

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z7
Core Size	32-Bit Tri-Core
Speed	264MHz
Connectivity	CANbus, EBI/EMI, Ethernet, FlexCANbus, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	8MB (8M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16b Sigma-Delta, eQADC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	516-BGA
Supplier Device Package	516-MAPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5777cck3mmo3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Block diagram

The following figure shows a top-level block diagram of the MPC5777C. The purpose of the block diagram is to show the general interconnection of functional modules through the crossbar switch.

Figure 1. MPC5777C block diagram

2 Pinouts

2.1 416-ball MAPBGA pin assignments

Figure 2 shows the 416-ball MAPBGA pin assignments.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
_		VDD	RSTOUT	ANAO_SDA O	ANA4	ANA9	ANA11	ANA15	VDDA_SD	REFBYPCA 25	VRL_SD	VRH_SD	AN28	AN29	AN36	VDDA_E Q	REFBYPCB 25	VRL_EQ	VRH_EQ	ANB5_SDD 5	ANB9	ANB12	ANB18	ANB21	VSS	
	VDDEH1	VSS	VDD	TEST	ANA1_SDA 1	ANA5	ANA10	ANA14	VDDA_MISC	VSSA_SD	REFBYPCA 75	AN24	AN27	AN30	AN32	VDDA_E Q	VSSA_EQ	REFBYPCB 75	ANB4_SDD 4	ANB8	ANB10	ANB13	ANB19	ANB22	VSS	VSS
1	ETPUA30	ETPUA31	VSS	VDD	ANA2_SDA 2	ANA6	ANA7	ANA13	ANA17_SDB 1	ANA19_SD B3	ANA21_SD C1	ANA22_SD C2	AN25	AN31	AN34	AN39	AN37	ANBO_SDD O	ANB7_SDD 7	ANB6_SDD 6	ANB11	ANB15	ANB20	VSS	ETPUCO	ETPUC1
1	ETPUA27	ETPUA28	ETPUA29	VSS	VDD	ANA3_SDA 3	ANAS	ANA12	ANA16_SDB 0	ANA18_SD B2	ANA20_SD CO	ANA23_SD C3	AN26	AN33	AN35	AN38	ANB1_SDD 1	ANB2_SDD 2	ANB3_SDD 3	ANB14	ANB16	ANB17	VSS	SENT2_A	ETPUC2	ETPUC3
	ETPUA23	ETPUA24	ETPUA25	ETPUA26	VSS	VDD	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	ANB23	VSS	VSS	VDDEH7	ETPUC4	ETPUC5	ETPUC6
1	ETPUA19	ETPUA20	ETPUA21	ETPUA22	VSS	VDDE8		VDDE8		VDDE8	VDDE8		VSS	VSS		VDDE10	VDDE10		VDDE10		VDDE10	TCRCLKC	ETPUC7	ETPUC8	ETPUC9	ETPUC10
1	ETPUA11	ETPUA13	ETPUA15	ETPUA17	ETPUA18																	ETPUC11	ETPUC12	ETPUC13	ETPUC14	ETPUC15
	ETPUAS	ETPUA7	ETPUA8	ETPUA3	ETPUA14	ETPUA16															ETPUC19	ETPUC16	ETPUC17	ETPUC18	ETPUC20	ETPUC21
	ETPUA1	ETPUA2	ETPUA9	ETPUA4	ETPUA12						-		-	-		-		_				ETPUC22	ETPUC23	ETPUC24	ETPUC26	ETPUC27
	TXDB	TXDA	RXDA	TCRCLKA	ETPUA6	ETPUA10				VSS	VSS	VSS	VSS	VSS	VSS	vss	VSS				ETPUC25	ETPUC28	ETPUC29	ETPUC30	ETPUC31	D_DAT15
	PLLCFG1	PLLCFG2	BOOTCFG1	BOOTCFGO	RXDB	ETPUAD				VSS	VSS	VSS	VSS	VSS	VSS	vss	VSS				NC	D_DAT14	D_DAT13	D_DAT12	D_DAT11	D_DAT10
l	NC	D_BDIP	PLLCFG0	VSTBY	WKPCFG					VSS	VSS	VSS	VSS	vss	VSS	VSS	VSS					D_DAT9	D_DAT8	D_DAT7	D_DAT5	VDDEH7
	D_WEO	D_WE2	D_WE3	VDD	RESET	VDDE8				VDDE2	VSS	VSS	VSS	vss	VSS	vss	VSS				VDDE10	D_DAT6	VDDEH6	D_DAT2	D_DAT3	D_DAT4
	D_ADD9	D_ADD10	D_ADD11	VDDEH1	D_WE1	NC				VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS				VDDE10	ETPUB13	D_OE	D_ALE	D_DATO	D_DAT1
1	D_ADD12	D_ADD13	D_ADD14	D_ADD15	D_ADD16					VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS					ETPUB9	ETPUB12	ETPUB14	ETPUB15	D_RD_WR
	VDDE2	D_ADD18	D_ADD19	D_ADD20	D_ADD17	D_CS3				VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS				ETPUB17	ETPUB3	ETPUB7	ETPUB8	ETPUB10	ETPUB11
	D_CS2	JCOMP	RDY	мско	MSEO1	MSEO0				VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS				ETPUB23	ETPUB1	ETPUB2	ETPUB4	ETPUB5	ETPUB6
	EVTI	EVTO	MD00	MDO2	MDO3																	ETPUB21	ETPUB22	ETPUB16	TCRCLKB	ETPUB0
	MDO4	MDO5	MDO6	VDDE2	MDO8	MDO1															ETPUB25	ETPUB29	REGSEL	ETPUB20	ETPUB19	ETPUB18
	MDO7	MDO9	MDO10	MDO11	MDO12																	ETPUB31	ETPUB26	ETPUB27	ETPUB24	REGCTL
	MDO13	MDO14	MDO15	NC	VDDE8	VSS		PCSA5		SOUTB	NC		VDDE9	NC		EMIOS23	EMIOS31		CNRXB		VSS	VDDE10	VDDPMC	ETPUB28	VDDPWR	VSSSYN
	TDO	тск	TMS	VDD	VSS	VDDE9	VDDE9	SCKA	SINB	D_CS1	D_ADD21	D_ADD29	EMIOS1	EMIOS11	EMIOS17	EMIOS19	EMIOS29	VDDE9	VDDE9	VDDE9	VDDE9	VSS	VDD	ETPUB30	VSSPWR	EXTAL
	VDDE2	TDI	VDD	VSS	FEC_TXCLK _REFCLK	PCSA1	SOUTA	SCKB	PCSB3	VDDEH3	VDDEH4	VDD	EMIOSO	EMIOS8	EMIOS13	EMIOS22	EMIOS24	EMIOS28	CNTXB	CNRXD	VDDEH5	PCSC1	VSSPMC	VDD	VDDEH6	XTAL
	ENGCLK	VDD	VSS	FEC_TXD0	FEC_TXD1	PCSAD	PCSA3	PCSB2	D_CSO	D_ADD22	D_ADD25	D_ADD28	EMIOS2	EMIOS7	EMIOS12	EMIOS16	EMIOS18	EMIOS27	CNRXA	CNTXD	SCKC	RXDC	PCSC3	VSS	VDD	VDDFLA
	VDD	VSS	FEC_RX_D V	FEC_TX_EN	PCSA4	PCSB5	SINA	PCSB1	D_TS	D_ADD23	D_ADD26	D_ADD30	EMIOS3	EMIOS6	EMIOS10	EMIOS15	EMIOS21	EMIOS26	CNTXA	CNRXC	PCSCO	SINC	PCSC2	PCSC5	VSS	VDD
		VDDE2A	FEC_RXD0	FEC_RXD1	VDDEH3A	PCSA2	PCSB4	PCSBO	D_TA	D_ADD24	D_ADD27	D_CLKOUT	EMIOS4	EMIOS5	EMIOS9	EMIOS20	EMIOS14	EMIOS25	EMIOS30	CNTXC	SOUTC	VDDEH4	TXDC	PCSC4	VDDEH5	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Figure 3. MPC5777C 516-ball MAPBGA (full diagram)

The following information includes details about power considerations, DC/AC electrical characteristics, and AC timing specifications.

3.1 Absolute maximum ratings

Absolute maximum specifications are stress ratings only. Functional operation at these maxima is not guaranteed.

CAUTION

Stress beyond listed maxima may affect device reliability or cause permanent damage to the device.

See Operating conditions for functional operation specifications.

Electrical characteristics

O-multiple	Demonstern	O a se aliti a se a		Value		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{STBY_BO}	Standby RAM brownout flag trip point voltage	—	-	—	0.9 ¹²	V
V _{RL_SD}	SDADC ground reference voltage	—		V _{SSA_SD}		V
V _{DDA_SD}	SDADC supply voltage ¹³	—	4.5	—	5.5	V
V _{DDA_EQA/B}	eQADC supply voltage	—	4.75	_	5.25	V
V _{RH_SD}	SDADC reference	-	4.5	V _{DDA_SD}	5.5	V
$V_{DDA_SD} - V_{RH_SD}$	SDADC reference differential voltage	—	—	—	25	mV
$V_{SSA_SD} - V_{RL_SD}$	V _{RL_SD} differential voltage	-	-25	—	25	mV
V _{RH_EQ}	eQADC reference	-	4.75	—	5.25	V
V _{DDA_EQA/B} – V _{RH_EQ}	eQADC reference differential voltage	—	_	—	25	mV
$V_{SSA_EQ} - V_{RL_EQ}$	V _{RL_EQ} differential voltage	-	-25	—	25	mV
$V_{SSA_{EQ}} - V_{SS}$	V _{SSA_EQ} differential voltage	—	-25	—	25	mV
$V_{SSA_SD} - V_{SS}$	V _{SSA_SD} differential voltage	—	-25	—	25	mV
V _{RAMP}	Slew rate on power supply pins	—	_	—	100	V/ms
		Current				_
I _{IC}	DC injection current (per pin) ^{14,} 15, 16	Digital pins and analog pins	-3.0	—	3.0	mA
I _{MAXSEG}	Maximum current per power segment ^{17, 18}	—	-80	—	80	mA

Table 3.	Device o	perating	conditions ((continued))
----------	-----------------	----------	--------------	-------------	---

- Maximum operating frequency is applicable to the computational cores and platform for the device. See the Clocking chapter in the MPC5777C Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device.
- 2. If frequency modulation (FM) is enabled, the maximum frequency still cannot exceed this value.
- 3. The maximum specification for operating junction temperature T_J must be respected. Thermal characteristics provides details.
- 4. Core voltage as measured on device pin to guarantee published silicon performance
- 5. During power ramp, voltage measured on silicon might be lower. Maximum performance is not guaranteed, but correct silicon operation is guaranteed. See power management and reset management for description.
- 6. Maximum core voltage is not permitted for entire product life. See absolute maximum rating.
- 7. When internal LVD/HVDs are disabled, external monitoring is required to guarantee device operation. Failure to monitor externally supply voltage may result in erroneous operation of the device.
- 8. This LVD/HVD disabled supply voltage condition only applies after LVD/HVD are disabled by the application during the reset sequence, and the LVD/HVD are active until that point.
- 9. This spec does not apply to V_{DDEH1} .
- 10. When internal flash memory regulator is used:
 - Flash memory read operation is supported for a minimum V_{DDPMC} value of 3.15 V.
 - Flash memory read, program, and erase operations are supported for a minimum V_{DDPMC} value of 3.5 V.

When flash memory power is supplied externally (V_{DDPMC} shorted to V_{DDFLA}): The V_{DDPMC} range must be within the limits specified for LVD_FLASH and HVD_FLASH monitoring. Table 29 provides the monitored LVD_FLASH and HVD_FLASH limits.

- 11. If the standby RAM regulator is not used, the V_{STBY} supply input pin must be tied to ground.
- 12. V_{STBY_BO} is the maximum voltage that sets the standby RAM brownout flag in the device logic. The minimum voltage for RAM data retention is guaranteed always to be less than the V_{STBY_BO} maximum value.

- 13. For supply voltages between 3.0 V and 4.0 V there will be no guaranteed precision of ADC (accuracy/linearity). ADC will recover to a fully functional state when the voltage rises above 4.0 V.
- 14. Full device lifetime without performance degradation
- 15. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See the absolute maximum ratings table for maximum input current for reliability requirements.
- 16. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is above the supply rail, current will be injected through the clamp diode to the supply rail. For external RC network calculation, assume a typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature.
- 17. The sum of all controller pins (including both digital and analog) must not exceed 200 mA. A V_{DDEx}/V_{DDEHx} power segment is defined as one or more GPIO pins located between two V_{DDEx}/V_{DDEHx} supply pins.
- 18. The average current values given in I/O pad current specifications should be used to calculate total I/O segment current.

3.5 DC electrical specifications

NOTE

 I_{DDA_MISC} is the sum of current consumption of IRC, I_{TRNG} , and I_{STBY} in the 5 V domain. IRC current is provided in the IRC specifications.

NOTE

I/O, XOSC, EQADC, SDADC, and Temperature Sensor current specifications are in those components' dedicated sections.

Symbol	Parameter	Conditions	Value Min Typ			Unit
Symbol	Farameter	Conditions	Min			
I _{DD}	Operating current on the V_{DD} core logic supply ¹	LVD/HVD enabled, V_{DD} = 1.2 V to 1.32 V	_	0.65	1.35	A
		LVD/HVD disabled, $V_{DD} = 1.2 V$ to 1.38 V		0.65	1.4	
I _{DD_PE}	Operating current on the V _{DD} supply for flash memory program/erase	-	_	—	85	mA
I _{DDPMC}	Operating current on the V _{DDPMC} supply ²	Flash memory read		—	40	mA
		Flash memory program/erase	_	—	70	
		PMC only		—	35	1
	Operating current on the V _{DDPMC} supply	Flash memory read	_	—	10	mA
	(internal core regulator bypassed)	Flash memory program/erase	_	—	40	
		PMC only	_	—	5	1
IREGCTL	Core regulator DC current output on V _{REGCTL} pin	-	_	-	25	mA
I _{STBY}	Standby RAM supply current ($T_J = 150^{\circ}C$)	1.08 V		—	1140	μA
		1.25 V to 5.5 V	_	—	1170	
I _{DD_PWR}	Operating current on the V _{DDPWR} supply	-	—	—	50	mA
I _{BG_REF}	Bandgap reference current consumption ³			—	600	μA
I _{TRNG}	True Random Number Generator current	-	_	—	2.1	mA

Table 4. DC electrical specifications

- 2. PCR[SRC] values refer to the setting of that register field in the SIU.
- 3. All values to be confirmed during device validation.

The following table shows the EBI CLKOUT, address, and control signal pad electrical characteristics. These pads can also be used for GPIO.

Table 10. GPIO and EBI CLKOUT, address, and control signal pad output buffer electrical characteristics (FC pads)

Symbol	Parameter	Conditions ¹			Value		Un
Symbol	Parameter	Conditions		Min	Тур	Max	7 "
	EBI Mod	e Output Specification	ns: valid for 3.0 V < \	V _{DDEx} < 3.6 V	1		
C _{DRV}	External bus load	PCR[DSC] = 01b		_		10	pF
	capacitance	PCR[DSC] = 10b		_		20	
		PCR[DSC] = 11b		_		30	
f _{MAX_EBI}	External bus maximum operating frequency	C _{DRV} = 10/20/30 pF		-	_	66	MH
	4	GPIO and EBI Mode	Output Specificatio	ns		1	
I _{OH_EBI}	GPIO and external bus	V _{OH} = 0.8 * V _{DDEx}	PCR[DSC] = 11b	30		_	m
	pad output high current	4.5 V < V _{DDEx} < 5.5 V	PCR[DSC] = 10b	22		_	
			PCR[DSC] = 01b	13		—	1
			PCR[DSC] = 00b	2	_	—	1
		V _{OH} = 0.8 * V _{DDEx}	PCR[DSC] = 11b	16	_	—	1
		3.0 V < V _{DDEx} < 3.6 V	PCR[DSC] = 10b	12		_	
			PCR[DSC] = 01b	7		_	
			PCR[DSC] = 00b	1		_	
I _{OL_EBI}	GPIO and external bus	V _{OL} = 0.2 * V _{DDEx}	PCR[DSC] = 11b	54		_	m
	pad output low current	4.5 V < V _{DDEx} < 5.5 V	PCR[DSC] = 10b	25		_	
			PCR[DSC] = 01b	16		_	
			PCR[DSC] = 00b	2		_	
		$V_{OL} = 0.2 * V_{DDEx}$	PCR[DSC] = 11b	17		_	
		3.0 V < V _{DDEx} < 3.6 V	PCR[DSC] = 10b	14	_	_	
			PCR[DSC] = 01b	8		_	
			PCR[DSC] = 00b	1	_	—	1
t _{R_F_EBI}	GPIO and external bus	PCR[DSC] = 11b	C _L = 30 pF	—	_	1.5	n
	pad output transition		C _L = 50 pF			2.4	1
	time (rise/fall)	PCR[DSC] = 10b	C _L = 20 pF		_	1.5	1
		PCR[DSC] = 01b	C _L = 10 pF		_	1.85	1
		PCR[DSC] = 00b	C _L = 50 pF			45	1
t _{PD_EBI}	GPIO and external bus	PCR[DSC] = 11b	C _L = 30 pF			4.2	n
	pad output propagation		C _L = 50 pF			5.5	1
	delay time	PCR[DSC] = 10b	C _L = 20 pF			4.2	1
		PCR[DSC] = 01b	C _L = 10 pF	—	_	4.4	1
		PCR[DSC] = 00b	C _L = 50 pF			59	1

Symbol	Parameter	Conditions		Value		Unit
Symbol	Farameter	Conditions	Min	Тур	Max	
f _{PLL1IN}	PLL1 input clock ¹	—	38	_	78	MHz
Δ _{PLL1IN}	PLL1 input clock duty cycle ¹	—	35	—	65	%
f _{PLL1VCO}	PLL1 VCO frequency	—	600	_	1250	MHz
f _{PLL1PHI}	PLL1 output clock PHI	—	4.762	—	264	MHz
t _{PLL1LOCK}	PLL1 lock time	—	—	—	100	μs
Δ _{PLL1PHISPJ}	PLL1_PHI single period peak-to- peak jitter	f _{PLL1PHI} = 200 MHz, 6- sigma		_	500 ²	ps
f _{PLL1MOD}	PLL1 modulation frequency	—	_	_	250	kHz
δ _{PLL1MOD}	PLL1 modulation depth (when	Center spread	0.25	_	2	%
	enabled)	Down spread	0.5	—	4	%
I _{PLL1}	PLL1 consumption	FINE LOCK state	—	—	6	mA

Table 13. PLL1 electrical characteristics

1. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock. Input characteristics are granted when using internal PLL0 or external oscillator in functional mode.

2. Noise on the V_{DD} supply with frequency content below 40 kHz and above 50 MHz is filtered by the PLL. Noise on the V_{DD} supply with frequency content in the range of 40 kHz – 50 MHz must be filtered externally to the device.

3.7.2 Oscillator electrical specifications

NOTE

All oscillator specifications in Table 14 are valid for $V_{DDEH6} = 3.0 \text{ V}$ to 5.5 V.

Table 14. External oscillator (XOSC) electrical specifications

Symbol	Parameter	Conditions	Va	alue	Unit
Symbol	Farameter	Conditions	Min	Мах	
f _{XTAL}	Crystal frequency range	—	8	40	MHz
t _{cst}	Crystal start-up time ^{1, 2}	T _J = 150 °C	—	5	ms
t _{rec}	Crystal recovery time ³	—	—	0.5	ms
VIHEXT	EXTAL input high voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	V _{REF} + 0.6	_	V
V _{ILEXT}	EXTAL input low voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	—	V _{REF} – 0.6	V
C _{S_EXTAL}	Total on-chip stray capacitance on EXTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.1	2.8	
C _{S_XTAL}	Total on-chip stray capacitance on XTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.2	2.9	
9 _m	Oscillator transconductance ⁵	Low	3	10	mA/V
		Medium	10	27	1
		High	12	35	

Table continues on the next page ...

Symbol	Deremeter	Conditions		Value		Lin
Symbol	Parameter	Conditions	Min	Тур	Max	Un
SNR _{DIFF150}	Signal to noise ratio in	4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	80	_	_	dB
	differential mode, 150 Ksps output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 1				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	77	_	_	
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 2				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	74	_	—	
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 4				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	71	_	—	
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 8				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	68	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				
SNR _{DIFF333}		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	71	-	—	dE
	differential mode, 333 Ksps output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 1				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	70	-	—	
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 2				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	68	-	_	
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 4				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	65	_	_	
	,	$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 8				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	62	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				

Table 18. SDADC electrical specifications (continued)

Table continues on the next page ...

Table 20. LVDS pad startup and receiver electrical characteristics¹ (continued)

Symbol	Parameter	Conditions		Value		Unit
Symbol	Falameter	Conditions	Min	Тур	Max	
t _{PD2NM_TX}	Transmitter startup time (power down to Normal mode) ⁵	—	-	0.4	2.75	μs
t _{SM2NM_TX}	Transmitter startup time (Sleep mode to Normal mode) ⁶	Not applicable to the MSC/DSPI LVDS pad	-	0.2	0.5	μs
t _{PD2NM_RX}	Receiver startup time (power down to Normal mode) ⁷	—	—	20	40	ns
t _{PD2SM_RX}	Receiver startup time (power down to Sleep mode) ⁸	Not applicable to the MSC/DSPI LVDS pad	-	20	50	ns
I _{LVDS_BIAS}	LVDS bias current consumption	Tx or Rx enabled	_	_	0.95	mA
	TRANSMISSION LINE	CHARACTERISTICS (PCB Track)				
Z ₀	Transmission line characteristic impedance	—	47.5	50	52.5	Ω
Z _{DIFF}	Transmission line differential impedance	—	95	100	105	Ω
		RECEIVER	•		•	
V _{ICOM}	Common mode voltage	—	0.15 ⁹	_	1.6 ¹⁰	V
ΔVII	Differential input voltage	—	100	—	_	mV
V _{HYS}	Input hysteresis	—	25	—	_	mV
R _{IN}	Terminating resistance	V _{DDEH} = 3.0 V to 5.5 V	80	125	150	Ω
C _{IN}	Differential input capacitance ¹¹	—	_	3.5	6.0	pF
I _{LVDS_RX}	Receiver DC current consumption	Enabled	_	_	0.5	mA

1. The LVDS pad startup and receiver electrical characteristics in this table apply to both the LFAST and the MSC/DSPI LVDS pad except where noted in the conditions.

- 2. All startup times are defined after a 2 peripheral bridge clock delay from writing to the corresponding enable bit in the LVDS control registers (LCR) of the LFAST and High-Speed Debug modules.
- 3. Startup times are valid for the maximum external loads CL defined in both the LFAST/HSD and MSC/DSPI transmitter electrical characteristic tables.
- 4. Bias startup time is defined as the time taken by the current reference block to reach the settling bias current after being enabled.
- 5. Total transmitter startup time from power down to normal mode is t_{STRT_BIAS} + t_{PD2NM_TX} + 2 peripheral bridge clock periods.
- Total transmitter startup time from sleep mode to normal mode is t_{SM2NM_TX} + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode.
- Total receiver startup time from power down to normal mode is t_{STRT_BIAS} + t_{PD2NM_RX} + 2 peripheral bridge clock periods.
 Total receiver startup time from power down to sleep mode is t_{PD2SM_RX} + 2 peripheral bridge clock periods. Bias block
- remains enabled in sleep mode.
- 9. Absolute min = 0.15 V (285 mV/2) = 0 V
- 10. Absolute max = 1.6 V + (285 mV/2) = 1.743 V
- 11. Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions. For bare die devices, subtract the package value given in Figure 11.

Table 21. LFAST transmitter electrical characteristics¹

Symbol	Parameter	Conditions		Value		Unit
	Falaniciel	Conditions	Min	Тур	Max	
f _{DATA}	Data rate	—		—	240	Mbps

Table continues on the next page...

The SMPS regulator characteristics appear in the following table.

Symbol	Parameter	Conditions		Value				
Symbol	Falailletei	Conditions	Min	Тур	Max	Unit		
SMPS _{CLOCK}	SMPS oscillator frequency	Trimmed	825	1000	1220	kHz		
SMPS _{SLOPE}	SMPS soft-start ramp slope	_	0.01	0.025	0.05	V/µs		
SMPS _{EFF}	SMPS typical efficiency	_	_	70		%		

Table 27. SMPS electrical characteristics

3.11.2 Power management integration

To ensure correct functionality of the device, use the following recommended integration scheme for LDO mode.

Figure 14. Recommended supply pin circuits

Table 29. Voltage monitor electrical characteristics^{1, 2} (continued)

			Co	nfigura	tion		Value		
Symbol	Parameter	Conditions	Trim bits	Mask Opt.	Pow. Up	Min	Тур	Max	Unit
POR_HV	HV V _{DDPMC} supply power	Rising voltage (powerup)	N/A	No	Enab.	2444	2600	2756	mV
	on reset threshold	Falling voltage (power down)				2424	2580	2736	
LVD_HV	HV internal V _{DDPMC} supply	Rising voltage (untrimmed)	4bit	No	Enab.	2935	3023	3112	mV
	low voltage monitoring	Falling voltage (untrimmed)				2922	3010	3099	1
		Rising voltage (trimmed)				2946	3010	3066	
		Falling voltage (trimmed)				2934	2998	3044	
HVD_HV	HV internal V _{DDPMC} supply	Rising voltage	4bit	Yes	Disab.	5696	5860	5968 m	mV
		Falling voltage				5666	5830	5938	
LVD_FLASH	monitoring ⁶	Rising voltage (untrimmed)	4bit	No	Enab.	2935	3023	3112	mV
		Falling voltage (untrimmed)				2922	3010	3099	-
		Rising voltage (trimmed)				2956	3010	3053	
		Falling voltage (trimmed)				2944	2998	3041	
HVD_FLASH	FLASH supply high	Rising voltage	4bit	Yes	Disab.	3456	3530	3584	mV
	voltage monitoring ⁶	Falling voltage				3426	3500	3554	
LVD_IO	Main I/O V _{DDEH1} supply	Rising voltage (untrimmed)	4bit	No	Enab.	3250	3350	3488	mV
	low voltage monitoring	Falling voltage (untrimmed)				3220	3320	3458	1
		Rising voltage (trimmed)				3347	3420	3468	
		Falling voltage (trimmed)				3317	3390	3438	
t _{VDASSERT}	Voltage detector threshold crossing assertion	_	_	-	_	0.1	-	2.0	μs
t _{VDRELEASE}	Voltage detector threshold crossing de-assertion	_	_	-	_	5	-	20	μs

- 1. LVD is released after t_{VDRELEASE} temporization when upper threshold is crossed; LVD is asserted t_{VDASSERT} after detection when lower threshold is crossed.
- 2. HVD is released after t_{VDRELEASE} temporization when lower threshold is crossed; HVD is asserted t_{VDASSERT} after detection when upper threshold is crossed.
- 3. POR098_c threshold is an untrimmed value, before the completion of the power-up sequence. All other LVD/HVD thresholds are provided after trimming.
- 4. LV internal supply levels are measured on device internal supply grid after internal voltage drop.
- 5. LV external supply levels are measured on the die side of the package bond wire after package voltage drop.
- 6. V_{DDFLA} range is guaranteed when internal flash memory regulator is used.

3.11.4 Power sequencing requirements

Requirements for power sequencing include the following.

3.12.2 Flash memory Array Integrity and Margin Read specifications Table 31. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max ¹	Units 2
t _{ai16kseq}	Array Integrity time for sequential sequence on 16 KB block.	-	_	512 x Tperiod x Nread	
t _{ai32kseq}	Array Integrity time for sequential sequence on 32 KB block.	_	_	1024 x Tperiod x Nread	_
t _{ai64kseq}	Array Integrity time for sequential sequence on 64 KB block.	_	_	2048 x Tperiod x Nread	_
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	-	_	8192 x Tperiod x Nread	_
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	_	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43	—	192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65	—	356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01	—	1,339.5	μs

- Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The
 equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and
 Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires
 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the
 address pipeline set to 2, Nread would equal 4 (or 6 2).)
- 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate.

3.12.3 Flash memory module life specifications

Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks. ¹	—	250,000	_	P/E cycles
	Number of program/erase cycles per block for 256 KB blocks. ²	—	1,000	250,000	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	50	—	Years
		Blocks with 100,000 P/E cycles.	20	_	Years
		Blocks with 250,000 P/E cycles.	10	_	Years

 Table 32.
 Flash memory module life specifications

- 1. Program and erase supported across standard temperature specs.
- 2. Program and erase supported across standard temperature specs.

3.12.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.

3.12.5 Flash memory AC timing specifications Table 33. Flash memory AC timing specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{psus}	Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1.		9.4 plus four system clock periods	11.5 plus four system clock periods	μs
t _{esus}	Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1.		16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{res}	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.	_	_	100	ns

Table continues on the next page...

Figure 17. Generic input setup/hold timing

3.13.2 Reset and configuration pin timing

Table 35. Reset and configuration pin timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	RESET Pulse Width	t _{RPW}	10	—	t _{cyc} ²
2	RESET Glitch Detect Pulse Width	t _{GPW}	2	_	t _{cyc} ²
3	PLLCFG, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid	t _{RCSU}	10	—	t _{cyc} ²
4	PLLCFG, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid	t _{RCH}	0		t _{cyc} ²

1. Reset timing specified at: V_{DDEH} = 3.0 V to 5.25 V, V_{DD} = 1.08 V to 1.32 V, TA = TL to TH.

2. For further information on t_{cyc} , see Table 3.

Electrical characteristics

Figure 30. eTPU timing

3.13.8 eMIOS timing Table 41. eMIOS timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	eMIOS Input Pulse Width	t _{MIPW}	4	—	t _{CYC_PER} ²
2	eMIOS Output Pulse Width	t _{MOPW}	1 ³	—	t _{CYC_PER} ²

- 1. eMIOS timing specified at V_{DD} = 1.08 V to 1.32 V, V_{DDEH} = 3.0 V to 5.5 V, T_A = T_L to T_H , and C_L = 50 pF with SRC = 0b00.
- 2. For further information on t_{CYC_PER} , see Table 3.
- 3. This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).

Figure 31. eMIOS timing

Table 44. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1^1 (continued)

#	Symbol	Characteristic	Condition ²		Value	Unit	
"			Pad drive ⁴	Load (C _L)	Min	Max	
10	0 t _{HO} SOUT data hold time after SCK CPHA = 0 ¹³		PCR[SRC]=11b	25 pF	–9.0 + t _{SYS} ⁶	—	ns
			PCR[SRC]=10b	50 pF	-10.0 + t _{SYS} ⁶	_]
		PCR[SRC]=01b	50 pF	–21.0 + t _{SYS} ⁶	_	1	
		SOUT data hold	PCR[SRC]=11b	25 pF	-9.0	_	ns
			time after SCK	PCR[SRC]=10b	50 pF -10.0	_	1
		CPHA = 1 ¹³	PCR[SRC]=01b	50 pF	-21.0		

- 1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.
- 2. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.
- 3. All timing values for output signals in this table are measured to 50% of the output voltage.
- 4. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 5. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min t_{SYS} = 10 ns).
- M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 8. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 9. PCSx and PCSS using same pad configuration.
- 10. Input timing assumes an input slew rate of 1 ns (10% 90%) and uses TTL / Automotive voltage thresholds.
- 11. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set to 1.
- 12. The 0 pF load condition given in the DSPI AC timing applies to theoretical worst-case hold timing. This guarantees worstcase operation, and additional margin can be achieved in the applications by applying a realistic load.
- 13. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Figure 35. DSPI CMOS master mode – modified timing, CPHA = 0

Figure 36. DSPI CMOS master mode – modified timing, CPHA = 1

Figure 37. DSPI PCS strobe (PCSS) timing (master mode)

3.13.9.1.3 DSPI LVDS Master Mode – Modified Timing Table 45. DSPI LVDS master timing – full duplex – modified transfer format (MTFE = 1), CPHA = 0 or 1

щ	Cumhal	Characteristic	Conditio	on ¹	Value	2	11
#	Symbol	Characteristic	Pad drive ³	Load (C _L)	Min	Мах	- Unit
1	t _{SCK}	SCK cycle time	LVDS	15 pF to 25 pF differential	33.3		ns
2	t _{CSC}	PCS to SCK delay	PCS: PCR[SRC]=11b	25 pF	$(N^4 \times t_{SYS}^{, 5}) - 10$	—	ns
		(LVDS SCK)	PCS: PCR[SRC]=10b	50 pF	$(N^4 \times t_{SYS}^{, 5}) - 10$	—	ns
			PCS: PCR[SRC]=01b	50 pF	$(N^4 \times t_{SYS}^{, 5}) - 32$	—	ns
3	t _{ASC}	After SCK delay	PCS: PCR[SRC]=11b	PCS: 0 pF	$(M^6 \times t_{SYS}, 5) - 8$	—	ns
		(LVDS SCK)		SCK: 25 pF			
			PCS: PCR[SRC]=10b	PCS: 0 pF	$(M^6 \times t_{SYS}, 5) - 8$	—	ns
				SCK: 25 pF			
			PCS: PCR[SRC]=01b	PCS: 0 pF	$(M^6 \times t_{SYS}^{, 5}) - 8$		ns
				SCK: 25 pF			
4	t _{SDC}	SCK duty cycle ⁷	LVDS	15 pF to 25 pF differential	1/2t _{SCK} – 2	1/2t _{SCK} +2	ns
7	t _{SUI}	SIN setup time					
		SIN setup time to SCK	LVDS	15 pF to 25 pF differential	$23 - (P^9 \times t_{SYS}, 5)$	_	ns
		CPHA = 0 ⁸					
		SIN setup time to SCK	LVDS	15 pF to 25 pF differential	23	_	ns
		CPHA = 1 ⁸					
8	t _{HI}			SIN hold time			_
		SIN hold time from SCK	LVDS	0 pF differential	$-1 + (P^9 \times t_{SYS}, 5)$	—	ns
		CPHA = 0 ⁸					
		SIN hold time from SCK	LVDS	0 pF differential	-1	_	ns
		CPHA = 1 ⁸					

Table continues on the next page...

3.13.9.1.4 DSPI Master Mode – Output Only

Table 46. DSPI LVDS master timing — output only — timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock^{1, 2}

"	Cumbal	Oberesterietie	Condit	ion ³	Va	lue ⁴	11
#	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Мах	- Unit
1	t _{SCK}	SCK cycle time	LVDS	15 pF to 50 pF differential	25	—	ns
2	t _{CSV}	PCS valid after SCK ⁶ (SCK with 50 pF differential load cap.)	PCR[SRC]=11b	25 pF		8	ns
			PCR[SRC]=10b	50 pF		12	ns
3	t _{CSH}	PCS hold after SCK ⁶	PCR[SRC]=11b	0 pF	-4.0	—	ns
		(SCK with 50 pF differential load cap.)	PCR[SRC]=10b	0 pF	-4.0	_	ns
4	t _{SDC}	SCK duty cycle (SCK with 50 pF differential load cap.)	LVDS	15 pF to 50 pF differential	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			SOUT data valid time	(after SCK edge)			
5	t _{SUO}	SOUT data valid time from SCK ⁷	LVDS	15 pF to 50 pF differential		6	ns
			SOUT data hold time	(after SCK edge)		•	
6	t _{HO}	SOUT data hold time after SCK ⁷	LVDS	15 pF to 50 pF differential	-7.0	_	ns

- 1. All DSPI timing specifications apply to pins when using LVDS pads for SCK and SOUT and CMOS pad for PCS with pad driver strength as defined. Timing may degrade for weaker output drivers.
- 2. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.
- 3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.
- 4. All timing values for output signals in this table are measured to 50% of the output voltage.
- 5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.
- 7. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Table 47. DSPI CMOS master timing – output only – timed serial bus modeTSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock $^{1, 2}$

<u> </u>	# Symbol	Characteristic	Condition	Condition ³		lue ⁴	Unit
*			Pad drive ⁵	Load (C _L)	Min	Max	
1	t _{SCK}	SCK cycle time	PCR[SRC]=11b	25 pF	33.0	_	ns
			PCR[SRC]=10b	50 pF	80.0	—	ns
			PCR[SRC]=01b	50 pF	200.0	—	ns
2	t _{CSV}	PCS valid after SCK ⁶	PCR[SRC]=11b	25 pF	7	_	ns
			PCR[SRC]=10b	50 pF	8	—	ns
			PCR[SRC]=01b	50 pF	18	—	ns
			PCS: PCR[SRC]=01b	50 pF	45	—	ns
			SCK: PCR[SRC]=10b				

Table continues on the next page ...

Table 47. DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock 1, 2 (continued)

#	Symbol	Characteristic	Condition	3	Val	ue ⁴	Unit
#	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Max	
3	t _{CSH}	PCS hold after SCK ⁶	PCR[SRC]=11b	PCS: 0 pF	-14	_	ns
				SCK: 50 pF			
			PCR[SRC]=10b	PCS: 0 pF	-14		ns
				SCK: 50 pF			
			PCR[SRC]=01b	PCS: 0 pF	-33		ns
				SCK: 50 pF			
			PCS: PCR[SRC]=01b	PCS: 0 pF	-35		ns
			SCK: PCR[SRC]=10b	SCK: 50 pF			
4	t _{SDC}	SDC SCK duty cycle ⁷	PCR[SRC]=11b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=10b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=01b	0 pF	1/2t _{SCK} – 5	1/2t _{SCK} + 5	ns
			SOUT data valid time (af	ter SCK edge)			
9	t _{SUO}	SOUT data valid time	PCR[SRC]=11b	25 pF		7.0	ns
		from SCK	PCR[SRC]=10b	50 pF		8.0	ns
		CPHA = 1 ⁸	PCR[SRC]=01b	50 pF		18.0	ns
			SOUT data hold time (aft	er SCK edge)			
10	t _{HO}	SOUT data hold time	PCR[SRC]=11b	25 pF	-9.0		ns
		after SCK	PCR[SRC]=10b	50 pF	-10.0	—	ns
		CPHA = 1 ⁸	PCR[SRC]=01b	50 pF	-21.0		ns

1. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.

2. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.

- 4. All timing values for output signals in this table are measured to 50% of the output voltage.
- 5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.

6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.

- 7. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 8. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

- Quality of the thermal and electrical connections to the planes
- Power dissipated by adjacent components

Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.

As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:

- One oz. (35 micron nominal thickness) internal planes
- Components are well separated
- Overall power dissipation on the board is less than 0.02 W/cm^2

The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + \left(R_{\theta JB} * P_D \right)$$

where:

 T_B = board temperature for the package perimeter (°C)

 $R_{\Theta JB}$ = junction-to-board thermal resistance (°C/W) per JESD51-8

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air does not factor into the calculation, the junction temperature is predictable if the application board is similar to the thermal test condition, with the component soldered to a board with internal planes.

The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance: