guaranteed for +/-5% variation of V_{RH_SD}, +/-10% variation of V_{DDA SD}, +/-50 C temperature variation.
- 7. Offset and gain error due to temperature drift can occur in either direction (+/-) for each of the SDADCs on the device.
- SDADC is functional in the range 3.6 V < V_{DDA_SD} < 4.0 V: SNR parameter degrades by 3 dB. SDADC is functional in the range 3.0 V < V_{RH_SD} < 4.0 V: SNR parameter degrades by 9 dB.
- 9. SNR values guaranteed only if external noise on the ADC input pin is attenuated by the required SNR value in the frequency range of f_{ADCD_M} f_{ADCD_S} to f_{ADCD_M} + f_{ADCD_S}, where f_{ADCD_M} is the input sampling frequency and f_{ADCD_S} is the output sample frequency. A proper external input filter should be used to remove any interfering signals in this frequency range.
- 10. Input impedance in differential mode $Z_{IN} = Z_{DIFF}$
- 11. Input impedance given at $f_{ADCD_M} = 16$ MHz. Impedance is inversely proportional to SDADC clock frequency. Z_{DIFF} (f_{ADCD_M}) = (16 MHz / f_{ADCD_M}) * Z_{DIFF} , Z_{CM} (f_{ADCD_M}) = (16 MHz / f_{ADCD_M}) * Z_{CM} .
- 12. Input impedance in single-ended mode $Z_{IN} = (2 * Z_{DIFF} * Z_{CM}) / (Z_{DIFF} + Z_{CM})$
- 13. V_{INTCM} is the Common Mode input reference voltage for the SDADC. It has a nominal value of (V_{RH_SD} V_{RL_SD}) / 2.
- 14. The $\pm 1\%$ passband ripple specification is equivalent to 20 * log₁₀ (0.99) = 0.087 dB.
- 15. Propagation of the information from the pin to the register CDR[CDATA] and the flags SFR[DFEF] and SFR[DFFF] is given by the different modules that must be crossed: delta/sigma filters, high pass filter, FIFO module, and clock domain synchronizers. The time elapsed between data availability at the pin and internal SDADC module registers is given by the following formula, where f_{ADCD_S} is the frequency of the sampling clock, f_{ADCD_M} is the frequency of the modulator, and f_{FM_PER_CLK} is the frequency of the peripheral bridge clock feeds to the SDADC module:

 $REGISTER LATENCY = t_{LATENCY} + 0.5/f_{ADCD_S} + 2 (\sim+1)/f_{ADCD_M} + 2(\sim+1)f_{FM_PER_CLK}$

The (~+1) symbol refers to the number of clock cycles uncertainty (from 0 to 1 clock cycle) to be added due to resynchronization of the signal during clock domain crossing.

Figure 10. Rise/fall time

3.10.2 LFAST and MSC/DSPI LVDS interface electrical characteristics

The following table contains the electrical characteristics for the LFAST interface.

Table 20. LVDS pad startup and receiver electrical characteristics¹

Symbol	Parameter	Conditions	Value			Unit				
	Farameter	Conditions	Min	Тур	Max					
STARTUP ² , ³										
t _{STRT_BIAS}	Bias current reference startup time ⁴	—	—	0.5	4	μs				

Table continues on the next page...

Figure 11. LVDS pad external load diagram

3.10.3 LFAST PLL electrical characteristics

The following table contains the electrical characteristics for the LFAST PLL.

 Table 23. LFAST PLL electrical characteristics¹

Symbol	Paramotor	Conditions		Unit		
	l'arameter		Min	Nominal	Max	
f _{RF_REF}	PLL reference clock frequency	—	10	—	26	MHz
ERR _{REF}	PLL reference clock frequency error	—	-1	—	1	%
DC _{REF}	PLL reference clock duty cycle	—	45	—	55	%
PN	Integrated phase noise (single side band)	f _{RF_REF} = 20 MHz	_	—	-58	dBc
		f _{RF_REF} = 10 MHz	—	—	-64	
f _{VCO}	PLL VCO frequency	—	—	480 ²	—	MHz
t _{LOCK}	PLL phase lock ³	—	—	—	40	μs

Table continues on the next page ...

3.12.2 Flash memory Array Integrity and Margin Read specifications Table 31. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max ¹	Units 2
t _{ai16kseq}	Array Integrity time for sequential sequence on 16 KB block.	-	_	512 x Tperiod x Nread	
t _{ai32kseq}	Array Integrity time for sequential sequence on 32 KB block.	-	_	1024 x Tperiod x Nread	_
t _{ai64kseq}	Array Integrity time for sequential sequence on 64 KB block.	-	_	2048 x Tperiod x Nread	_
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	-	_	8192 x Tperiod x Nread	_
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	—	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43		192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65		356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01		1,339.5	μs

- Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The
 equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and
 Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires
 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the
 address pipeline set to 2, Nread would equal 4 (or 6 2).)
- 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate.

3.12.3 Flash memory module life specifications

Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks. ¹	—	250,000	—	P/E cycles
	Number of program/erase cycles per block for 256 KB blocks. ²	—	1,000	250,000	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	50	_	Years
		Blocks with 100,000 P/E cycles.	20	—	Years
		Blocks with 250,000 P/E cycles.	10		Years

 Table 32.
 Flash memory module life specifications

- 1. Program and erase supported across standard temperature specs.
- 2. Program and erase supported across standard temperature specs.

Electrical characteristics

Figure 26. Synchronous output timing

3.13.6 External interrupt timing (IRQ/NMI pin) Table 39. External Interrupt timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	IRQ/NMI Pulse Width Low	t _{IPWL}	3	—	t _{cyc} ²
2	IRQ/NMI Pulse Width High	t _{IPWH}	3	—	t _{cyc} ²
3	IRQ/NMI Edge to Edge Time ³	t _{ICYC}	6	—	t _{cyc} ²

- 1. IRQ/NMI timing specified at V_{DD} = 1.08 V to 1.32 V, V_{DDEH} = 3.0 V to 5.5 V, T_A = T_L to T_H .
- 2. For further information on t_{cyc} , see Table 3.
- 3. Applies when IRQ/NMI pins are configured for rising edge or falling edge events, but not both.

Figure 29. External interrupt timing

3.13.7 eTPU timing Table 40. eTPU timing¹

Spec	Characteristic	Symbol	Min	Мах	Unit
1	eTPU Input Channel Pulse Width	t _{ICPW}	4	—	t _{CYC_ETPU} ²
2	eTPU Output Channel Pulse Width	t _{OCPW}	1 ³	—	t _{CYC_ETPU} ²

1. eTPU timing specified at V_{DD} = 1.08 V to 1.32 V, V_{DDEH} = 3.0 V to 5.5 V, T_A = T_L to T_H , and C_L = 200 pF with SRC = 0b00.

2. For further information on tCYC ETPU, see Table 3.

3. This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).

3.13.9 DSPI timing with CMOS and LVDS pads

NOTE

The DSPI in TSB mode with LVDS pads can be used to implement the Micro Second Channel (MSC) bus protocol.

DSPI channel frequency support is shown in Table 42. Timing specifications are shown in Table 43, Table 44, Table 45, Table 46, and Table 47.

	DSPI use mode	Max usable frequency (MHz) ^{1, 2}
CMOS (Master mode)	Full duplex – Classic timing (Table 43)	17
	Full duplex – Modified timing (Table 44)	30
	Output only mode (SCK/SOUT/PCS) (Table 43 and Table 44)	30
	Output only mode TSB mode (SCK/SOUT/PCS) (Table 47)	30
LVDS (Master mode)	Full duplex – Modified timing (Table 45)	30
	Output only mode TSB mode (SCK/SOUT/PCS) (Table 46)	40

Table 42. DSPI channel frequency support

1. Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads.

2. Maximum usable frequency does not take into account external device propagation delay.

3.13.9.1 DSPI master mode full duplex timing with CMOS and LVDS pads

3.13.9.1.1 DSPI CMOS Master Mode — Classic Timing

Table 43. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1^1

#	Symbol	Charactoristic	Condition	Condition ²		9 ³	Unit
#	Symbol	Characteristic	Pad drive ⁴	Load (C _L)	Min	Max	
1	t _{SCK}	SCK cycle time	PCR[SRC]=11b	25 pF	33.0	_	ns
			PCR[SRC]=10b	50 pF	80.0	_]
			PCR[SRC]=01b	50 pF	200.0	_	
2	t _{CSC}	PCS to SCK delay	PCR[SRC]=11b	25 pF	$(N^5 \times t_{SYS}^{, 6}) - 16$		ns
			PCR[SRC]=10b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 16$	_]
			PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 18$	_	
			PCS: PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 45$]
			SCK: PCR[SRC]=10b				

Table continues on the next page...

Figure 33. DSPI CMOS master mode – classic timing, CPHA = 1

Figure 34. DSPI PCS strobe (PCSS) timing (master mode)

3.13.9.1.2 DSPI CMOS Master Mode – Modified Timing Table 44. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1¹

"	Symbol	Characteristic	Condition	2	Value	3	Unit
#	Symbol	Characteristic	Pad drive ⁴	Load (C _L)	Min	Мах	
1	t _{SCK}	SCK cycle time	PCR[SRC]=11b	25 pF	33.0	—	ns
			PCR[SRC]=10b	50 pF	80.0	_	
			PCR[SRC]=01b	50 pF	200.0		
2	t _{CSC}	PCS to SCK delay	PCR[SRC]=11b	25 pF	(N ⁵ × t _{SYS} ^{, 6}) – 16	_	ns
			PCR[SRC]=10b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 16$	_	
			PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 18$		
			PCS: PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 45$	_	
			SCK: PCR[SRC]=10b				

Table continues on the next page ...

Table 44. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1^1 (continued)

	Cumhal	Ohavaataviatia	Condition	2	Value ³		11
#	Symbol	Characteristic	Pad drive ⁴	Load (C _L)	Min	Max	
3	t _{ASC}	After SCK delay	PCR[SRC]=11b	PCS: 0 pF	$(M^7 \times t_{SYS}^{, 6}) - 35$		ns
				SCK: 50 pF			
			PCR[SRC]=10b	PCS: 0 pF	$(M^7 \times t_{SYS}^{, 6}) - 35$		
				SCK: 50 pF			
			PCR[SRC]=01b	PCS: 0 pF	$(M^7 \times t_{SYS}^{, 6}) - 35$		-
				SCK: 50 pF			
			PCS: PCR[SRC]=01b	PCS: 0 pF	$(M^7 \times t_{SYS}, 6) - 35$		-
			SCK: PCR[SRC]=10b	SCK: 50 pF			
4	t _{SDC}	SCK duty cycle ⁸	PCR[SRC]=11b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=10b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	1
			PCR[SRC]=01b	0 pF	1/2t _{SCK} – 5	1/2t _{SCK} + 5	1
			PCS strob	e timing		I	1
5	t _{PCSC}	PCSx to PCSS time ⁹	PCR[SRC]=10b	25 pF	13.0		ns
6	t _{PASC}	PCSS to PCSx time ⁹	PCR[SRC]=10b	25 pF	13.0		ns
			SIN setu	ip time		L	
7	t _{SUI}	SIN setup time to	PCR[SRC]=11b	25 pF	$29 - (P^{11} \times t_{SYS}^{, 6})$		ns
		SCK	PCR[SRC]=10b	50 pF	$31 - (P^{11} \times t_{SYS}^{, 6})$		
		$CPHA = 0^{10}$	PCR[SRC]=01b	50 pF	$62 - (P^{11} \times t_{SYS}, 6)$		
		SIN setup time to	PCR[SRC]=11b	25 pF	29.0		ns
		SCK	PCR[SRC]=10b	50 pF	31.0		
		CPHA = 1 ¹⁰	PCR[SRC]=01b	50 pF	62.0		
			SIN hol	d time			
8	t _{HI} ¹²	SIN hold time from	PCR[SRC]=11b	0 pF	$-1 + (P^{11} \times t_{SYS}^{, 6})$	_	ns
		SCK	PCR[SRC]=10b	0 pF	$-1 + (P^{11} \times t_{SYS}^{, 6})$	_	
		$CPHA = 0^{10}$	PCR[SRC]=01b	0 pF	$-1 + (P^{11} \times t_{SYS}^{, 6})$	_	
		SIN hold time from	PCR[SRC]=11b	0 pF	-1.0	_	ns
		SCK	PCR[SRC]=10b	0 pF	-1.0	_	
		CPHA = 1 ¹⁰	PCR[SRC]=01b	0 pF	-1.0]
			SOUT data valid tim	e (after SCK eo	dge)		
9	t _{SUO}	SOUT data valid	PCR[SRC]=11b	25 pF		7.0 + t _{SYS} ⁶	ns
		time from SCK	PCR[SRC]=10b	50 pF		8.0 + t _{SYS} ⁶	
		$CPHA = 0^{13}$	PCR[SRC]=01b	50 pF	_	18.0 + t _{SYS} ⁶	
		SOUT data valid	PCR[SRC]=11b	25 pF	_	7.0	ns
		time from SCK	PCR[SRC]=10b	50 pF		8.0	
		CPHA = 1 ¹³	PCR[SRC]=01b	50 pF		18.0	
			SOUT data hold tim	e (after SCK ed	dge)		

Table continues on the next page ...

Table 44. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1^1 (continued)

#	Symbol	Characteristic	Condition ²		Value ³		Unit
"			Pad drive ⁴	Load (C _L)	Min	Max	
10	t _{HO}	SOUT data hold	PCR[SRC]=11b	25 pF	–9.0 + t _{SYS} ⁶	_	ns
	time after SCK CPHA = 0^{13}	PCR[SRC]=10b	50 pF	-10.0 + t _{SYS} ⁶			
		PCR[SRC]=01b	50 pF	–21.0 + t _{SYS} ⁶			
		SOUT data hold	PCR[SRC]=11b	25 pF	-9.0		ns
	time after SCK	time after SCK	PCR[SRC]=10b	50 pF	-10.0		
		CPHA = 1 ¹³	PCR[SRC]=01b	50 pF	-21.0		

- 1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.
- 2. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.
- 3. All timing values for output signals in this table are measured to 50% of the output voltage.
- 4. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 5. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min t_{SYS} = 10 ns).
- M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 8. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 9. PCSx and PCSS using same pad configuration.
- 10. Input timing assumes an input slew rate of 1 ns (10% 90%) and uses TTL / Automotive voltage thresholds.
- 11. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set to 1.
- 12. The 0 pF load condition given in the DSPI AC timing applies to theoretical worst-case hold timing. This guarantees worstcase operation, and additional margin can be achieved in the applications by applying a realistic load.
- 13. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Electrical characteristics

Figure 35. DSPI CMOS master mode – modified timing, CPHA = 0

Figure 36. DSPI CMOS master mode – modified timing, CPHA = 1

Figure 41. MII receive signal timing diagram

3.13.10.2 MII transmit signal timing (TXD[3:0], TX_EN, and TX_CLK)

The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency.

The transmit outputs (TXD[3:0], TX_EN) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of noncompliant MII PHYs.

Refer to the *MPC5777C Microcontroller Reference Manual's* Fast Ethernet Controller (FEC) chapter for details of this option and how to enable it.

Symbol	Characteristic	Va	lue ²	Unit	
Symbol	Characteristic	Min	Max	Onit	
M5	TX_CLK to TXD[3:0], TX_EN invalid	4.5	_	ns	
M6	TX_CLK to TXD[3:0], TX_EN valid		25	ns	
M7	TX_CLK pulse width high	35%	65%	TX_CLK period	
M8	TX_CLK pulse width low	35%	65%	TX_CLK period	

 Table 49. MII transmit signal timing¹

1. All timing specifications valid to the pad input levels defined in I/O pad specifications.

2. Output parameters are valid for $C_L = 25 \text{ pF}$, where C_L is the external load to the device. The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value.

Figure 46. RMII transmit signal timing diagram

4 Package information

To find the package drawing for each package, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
416-ball MAPBGA	98ASA00562D
516-ball MAPBGA	98ASA00623D

4.1 Thermal characteristics

Table 54. Thermal characteristics, 416-ball MAPBGA package

Characteristic	Symbol	Value	Unit
Junction to Ambient ^{1, 2} Natural Convection (Single layer board)	$R_{\Theta JA}$	28.8	°C/W
Junction to Ambient ^{1, 3} Natural Convection (Four layer board 2s2p)	R _{OJA}	19.6	°C/W
Junction to Ambient (@200 ft./min., Single layer board)	R _{ØJMA}	21.3	°C/W
Junction to Ambient (@200 ft./min., Four layer board 2s2p)	R _{ØJMA}	15.1	°C/W
Junction to Board ⁴	$R_{\Theta JB}$	9.5	°C/W
Junction to Case ⁵	R _{ØJC}	4.8	°C/W
Junction to Package Top ⁶ Natural Convection	Ψ_{JT}	0.2	°C/W

- 1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.

Document revision history

Part number ¹	Package description	Speed (MHz) ² -	Operating temperature ³	
			Min (T _L)	Max (T _H)
SPC5777CCK3MME3	MPC5777C 416 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CK3MME3	MPC5777C 416 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CCK3MMO3	MPC5777C 516 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CK3MMO3	MPC5777C 516 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			

 Table 56.
 Example orderable part numbers

1. All packaged devices are PPC5777C, rather than MPC5777C or SPC5777C, until product qualifications are complete. The unpackaged device prefix is PCC, rather than SCC, until product qualification is complete.

Not all configurations are available in the PPC parts.

- 2. For the operating mode frequency of various blocks on the device, see Table 3.
- 3. The lowest ambient operating temperature is referenced by T_L ; the highest ambient operating temperature is referenced by T_H .

6 Document revision history

The following table summarizes revisions to this document since the previous release.

Table 57. Revision history

Revision	Date	Description of changes
11	04/2017	 In Figure 47 of Ordering information, added codes and firmware version information in definition of "Optional features field" At end of line for (<i>blank</i>), added "version 2.07" Added line for A At end of line for R, added "version 2.08" At end of line for C, added "version 2.07" Added line for D At end of line for L, added "version 2.08"