

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z7
Core Size	32-Bit Tri-Core
Speed	264MHz
Connectivity	CANbus, EBI/EMI, Ethernet, FlexCANbus, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	8MB (8M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16b Sigma-Delta, eQADC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BGA
Supplier Device Package	416-MAPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5777cck3mme3r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Parameter	Conditional	Value		Unit
Symbol	Farameter	Conditions	Min	Max	
Cycle	Lifetime power cycles	—		1000k	—
V _{DD}	1.2 V core supply voltage ^{2, 3, 4}	—	-0.3	1.5	V
V _{DDEHx}	I/O supply voltage (medium I/O pads) ⁵		-0.3	6.0	V
V _{DDEx}	I/O supply voltage (fast I/O pads) ⁵	—	-0.3	6.0	V
V _{DDPMC}	Power Management Controller supply voltage ⁵	_	-0.3	6.0	V
V _{DDFLA}	Decoupling pin for flash regulator ⁶	—	-0.3	4.5	V
V _{STBY}	RAM standby supply voltage ⁵	—	-0.3	6.0	V
V _{SSA_SD}	SDADC ground voltage	Reference to V _{SS}	-0.3	0.3	V
V _{SSA_EQ}	eQADC ground voltage	Reference to V _{SS}	-0.3	0.3	V
V _{DDA_EQA/B}	eQADC supply voltage	Reference to V _{SSA_EQ}	-0.3	6.0	V
V _{DDA_SD}	SDADC supply voltage	Reference to V _{SSA_SD}	-0.3	6.0	V
V _{RL_SD}	SDADC ground reference	Reference to V _{SS}	-0.3	0.3	V
V _{RL_EQ}	eQADC ground reference	Reference to V _{SS}	-0.3	0.3	V
V _{RH_EQ}	eQADC alternate reference	Reference to V _{RL_EQ}	-0.3	6.0	V
V _{RH_SD}	SDADC alternate reference	Reference to V _{RL_SD}	-0.3	6.0	V
V _{REFBYPC}	eQADC reference decoupling capacitor pins	REFBYPCA25, REFBYPCA75, REFBYPCB25, REFBYPC75	-0.3	6.0	V
V _{DDA_MISC}	TRNG and IRC supply voltage	—	-0.3	6.0	V
V _{DDPWR}	SMPS driver supply pin	—	-0.3	6.0	V
V _{SSPWR}	SMPS driver supply pin	Reference to V _{SS}	-0.3	0.3	V
$V_{SS} - V_{SSA_EQ}$	V _{SSA_EQ} differential voltage	—	-0.3	0.3	V
$V_{SS} - V_{SSA_SD}$	V _{SSA_SD} differential voltage	—	-0.3	0.3	V
$V_{SS} - V_{RL_{EQ}}$	V _{RL_EQ} differential voltage	—	-0.3	0.3	V
$V_{SS} - V_{RL_{SD}}$	V _{RL_SD} differential voltage	—	-0.3	0.3	V
V _{IN}	I/O input voltage range ⁷	—	-0.3	6.0	V
		Relative to V _{DDEx} /V _{DDEHx}	—	0.3	V
		Relative to V _{SS}	-0.3	_	V
I _{INJD}	Maximum DC injection current for digital pad	Per pin, applies to all digital pins	-5	5	mA
I _{INJA}	Maximum DC injection current for analog pad	Per pin, applies to all analog pins	-5	5	mA
I _{MAXSEG} ^{8, 9}	Maximum current per I/O power segment	_	-120	120	mA
T _{STG}	Storage temperature range and non- operating times	_	-55	175	°C
STORAGE	Maximum storage time, assembled part programmed in ECU	No supply; storage temperature in range –40 °C to 60 °C	—	20	years
T _{SDR}	Maximum solder temperature ¹⁰ Pb-free package		-	260	°C

Table 1. Absolute maximum ratings

Table continues on the next page ...

- 13. For supply voltages between 3.0 V and 4.0 V there will be no guaranteed precision of ADC (accuracy/linearity). ADC will recover to a fully functional state when the voltage rises above 4.0 V.
- 14. Full device lifetime without performance degradation
- 15. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See the absolute maximum ratings table for maximum input current for reliability requirements.
- 16. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is above the supply rail, current will be injected through the clamp diode to the supply rail. For external RC network calculation, assume a typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature.
- 17. The sum of all controller pins (including both digital and analog) must not exceed 200 mA. A V_{DDEx}/V_{DDEHx} power segment is defined as one or more GPIO pins located between two V_{DDEx}/V_{DDEHx} supply pins.
- 18. The average current values given in I/O pad current specifications should be used to calculate total I/O segment current.

3.5 DC electrical specifications

NOTE

 I_{DDA_MISC} is the sum of current consumption of IRC, I_{TRNG} , and I_{STBY} in the 5 V domain. IRC current is provided in the IRC specifications.

NOTE

I/O, XOSC, EQADC, SDADC, and Temperature Sensor current specifications are in those components' dedicated sections.

Symbol	Parameter	Conditiono	Value			Unit
Symbol	Farameter	Conditions	Min	Тур	Max	Unit
I _{DD}	Operating current on the V _{DD} core logic supply ¹	LVD/HVD enabled, $V_{DD} = 1.2 V$ to 1.32 V	—	0.65	1.35	А
		LVD/HVD disabled, $V_{DD} = 1.2 V$ to 1.38 V	_	0.65	1.4	
I _{DD_PE}	Operating current on the V _{DD} supply for flash memory program/erase	_	_	—	85	mA
IDDPMC	Operating current on the V _{DDPMC} supply ²	Flash memory read	_	—	40	mA
		Flash memory program/erase	_	—	70	
		PMC only	_	—	35	
	Operating current on the V _{DDPMC} supply	Flash memory read	—	—	10	mA
	(internal core regulator bypassed)	Flash memory program/erase	_	—	40	
		PMC only	—	—	5	
I _{REGCTL}	Core regulator DC current output on V _{REGCTL} pin	—		-	25	mA
I _{STBY}	Standby RAM supply current ($T_J = 150^{\circ}C$)	1.08 V	_	—	1140	μA
		1.25 V to 5.5 V	_	—	1170	
I _{DD_PWR}	Operating current on the V _{DDPWR} supply	—	—	—	50	mA
I _{BG_REF}	Bandgap reference current consumption ³		_	—	600	μA
I _{TRNG}	True Random Number Generator current	—	—	—	2.1	mA

Table 4. DC electrical specifications

Figure 4. I/O input DC electrical characteristics definition

Symbol	Parameter	Conditions	Value			
Symbol	Farameter	Conditions	Min	Тур	Max	Unit
V _{IHCMOS_H}	Input high level CMOS (with	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	0.65 * V _{DDEx}	_	V _{DDEx} + 0.3	V
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V				
VIHCMOS	Input high level CMOS (without	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	0.55 * V _{DDEx}	_	V _{DDEx} + 0.3	V
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V				
V _{ILCMOS_H}	Input low level CMOS (with	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	-0.3	_	0.35 * V _{DDEx}	V
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V				
VILCMOS	Input low level CMOS (without	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	-0.3	_	0.4 * V _{DDEx}	V
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V				
V _{HYSCMOS}	Input hysteresis CMOS	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	0.1 * V _{DDEx}		—	V
		4.5 V < V _{DDEx} < 5.5 V				
		Input Characteristics ¹				
I _{LKG}	Digital input leakage	$V_{SS} < V_{IN} < V_{DDEx}/V_{DDEHx}$	—		2.5	μA
I _{LKG_FAST}	Digital input leakage for EBI address/control signal pads	$V_{SS} < V_{IN} < V_{DDEx}/V_{DDEHx}$	—	—	2.5	μA
I _{LKGA}	Analog pin input leakage (5 V range)	$V_{SSA_SD} < V_{IN} < V_{DDA_SD}, \\ V_{SSA_EQ} < V_{IN} < V_{DDA_EQA/B}$	—	—	220	nA
C _{IN}	Digital input capacitance	GPIO and EBI input pins	_		7	pF

Table 6. I/O input DC electrical characteris	stics
--	-------

1. For LFAST, microsecond bus, and LVDS input characteristics, see dedicated communication module sections.

Table 7 provides current specifications for weak pullup and pulldown.

Symbol	Paramotor	Conditions		Unit		
Symbol		Conditions	Min	Тур	Max	
I _{WPU}	Weak pullup current	$V_{IN} = 0.35 * V_{DDEx}$	40	—	120	μA
		4.5 V < V _{DDEx} < 5.5 V				
		$V_{IN} = 0.35 * V_{DDEx}$	25	—	80	
		3.0 V < V _{DDEx} < 3.6 V				
I _{WPD}	Weak pulldown current	V _{IN} = 0.65 * V _{DDEx}	40	—	120	μA
		4.5 V < V _{DDEx} < 5.5 V				
		$V_{IN} = 0.65 * V_{DDEx}$	25	_	80	
		3.0 V < V _{DDEx} < 3.6 V				

Table 7. I/O pullup/pulldown DC electrical characteristics

The specifications in Table 8 apply to the pins ANA0_SDA0 to ANA7, ANA16_SDB0 to ANA23_SDC3, and ANB0_SDD0 to ANB7_SDD7.

 Table 8. I/O pullup/pulldown resistance electrical characteristics

Symbol	Parameter	Conditions		Unit		
			Min	Тур	Мах	
R _{PUPD}	R _{PUPD} Analog input bias / diagnostic pullup/ pulldown resistance	200 kΩ	130	200	280	kΩ
		100 kΩ	65	100	140	
		5 kΩ	1.4	5	7.5	
Δ _{PUPD}	R _{PUPD} pullup/pulldown resistance mismatch	—			5	%

3.6.2 Output pad specifications

Figure 5 shows output DC electrical characteristics.

- 2. PCR[SRC] values refer to the setting of that register field in the SIU.
- 3. All values to be confirmed during device validation.

The following table shows the EBI CLKOUT, address, and control signal pad electrical characteristics. These pads can also be used for GPIO.

Table 10. GPIO and EBI CLKOUT, address, and control signal pad output buffer electrical characteristics (FC pads)

		Conditions ¹			Value		
Symbol	Parameter			Min	Тур	Max	Unit
	EBI Mod	e Output Specificatio	ns: valid for 3.0 V < V_1	ر DDEx < 3.6 \	/		
C _{DRV}	External bus load	PCR[DSC] = 01b		_		10	pF
	capacitance	PCR[DSC] = 10b		—	_	20	
		PCR[DSC] = 11b		—	—	30	
f _{MAX_EBI}	External bus maximum operating frequency	C _{DRV} = 10/20/30 pF		—		66	MHz
	1	GPIO and EBI Mode	Output Specification	S	<u></u>		1
I _{OH_EBI}	GPIO and external bus	V _{OH} = 0.8 * V _{DDEx}	PCR[DSC] = 11b	30	_	_	mA
	pad output high current	4.5 V < V _{DDEx} < 5.5 V	PCR[DSC] = 10b	22			-
			PCR[DSC] = 01b	13		_	
			PCR[DSC] = 00b	2	_	_	
		V _{OH} = 0.8 * V _{DDEx}	PCR[DSC] = 11b	16		_	
		3.0 V < V _{DDEx} < 3.6 V	PCR[DSC] = 10b	12	_	—	
			PCR[DSC] = 01b	7	_	_	
			PCR[DSC] = 00b	1			-
I _{OL_EBI}	GPIO and external bus	$V_{OL} = 0.2 * V_{DDEx}$	PCR[DSC] = 11b	54	_	_	mA
	pad output low current	4.5 V < V _{DDEx} < 5.5 V	PCR[DSC] = 10b	25	_	_	
			PCR[DSC] = 01b	16		_	-
			PCR[DSC] = 00b	2		_	
		$V_{OL} = 0.2 * V_{DDEx}$	PCR[DSC] = 11b	17		_	
		3.0 V < V _{DDEx} < 3.6 V	PCR[DSC] = 10b	14			
			PCR[DSC] = 01b	8			
			PCR[DSC] = 00b	1			
t _{R_F_EBI}	GPIO and external bus	PCR[DSC] = 11b	C _L = 30 pF	—	_	1.5	ns
	pad output transition		C _L = 50 pF	_		2.4	
		PCR[DSC] = 10b	C _L = 20 pF	_		1.5	
		PCR[DSC] = 01b	C _L = 10 pF	—		1.85	
		PCR[DSC] = 00b	C _L = 50 pF	_		45	
t _{PD_EBI}	GPIO and external bus	PCR[DSC] = 11b	C _L = 30 pF	—		4.2	ns
	pad output propagation		C _L = 50 pF	—		5.5	
		PCR[DSC] = 10b	C _L = 20 pF	_		4.2	1
		PCR[DSC] = 01b	C _L = 10 pF	_	_	4.4	1
		PCR[DSC] = 00b	C _L = 50 pF	—		59	1

Symbol	Paramotor	Conditions	Value			Unit
Symbol	Faranieter	Conditions	Min	Тур	Max	Onit
f _{PLL1IN}	PLL1 input clock ¹	—	38	—	78	MHz
Δ _{PLL1IN}	PLL1 input clock duty cycle ¹	—	35		65	%
f _{PLL1VCO}	PLL1 VCO frequency	—	600	_	1250	MHz
f _{PLL1PHI}	PLL1 output clock PHI	—	4.762	—	264	MHz
t _{PLL1LOCK}	PLL1 lock time	—	—		100	μs
Δ _{PLL1PHISPJ}	PLL1_PHI single period peak-to- peak jitter	f _{PLL1PHI} = 200 MHz, 6- sigma	_	_	500 ²	ps
f _{PLL1MOD}	PLL1 modulation frequency	—	—		250	kHz
δ _{PLL1MOD}	PLL1 modulation depth (when	Center spread	0.25	_	2	%
enabled)		Down spread	0.5		4	%
I _{PLL1}	PLL1 consumption	FINE LOCK state	—	—	6	mA

Table 13. PLL1 electrical characteristics

1. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock. Input characteristics are granted when using internal PLL0 or external oscillator in functional mode.

2. Noise on the V_{DD} supply with frequency content below 40 kHz and above 50 MHz is filtered by the PLL. Noise on the V_{DD} supply with frequency content in the range of 40 kHz – 50 MHz must be filtered externally to the device.

3.7.2 Oscillator electrical specifications

NOTE

All oscillator specifications in Table 14 are valid for $V_{DDEH6} = 3.0 \text{ V}$ to 5.5 V.

Table 14. External oscillator (XOSC) electrical specifications

Symbol	Parameter	Conditions	Va	Unit	
Symbol		Conditions	Min	Мах	Unit
f _{XTAL}	Crystal frequency range	_	8	40	MHz
t _{cst}	Crystal start-up time ^{1, 2}	T _J = 150 °C	_	5	ms
t _{rec}	Crystal recovery time ³		_	0.5	ms
VIHEXT	EXTAL input high voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	V _{REF} + 0.6	_	V
V _{ILEXT}	EXTAL input low voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	_	V _{REF} – 0.6	V
C _{S_EXTAL}	Total on-chip stray capacitance on EXTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.1	2.8	
C _{S_XTAL}	Total on-chip stray capacitance on XTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.2	2.9	
9 _m	Oscillator transconductance ⁵	Low	3	10	mA/V
		Medium	10	27	
		High	12	35	

Table continues on the next page ...

load_cap_sel[4:0] from DCF record	Load capacitance ^{1, 2} (pF)
01110	14.9
01111	15.8

Table 15. Selectable load capacitance (continued)

- 1. Values are determined from simulation across process corners and voltage and temperature variation. Capacitance values vary ±12% across process, 0.25% across voltage, and no variation across temperature.
- 2. Values in this table do not include the die and package capacitances given by C_{S_XTAL}/C_{S_EXTAL} in Table 14.

Figure 7. Test circuit

Table 16. Internal RC (IRC) oscillator electrical specifications

Symbol	Parameter	Conditions	Value			Unit
Symbol	Falanetei	Conditions	Min	Тур	Max	
f _{Target}	IRC target frequency	—	—	16	—	MHz
δf _{var_T}	IRC frequency variation	T < 150 °C	-8	—	8	%

3.8 Analog-to-Digital Converter (ADC) electrical specifications

3.10.1 LFAST interface timing diagrams

Figure 8. LFAST and MSC/DSPI LVDS timing definition

Part name	Part type	Nominal	Description
Q1	p-MOS	3 A - 20 V	SQ2301ES / FDC642P or equivalent: low threshold p-MOS, Vth < 2.0 V, Rdson @ 4.5 V < 100 m $\Omega,$ Cg < 5 nF
D1	Schottky	2 A - 20 V	SS8P3L or equivalent: Vishay™ low Vf Schottky diode
L	Inductor	3–4 µH - 1.5 A	Buck shielded coil low ESR
CI	Capacitor	22 µF - 20 V	Ceramic capacitor, total ESR < 70 m Ω
CE	Capacitor	0.1 µF - 7 V	Ceramic—one capacitor for each V _{DD} pin
CV	Capacitor	22 μF - 20 V	Ceramic V_{DDPMC} (optional 0.1 μ F capacitor in parallel)
CD	Capacitor	22 µF - 20 V	Ceramic supply decoupling capacitor, ESR < 50 m Ω (as close as possible to the p-MOS source)
R	Resistor	2.0-4.7 kΩ	Pullup for power p-MOS gate
СВ	Capacitor	22 µF - 20 V	Ceramic, connect 100 nF capacitor in parallel (as close as possible to package to reduce current loop from $V_{\rm DDPWR}$ to $V_{\rm SSPWR})$

Table 26. Recommended operating characteristics

The following diagram shows the SMPS configuration connection.

Figure 13. SMPS configuration

NOTE

The REGSEL pin is tied to V_{DDPMC} to select SMPS. If REGSEL is 0, the chip boots with the linear regulator.

See Power sequencing requirements for details about V_{DDPMC} and $V_{\text{DDPWR}}.$

3.12 Flash memory specifications

3.12.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

Symbol	Characteristic ¹	Typ ²	Factory Programming ^{3, 4}		F	Unit		
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifeti	me Max ⁶	
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{dwpgm}	Doubleword (64 bits) program time	43	100	150	55	500		μs
t _{ppgm}	Page (256 bits) program time	73	200	300	108	500		μs
t _{qppgm}	Quad-page (1024 bits) program time	268	800	1,200	396	2,000		μs
t _{16kers}	16 KB Block erase time	168	290	320	250	1,000		ms
t _{16kpgm}	16 KB Block program time	34	45	50	40	1,000		ms
t _{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t _{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		ms
t _{256kers}	256 KB Block erase time	884	1,520	2,030	1,080	4,000	_	ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000	_	ms

 Table 30.
 Flash memory program and erase specifications

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

- 3. Conditions: \leq 150 cycles, nominal voltage.
- 4. Plant Programing times provide guidance for timeout limits used in the factory.
- 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.
- 6. Conditions: $-40^{\circ}C \le T_J \le 150^{\circ}C$, full spec voltage.

Symbol	Characteristic	Min	Typical	Max	Units
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.	_	_	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.		16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.	_	45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP		_	5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.		_	80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	_	20.42 plus four system clock periods	μs

Table 33. Flash memory AC timing specifications (continued)

3.12.6 Flash memory read wait-state and address-pipeline control settings

The following table describes the recommended settings of the Flash Memory Controller's PFCR1[RWSC] and PFCR1[APC] fields at various flash memory operating frequencies, based on specified intrinsic flash memory access times of the C55FMC array at 150°C.

 Table 34.
 Flash memory read wait-state and address-pipeline control combinations

Flash memory frequency	RWSC	APC	Flash memory read latency on mini-cache miss (# of f _{PLATF} clock periods)	Flash memory read latency on mini-cache hit (# of f _{PLATF} clock periods)
0 MHz < f _{PLATF} ≤ 33 MHz	0	0	3	1
$33 \text{ MHz} < f_{\text{PLATF}} \le 100 \text{ MHz}$	2	1	5	1

Table continues on the next page...

Figure 21. JTAG JCOMP timing

Table 37. Nexus debug port timing¹ (continued)

Spec	Characteristic	Symbol	Min	Max	Unit
8	Absolute minimum TCK cycle time ⁴ (TDO sampled on posedge of TCK)	t _{TCYC}	40 ⁵	_	ns
	Absolute minimum TCK cycle time ⁴ (TDO sampled on negedge of TCK)		20 ⁵	_	
9	TCK Duty Cycle	t _{TDC}	40	60	%
10	TDI, TMS Data Setup Time ⁶	t _{NTDIS} , t _{NTMSS}	8	—	ns
11	TDI, TMS Data Hold Time ⁶	T _{NTDIH} , t _{NTMSH}	5	—	ns
12	TCK Low to TDO Data Valid ⁶	t _{NTDOV}	0	18	ns
13	RDY Valid to MCKO ⁷	—	—	—	
14	TDO hold time after TCLK low ⁶	t _{NTDOH}	1	_	ns

1. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at V_{DD} = 1.08 V to 1.32 V, V_{DDE} = 3.0 V to 3.6 V, V_{DD33} and V_{DDSYN} = 3.0 V to 3.6 V, T_A = T_L to T_H , and C_L = 30 pF with DSC = 0b10.

- 2. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
- 3. This is a functionally allowable feature. However, it may be limited by the maximum frequency specified by the absolute minimum TCK period specification.
- 4. This value is TDO propagation time plus 2 ns setup time to sampling edge.
- 5. This may require a maximum clock speed that is less than the maximum functional capability of the design depending on the actual system frequency being used.
- 6. Applies to TMS pin timing for the bit frame when using the 1149.7 advanced protocol.
- 7. The RDY pin timing is asynchronous to MCKO. The timing is guaranteed by design to function correctly.

Figure 23. Nexus timings

 Table 38. Bus operation timing¹ (continued)

Sman	Characteristic	Symbol	66 MHz (Ext. bus freq.) ^{2, 3}		Unit	Notos	
Spec	Characteristic	Symbol	Min	Max	Unit	NOTES	
5	D_CLKOUT Posedge to Output Signal Invalid or High Z (Hold Time)	t _{COH}	1.0/1.5		ns	Hold time selectable via SIU_ECCR[EBTS] bit:	
	D ADD[9:30]					EBIS = 0: 1.0 ns	
	D BDIP					EBIS = 1: 1.5 ns	
	D CS[0:3]						
	D DAT[0:15]						
	D OE						
	D RD WR						
	D TA						
	D TS						
	D WE[0:3]/D BE[0:3]						
6	D_CLKOUT Posedge to Output Signal Valid (Output Delay)	t _{COV}	_	8.5/9.0	ns	Output valid time selectable via SIU_ECCR[EBTS] bit:	
	D_ADD[9:30]					EBTS = 0: 8.5 ns	
	D_BDIP					EBTS = 1: 9.0 ns	
	D_CS[0:3]						
	D_DAT[0:15]			11.5		_	
	D_OE			8.5/9.0		Output valid time selectable via	
	D_RD_WR					SIU_ECCR[EBTS] bit:	
	D_TA					EBTS = 0: 8.5 ns	
	D_TS					EBTS = 1: 9.0 ns	
	D_WE[0:3]/D_BE[0:3]						
7	Input Signal Valid to D_CLKOUT Posedge (Setup Time)	t _{CIS}	7.5		ns	_	
	D_ADD[9:30]						
	D_DAT[0:15]						
	D_RD_WR						
	D_TA						
	D_TS						
8	D_CLKOUT Posedge to Input Signal Invalid (Hold Time)	t _{СІН}	1.0		ns	—	
	D_ADD[9:30]						
	D_DAT[0:15]						
	D_RD_WR						
	D_TA						
	D_TS						
9	D_ALE Pulse Width	t _{APW}	6.5	_	ns	The timing is for Asynchronous external memory system.	

Table continues on the next page...

Table 43. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1^{1} (continued)

ш	Symbol	Characteristic	Condition	2	Value ³		
#	Symbol	Characteristic	Pad drive ⁴	Load (C _L)	Min	Max	
3	t _{ASC}	After SCK delay	PCR[SRC]=11b	PCS: 0 pF	$(M^7 \times t_{SYS}^{, 6}) - 35$	—	ns
				SCK: 50 pF			
			PCR[SRC]=10b	PCS: 0 pF	$(M^7 \times t_{SYS}^{, 6}) - 35$	_	
				SCK: 50 pF			
			PCR[SRC]=01b	PCS: 0 pF	$(M^7 \times t_{SYS}^{, 6}) - 35$	_	
				SCK: 50 pF			
			PCS: PCR[SRC]=01b	PCS: 0 pF	$(M^7 \times t_{SYS}, 6) - 35$	_	
			SCK: PCR[SRC]=10b	SCK: 50 pF			
4	t _{SDC}	SCK duty cycle ⁸	PCR[SRC]=11b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=10b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	1
			PCR[SRC]=01b	0 pF	1/2t _{SCK} – 5	1/2t _{SCK} + 5	
			PCS strob	e timing			
5	t _{PCSC}	PCSx to PCSS time ⁹	PCR[SRC]=10b	25 pF	13.0	—	ns
6	t _{PASC}	PCSS to PCSx time ⁹	PCR[SRC]=10b	25 pF	13.0	_	ns
		1	SIN setu	ıp time	I	1	
7	t _{SUI}	SIN setup time to	PCR[SRC]=11b	25 pF	29.0	_	ns
		SCK	PCR[SRC]=10b	50 pF	31.0	_	
			PCR[SRC]=01b	50 pF	62.0	—	
			SIN hole	d time			
8	t _{HI}	SIN hold time from	PCR[SRC]=11b	0 pF	-1.0		ns
		SCK	PCR[SRC]=10b	0 pF	-1.0		
			PCR[SRC]=01b	0 pF	-1.0		
			SOUT data valid tim	e (after SCK ed	dge)		
9	t _{SUO}	SOUT data valid	PCR[SRC]=11b	25 pF	—	7.0	ns
		time from SCK''	PCR[SRC]=10b	50 pF	—	8.0	
			PCR[SRC]=01b	50 pF	—	18.0	
		1	SOUT data hold time	e (after SCK ec	lge)		
10	t _{HO}	SOUT data hold	PCR[SRC]=11b	25 pF	-9.0	—	ns
		ume alter SCK	PCR[SRC]=10b	50 pF	-10.0	—	
			PCR[SRC]=01b	50 pF	-21.0	—	

1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

- 2. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.
- 3. All timing values for output signals in this table are measured to 50% of the output voltage.
- 4. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 5. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous

SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).

- t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min t_{SYS} = 10 ns).
- 7. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 8. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 9. PCSx and PCSS using same pad configuration.
- 10. Input timing assumes an input slew rate of 1 ns (10% 90%) and uses TTL / Automotive voltage thresholds.
- 11. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Figure 32. DSPI CMOS master mode – classic timing, CPHA = 0

Figure 35. DSPI CMOS master mode – modified timing, CPHA = 0

Figure 36. DSPI CMOS master mode – modified timing, CPHA = 1

3.13.9.1.4 DSPI Master Mode – Output Only

Table 46. DSPI LVDS master timing — output only — timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock^{1, 2}

щ	Symbol	Characteristic	Condit	ion ³	Va	Unit	
#	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Max	Onit
1	t _{SCK}	SCK cycle time	LVDS	15 pF to 50 pF differential	25		ns
2	t _{CSV}	PCS valid after SCK ⁶	PCR[SRC]=11b	25 pF	_	8	ns
		(SCK with 50 pF differential load cap.)	PCR[SRC]=10b	50 pF	_	12	ns
3	t _{CSH}	PCS hold after SCK ⁶	PCR[SRC]=11b	0 pF	-4.0	_	ns
		(SCK with 50 pF differential load cap.)	PCR[SRC]=10b	0 pF	-4.0	_	ns
4	t _{SDC}	SCK duty cycle (SCK with 50 pF differential load cap.)	LVDS	15 pF to 50 pF differential	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			SOUT data valid time	(after SCK edge)			
5	t _{SUO}	SOUT data valid time from SCK ⁷	LVDS	15 pF to 50 pF differential		6	ns
		•	SOUT data hold time	(after SCK edge)		•	
6	t _{HO}	SOUT data hold time after SCK ⁷	LVDS	15 pF to 50 pF differential	-7.0		ns

- 1. All DSPI timing specifications apply to pins when using LVDS pads for SCK and SOUT and CMOS pad for PCS with pad driver strength as defined. Timing may degrade for weaker output drivers.
- 2. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.
- 3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.
- 4. All timing values for output signals in this table are measured to 50% of the output voltage.
- 5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.
- 7. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Table 47. DSPI CMOS master timing – output only – timed serial bus modeTSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock $^{1, 2}$

#	Symbol	Characteristic	Condition	3	Va	lue ⁴	Unit
"	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Max	
1	t _{SCK}	SCK cycle time	PCR[SRC]=11b	25 pF	33.0	—	ns
			PCR[SRC]=10b	50 pF	80.0	_	ns
			PCR[SRC]=01b	50 pF	200.0	—	ns
2	t _{CSV}	PCS valid after SCK ⁶	PCR[SRC]=11b	25 pF	7	_	ns
			PCR[SRC]=10b	50 pF	8	_	ns
			PCR[SRC]=01b	50 pF	18		ns
			PCS: PCR[SRC]=01b	50 pF	45	—	ns
			SCK: PCR[SRC]=10b				

Table continues on the next page ...

Document revision history

Part number	Package description	Speed (MHz) ²	Operating temperature ³		
	Fackage description	Speed (MHZ)	Min (T _L)	Max (T _H)	
SPC5777CCK3MME3	MPC5777C 416 package	264	–40 °C	125 °C	
	Lead-free (Pb-free)				
SPC5777CK3MME3	MPC5777C 416 package	264	_40 °C	125 °C	
	Lead-free (Pb-free)				
SPC5777CCK3MMO3	MPC5777C 516 package	264	–40 °C	125 °C	
	Lead-free (Pb-free)				
SPC5777CK3MMO3	MPC5777C 516 package	264	–40 °C	125 °C	
	Lead-free (Pb-free)				

 Table 56.
 Example orderable part numbers

1. All packaged devices are PPC5777C, rather than MPC5777C or SPC5777C, until product qualifications are complete. The unpackaged device prefix is PCC, rather than SCC, until product qualification is complete.

Not all configurations are available in the PPC parts.

- 2. For the operating mode frequency of various blocks on the device, see Table 3.
- 3. The lowest ambient operating temperature is referenced by T_L ; the highest ambient operating temperature is referenced by T_H .

6 Document revision history

The following table summarizes revisions to this document since the previous release.

Table 57. Revision history

Revision	Date	Description of changes
11	04/2017	 In Figure 47 of Ordering information, added codes and firmware version information in definition of "Optional features field" At end of line for (<i>blank</i>), added "version 2.07" Added line for A At end of line for R, added "version 2.08" At end of line for C, added "version 2.07" Added line for D At end of line for L, added "version 2.08"

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2013–2017 NXP B.V.

Document Number MPC5777C Revision 11, 04/2017

