E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z7
Core Size	32-Bit Tri-Core
Speed	264MHz
Connectivity	CANbus, EBI/EMI, Ethernet, FlexCANbus, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	8MB (8M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16b Sigma-Delta, eQADC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BGA
Supplier Device Package	416-MAPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5777ck3mme3r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Parameter	Conditions		Unit		
Symbol			Min	Тур	Max	
V _{STBY_BO}	Standby RAM brownout flag trip point voltage	—	_	_	0.9 ¹²	V
V _{RL_SD}	SDADC ground reference voltage	—		V _{SSA_SD}		V
V _{DDA_SD}	SDADC supply voltage ¹³	-	4.5	—	5.5	V
V _{DDA_EQA/B}	eQADC supply voltage	—	4.75	—	5.25	V
V _{RH_SD}	SDADC reference	—	4.5	V _{DDA_SD}	5.5	V
$V_{DDA_SD} - V_{RH_SD}$	SDADC reference differential voltage	—	_	_	25	mV
$V_{SSA_SD} - V_{RL_SD}$	V _{RL_SD} differential voltage	—	-25	—	25	mV
V _{RH_EQ}	eQADC reference	—	4.75	—	5.25	V
V _{DDA_EQA/B} – V _{RH_EQ}	eQADC reference differential voltage	—	_	_	25	mV
$V_{SSA_EQ} - V_{RL_EQ}$	V _{RL_EQ} differential voltage	—	-25	—	25	mV
$V_{SSA_{EQ}} - V_{SS}$	V _{SSA_EQ} differential voltage	—	-25	—	25	mV
$V_{SSA_SD} - V_{SS}$	V _{SSA_SD} differential voltage	—	-25	—	25	mV
V _{RAMP}	Slew rate on power supply pins	—	—	—	100	V/ms
		Current				
I _{IC}	DC injection current (per pin) ^{14,} 15, 16	Digital pins and analog pins	-3.0	_	3.0	mA
I _{MAXSEG}	Maximum current per power segment ^{17, 18}	—	-80		80	mA

- Maximum operating frequency is applicable to the computational cores and platform for the device. See the Clocking chapter in the MPC5777C Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device.
- 2. If frequency modulation (FM) is enabled, the maximum frequency still cannot exceed this value.
- 3. The maximum specification for operating junction temperature T_J must be respected. Thermal characteristics provides details.
- 4. Core voltage as measured on device pin to guarantee published silicon performance
- 5. During power ramp, voltage measured on silicon might be lower. Maximum performance is not guaranteed, but correct silicon operation is guaranteed. See power management and reset management for description.
- 6. Maximum core voltage is not permitted for entire product life. See absolute maximum rating.
- 7. When internal LVD/HVDs are disabled, external monitoring is required to guarantee device operation. Failure to monitor externally supply voltage may result in erroneous operation of the device.
- 8. This LVD/HVD disabled supply voltage condition only applies after LVD/HVD are disabled by the application during the reset sequence, and the LVD/HVD are active until that point.
- 9. This spec does not apply to V_{DDEH1} .
- 10. When internal flash memory regulator is used:
 - Flash memory read operation is supported for a minimum V_{DDPMC} value of 3.15 V.
 - Flash memory read, program, and erase operations are supported for a minimum V_{DDPMC} value of 3.5 V.

When flash memory power is supplied externally (V_{DDPMC} shorted to V_{DDFLA}): The V_{DDPMC} range must be within the limits specified for LVD_FLASH and HVD_FLASH monitoring. Table 29 provides the monitored LVD_FLASH and HVD_FLASH limits.

- 11. If the standby RAM regulator is not used, the V_{STBY} supply input pin must be tied to ground.
- 12. V_{STBY_BO} is the maximum voltage that sets the standby RAM brownout flag in the device logic. The minimum voltage for RAM data retention is guaranteed always to be less than the V_{STBY_BO} maximum value.

- 1. I_{DD} measured on an application-specific pattern with all cores enabled at full frequency, T_J = 40°C to 150°C. Flash memory program/erase current on the V_{DD} supply not included.
- 2. This value is considering the use of the internal core regulator with the simulation of an external transistor with the minimum value of h_{FE} of 60.
- 3. This bandgap reference is for EQADC calibration and Temperature Sensors.

3.6 I/O pad specifications

Input-only pads

The following table describes the different pad types on the chip.

Pad type	Description
General-purpose I/O pads	General-purpose I/O and EBI data bus pads with four selectable output slew rate settings; also called SR pads
EBI pads	Provide necessary speed for fast external memory interfaces on the EBI CLKOUT, address, and control signals; also called FC pads
LVDS pads	Low Voltage Differential Signal interface pads

Low-input-leakage pads that are associated with the ADC channels

Table 5. I/O pad specification descriptions

NOTE

Each I/O pin on the device supports specific drive configurations. See the signal description table in the device reference manual for the available drive configurations for each I/O pin.

NOTE

Throughout the I/O pad specifications, the symbol V_{DDEx} represents all V_{DDEx} and V_{DDEHx} segments.

3.6.1 Input pad specifications

Table 6 provides input DC electrical characteristics as described in Figure 4.

1. PCR[DSC] values refer to the setting of that register field in the SIU.

3.6.3 I/O pad current specifications

The I/O pads are distributed across the I/O supply segments. Each I/O supply segment is associated with a V_{DDEx} supply segment.

Table 11 provides I/O consumption figures.

To ensure device reliability, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 1.

To ensure device functionality, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 3.

NOTE

The MPC5777C I/O Signal Description and Input Multiplexing Tables are contained in a Microsoft Excel® file attached to the Reference Manual. In the spreadsheet, select the I/O Signal Table tab.

Symbol	Parameter	Conditions	Value			Unit
Symbol		Conditions	Min	Тур	Max	
I _{AVG_GPIO}	Average I/O current for GPIO pads	C _L = 25 pF, 2 MHz	—	—	0.42	mA
	(per pad)	$V_{DDEx} = 5.0 V \pm 10\%$				
		C _L = 50 pF, 1 MHz	—	—	0.35	
		$V_{DDEx} = 5.0 V \pm 10\%$				
I _{AVG_EBI}	Average I/O current for external bus output pins (per pad)	$C_{DRV} = 10 \text{ pF}, f_{EBI} = 66 \text{ MHz}$	—		9	mA
		$V_{DDEx} = 3.3 V \pm 10\%$				
		$C_{DRV} = 20 \text{ pF}, \text{ f}_{EBI} = 66 \text{ MHz}$	—		18	
		$V_{DDEx} = 3.3 V \pm 10\%$				
		$C_{DRV} = 30 \text{ pF}, f_{EBI} = 66 \text{ MHz}$	—	—	30	
		$V_{DDEx} = 3.3 V \pm 10\%$				

Table 11. I/O consumption

3.7 Oscillator and PLL electrical specifications

The on-chip dual PLL—consisting of the peripheral clock and reference PLL (PLL0) and the frequency-modulated system PLL (PLL1)—generates the system and auxiliary clocks from the main oscillator driver.

Figure 6. PLL integration

3.7.1 PLL electrical specifications

Table 12. PLL0 electrical characteristics

Symbol	Doromotor	Conditions	Value			Unit
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{PLLOIN}	PLL0 input clock ^{1, 2}	—	8	—	44	MHz
Δ _{PLL0IN}	PLL0 input clock duty cycle ²	—	40	_	60	%
f _{PLL0VCO}	PLL0 VCO frequency	—	600	_	1250	MHz
f _{PLL0PHI}	PLL0 output frequency	—	4.762		200	MHz
t _{PLL0LOCK}	PLL0 lock time	—		_	110	μs
Δ _{PLL0PHISPJ}	PLL0_PHI single period jitter	f _{PLL0PHI} = 200 MHz, 6-sigma			200	ps
	f _{PLL0IN} = 20 MHz (resonator)					
Δ _{PLL0PHI1SPJ}	PLL0_PHI1 single period jitter	f _{PLL0PHI1} = 40 MHz, 6-sigma	_	_	300 ³	ps
	f _{PLL0IN} = 20 MHz (resonator)					
Δ _{PLL0LTJ}	PLL0 output long term jitter ³	10 periods accumulated jitter (80 MHz	_	_	±250	ps
	f _{PLL0IN} = 20 MHz (resonator),	equivalent frequency), 6-sigma pk-pk				
	VCO frequency = 800 MHz	16 periods accumulated jitter (50 MHz equivalent frequency), 6-sigma pk-pk	—	—	±300	ps
		long term jitter (< 1 MHz equivalent frequency), 6-sigma pk-pk)	_	_	±500	ps
I _{PLL0}	PLL0 consumption	FINE LOCK state	—	—	7.5	mA

 f_{PLLOIN} frequency must be scaled down using PLLDIG_PLL0DV[PREDIV] to ensure PFD input signal is in the range 8 MHz to 20 MHz.

2. PLLOIN clock retrieved directly from either internal IRC or external XOSC clock. Input characteristics are granted when using internal IRC or external oscillator is used in functional mode.

3. Noise on the V_{DD} supply with frequency content below 40 kHz and above 50 MHz is filtered by the PLL. Noise on the V_{DD} supply with frequency content in the range of 40 kHz – 50 MHz must be filtered externally to the device.

Symbol	Parameter	Conditions		Unit		
Symbol	Faranieter	Conditions	Min	Тур	Max	Onit
f _{PLL1IN}	PLL1 input clock ¹	—	38	—	78	MHz
Δ _{PLL1IN}	PLL1 input clock duty cycle ¹	—	35		65	%
f _{PLL1VCO}	PLL1 VCO frequency	—	600	_	1250	MHz
f _{PLL1PHI}	PLL1 output clock PHI	—	4.762	—	264	MHz
t _{PLL1LOCK}	PLL1 lock time	—	—		100	μs
Δ _{PLL1PHISPJ}	PLL1_PHI single period peak-to- peak jitter	f _{PLL1PHI} = 200 MHz, 6- sigma	_	_	500 ²	ps
f _{PLL1MOD}	PLL1 modulation frequency	—	—		250	kHz
δ _{PLL1MOD}	PLL1 modulation depth (when	Center spread	0.25	_	2	%
	enabled)	Down spread	0.5		4	%
I _{PLL1}	PLL1 consumption	FINE LOCK state	—	—	6	mA

Table 13. PLL1 electrical characteristics

1. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock. Input characteristics are granted when using internal PLL0 or external oscillator in functional mode.

2. Noise on the V_{DD} supply with frequency content below 40 kHz and above 50 MHz is filtered by the PLL. Noise on the V_{DD} supply with frequency content in the range of 40 kHz – 50 MHz must be filtered externally to the device.

3.7.2 Oscillator electrical specifications

NOTE

All oscillator specifications in Table 14 are valid for $V_{DDEH6} = 3.0 \text{ V}$ to 5.5 V.

Table 14. External oscillator (XOSC) electrical specifications

Symbol	Devemeter	Conditions	Va	Unit	
Symbol	Farameter	Conditions	Min	Мах	Unit
f _{XTAL}	Crystal frequency range	_	8	40	MHz
t _{cst}	Crystal start-up time ^{1, 2}	T _J = 150 °C	_	5	ms
t _{rec}	Crystal recovery time ³		_	0.5	ms
VIHEXT	EXTAL input high voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	V _{REF} + 0.6	_	V
V _{ILEXT}	EXTAL input low voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	_	V _{REF} – 0.6	V
C _{S_EXTAL}	Total on-chip stray capacitance on EXTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.1	2.8	
C _{S_XTAL}	Total on-chip stray capacitance on XTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.2	2.9	
9 _m	Oscillator transconductance ⁵	Low	3	10	mA/V
		Medium	10	27	
		High	12	35	

Table continues on the next page ...

3.8.1 Enhanced Queued Analog-to-Digital Converter (eQADC) Table 17. eQADC conversion specifications (operating)

Min Max Min Max f _{ADCLK} ADC Clock (ADCLK) Frequency 2 33 MHz CC Conversion Cycles 2 + 13 128 + 15 ADCLK cycles TSR Stop Mode Recovery Time ¹ 10 — µs — Resolution ² 1.25 — mV INL 16.5 MHz eQADC clock ³ -4 4 LSB ⁴ DNL: 33 MHz eQADC clock ³ -3 3 LSB DNL 33 MHz eQADC clock ³ -3 3 LSB OFFNC Offset Error without Calibration 0 140 LSB GAINNC Full Scale Gain Error without Calibration -8 8 LSB GAINWC Full Scale Gain Error with Calibration -4 4 Counts Inv Disruptive Input Injection Current ^{6, 1, 7, 8} -3 3 mA GAINWCA1 Variable gain amplifier accuracy (gain = 1) ¹⁵ - - Counts GAINVGA1 Variable gain amplifier accuracy (gain = 2) ¹³ - <	Symbol	Parameter	Va	llnit	
f _{ADCLK} ADC Clock (ADCLK) Frequency 2 33 MHz CC Conversion Cycles 2 + 13 128 + 15 ADCLK cycles T _{SR} Stop Mode Recovery Time ¹ 10 — µs mesolution ² 1.25 — mV INL 16.5 MHz eQADC clock ³ -4 4 LSB ⁴ DNL INL: 16.5 MHz eQADC clock ³ -3 3 LSB DNL DNL: 16.5 MHz eQADC clock ³ -3 3 LSB OFFNC Offset Error without Calibration 0 1400 LSB OFFWC Offset Error with Calibration -8 8 LSB GAINVC Full Scale Gain Error with Calibration -150 0 LSB GAINWC Full Scale Gain Error with Calibration -8 8 LSB Incremental Error with Calibration -4 4 Counts TUE TUE value ^{11, 12} (with calibration) — 44 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - -<	Symbol		Min	Max	
$\begin{array}{c c c c c c } CC & Conversion Cycles & 2 + 13 & 128 + 15 & ADCLK cycles \\ \hline T_{SR} & Stop Mode Recovery Time^1 & 10 & - & \mus \\ \hline Resolution^2 & 1.25 & - & mV \\ \hline INL & Resolution^2 & 1.25 & - & mV \\ \hline INL & 16.5 MHz eQADC clock^3 & -4 & 4 & LSB^4 \\ \hline INL : 33 MHz eQADC clock^3 & -6 & 6 & LSB \\ \hline DNL & DNL & 16.5 MHz eQADC clock^3 & -3 & 3 & LSB \\ \hline DNL & 30 MHz eQADC clock^3 & -3 & 3 & LSB \\ \hline DNL & 30 MHz eQADC clock^3 & -3 & 3 & LSB \\ \hline OFFNC & Offset Error with calibration & 0 & 140 & LSB \\ \hline OFFWC & Offset Error with calibration & -8 & 8 & LSB \\ \hline GAINNC & Full Scale Gain Error with calibration & -8 & 8 & LSB \\ \hline I_{NJ} & Disruptive Input Injection Current6, 1, 7, 8 & -3 & 3 & mA \\ \hline E_{NJ} & Incremental Error with calibration & -8 & 8 & Counts \\ \hline TUE & TUE value^{11, 12} (with calibration current6, 10 & - & +4 & Counts \\ \hline TUE & TUE value^{11, 12} (with calibration) & - & 48 & Counts \\ \hline GAINNCA & Variable gain amplifier accuracy (gain = 1)^{13} & - & - & Counts^{15} \\ \hline INL, 16.5 MHz ADC & -3^{14} & 3^{14} & \\ \hline DNL, 33 MHz ADC & -3 & 3 & \\ \hline INL, 16.5 MHz ADC & -3^{14} & 3^{14} & \\ \hline GAINNGA & Variable gain amplifier accuracy (gain = 2)^{13} & - & - & Counts \\ \hline INL, 16.5 MHz ADC & -3 & 3 & \\ \hline INL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 13 MHz ADC & -3 & 3 & \\ \hline DNL, 16.5 MHz ADC & -3 & 3 & \\ \hline INL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 33 MHz ADC & -3 & 3 & \\ \hline DNL, 33 MHz ADC & -3 & 3 & \\ \hline DNL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 16.5 MHz ADC & -3 & 8 & \\ \hline DNL, 16.5 MHz ADC & -3 & 8 & \\ \hline DNL, 16.5 MHz ADC & -3 & 8 & \\ \hline DNL, 16.5 MHz ADC & -4 & 4 & \\ \hline DNL, 33 MHz ADC & -4 & 4 & \\ \hline DNL, 33 MHz ADC & -4 & 4 & \\ \hline DNL, 33 MHz ADC & -4 & 4 & \\ \hline DNL, 33 MHz ADC & -4 & 4 & \\ \hline DNL, 33 MHz ADC & -4 & 4 & \\ \hline DNL & MHz ADC & -4 & 4 & \\ \hline DNL & ADR & Reference voltage current consumption per EQADC & - & & 200 & \muA \\ \hline \end{array}$	f _{ADCLK}	ADC Clock (ADCLK) Frequency	2	33	MHz
$\begin{array}{ c c c c c }\hline T_{SR} & Stop Mode Recovery Time1 & 10 & & \mus \\ \hline Resolution2 & 1.25 & & mV \\ \hline INL & Resolution2 & 1.25 & & mV \\ \hline INL & 16.5 MHz eQADC clock3 & -4 & 4 & LSB4 \\ \hline INL & 33 MHz eQADC clock3 &6 & 6 & LSB \\ \hline DNL & JS MHz eQADC clock3 &3 & 3 & LSB \\ \hline DNL & JS MHz eQADC clock3 &3 & 3 & LSB \\ \hline DNL & JS MHz eQADC clock3 &3 & 3 & LSB \\ \hline DNL & JS MHz eQADC clock3 &3 & 3 & LSB \\ \hline OFFNC & Offset Error with Calibration & 0 & 140 & LSB \\ \hline OFFWC & Offset Error with Calibration & -8 & 8 & LSB \\ \hline GAINNC & Full Scale Gain Error without Calibration & -8 & 8 & LSB \\ \hline GAINWC & Full Scale Gain Error with Calibration & -8 & 8 & LSB \\ \hline InJ & Disruptive Input Injection Current6, 7, 8 & -3 & 3 & mA \\ \hline E_{nVI & Incremental Error due to injection current6, 10 & & 44 & Counts \\ \hline TUE & TUE value11, 12 (with calibration) & & 48 & Counts \\ \hline GAINVGA1 & Variable gain amplifier accuracy (gain = 1)^{13} & - & - & Counts^{15} \\ INL, 16.5 MHz ADC & -3 & 3 & & Counts^{15} \\ INL, 16.5 MHz ADC & -3 & 3 & & Counts \\ \hline MINL, 33 MHz ADC & -3^{14} & 3^{14} & & Counts \\ \hline GAINVGA2 & Variable gain amplifier accuracy (gain = 2)^{13} & - & - & Counts \\ INL, 16.5 MHz ADC & -3 & 3 & & & Counts \\ INL, 16.5 MHz ADC & -3 & 3 & & & Counts \\ INL, 33 MHz ADC & -3 & 3 & & & Counts \\ INL, 33 MHz ADC & -3 & 3 & & & Counts \\ INL, 33 MHz ADC & -3 & 3 & & & Counts \\ INL, 33 MHz ADC & -3 & 3 & & & Counts \\ INL, 33 MHz ADC & -3 & 3 & & & Counts \\ INL, 16.5 MHz ADC & -3 & 3 & & & Counts \\ INL, 16.5 MHz ADC & -3 & 3 & & & Counts \\ INL, 16.5 MHz ADC & -3 & 3 & & & Counts \\ INL, 16.5 MHz ADC & -4 & 4 & & & & & & & & & & & & & &$	CC	Conversion Cycles	2 + 13	128 + 15	ADCLK cycles
$ \begin{array}{ c c c c c } \hline$	T _{SR}	Stop Mode Recovery Time ¹	10	_	μs
INL INL: 16.5 MHz eQADC clock ³ 4 4 LSB ⁴ INL: 33 MHz eQADC clock ³ 6 6 LSB DNL DNL: 16.5 MHz eQADC clock ³ 3 3 LSB DNL: 33 MHz eQADC clock ³ 3 3 LSB OFFNC Offset Error with calibration 0 140 LSB OFFWC Offset Error with Calibration 8 8 LSB GAINVC Full Scale Gain Error with Calibration 8 8 LSB GAINVC Full Scale Gain Error with Calibration 8 8 LSB I _{INJ} Disruptive Input Injection Current ^{5, 6, 7, 8} 3 3 mA TUE TUE value ^{11, 12} (with calibration) +4 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC 3 3 Ma - INL, 33 MHz ADC 3 3 - - GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ -<		Resolution ²	1.25	_	mV
INL: 33 MHz eQADC clock ³ 6 6 LSB DNL: DNL: 16.5 MHz eQADC clock ³ 3 3 LSB DNL: 30 MHz eQADC clock ³ 3 3 LSB OFFNC Offset Error without Calibration 0 140 LSB OFFWC Offset Error without Calibration 8 8 LSB GAINNC Full Scale Gain Error without Calibration 8 8 LSB GAINNC Full Scale Gain Error with Calibration 8 8 LSB Incremental Error due to injection current ^{6, 7, 8} 3 3 mA TUE TUE value ^{11, 12} (with calibration) +4 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC -3 ¹⁴ 3 ¹⁴ - Counts ¹⁵ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -3 ¹⁴ 3 ¹⁴ - Counts - GAINVGA2	INL	INL: 16.5 MHz eQADC clock ³	-4	4	LSB ⁴
DNL DNL: 16.5 MHz eQADC clock ³ 3 3 LSB DNL: 33 MHz eQADC clock ³ 3 3 LSB OFFNC Offset Error without Calibration 0 140 LSB OFFWC Offset Error with Calibration 8 8 LSB GAINWC Full Scale Gain Error with Calibration 8 8 LSB GAINWC Full Scale Gain Error with Calibration 8 8 LSB Incremental Error due to injection current ^{5, 7, 7, 8} 3 3 mA EINJ Disruptive Input Injection current ^{6, 7, 7, 8} 3 3 mA GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ +4 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 2) ¹³ - Counts ¹⁵ INL, 16.5 MHz ADC 3 ¹⁴ 3 ¹⁴ 3 ¹⁴ - - GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -3 3 - - Counts		INL: 33 MHz eQADC clock ³	-6	6	LSB
DNL: 33 MHz eQADC clock ³ 3 3 LSB OFFNC Offset Error without Calibration 0 140 LSB OFFWC Offset Error with Calibration 8 8 LSB GAINNC Full Scale Gain Error without Calibration 150 0 LSB GAINWC Full Scale Gain Error with Calibration 8 8 LSB Incremental Error due to injection current ^{9, 10} 4 4 Counts TUE TUE value ^{11, 12} (with calibration) +44 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC 3 ¹⁴ 3 ¹⁴ - - Counts GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC 3 3 - - Counts INL, 16.5 MHz ADC 3 3 - - Counts INL, 16.5 MHz ADC 3 3 - - Counts	DNL	DNL: 16.5 MHz eQADC clock ³	-3	3	LSB
OFFNCOffset Error without Calibration0140LSBOFFWCOffset Error with Calibration88LSBGAINNCFull Scale Gain Error with Calibration1500LSBGAINWCFull Scale Gain Error with Calibration88LSB I_{NN} Disruptive Input Injection Current ^{6, 6, 7, 8} 33mAEINJIncremental Error due to injection current ^{9, 10} ++4CountsTUETUE value ^{11, 12} (with calibration)+±8CountsGAINVGA1Variable gain amplifier accuracy (gain = 1) ¹³ Counts ¹⁵ INL, 16.5 MHz ADC-444INL, 33 MHz ADC3 ¹⁴⁴ 3 ¹⁴ -ONL, 33 MHz ADC3 ¹⁴⁴ 3 ¹⁴ GAINVGA2Variable gain amplifier accuracy (gain = 2) ¹³ CountsGAINVGA2Variable gain amplifier accuracy (gain = 2) ¹³ CountsINL, 16.5 MHz ADC33INL, 16.5 MHz ADC38INL, 16.5 MHz ADC44INL, 16.5 MHz		DNL: 33 MHz eQADC clock ³	-3	3	LSB
OFFWCOffset Error with Calibration88LSBGAINNCFull Scale Gain Error with Calibration1500LSBGAINWCFull Scale Gain Error with Calibration88LSBI _{NJ} Disruptive Input Injection Current ^{5, 6, 7, 9} 33mAE _{INJ} Incremental Error due to injection current ^{9, 10} +4CountsTUETUE value ^{11, 12} (with calibration)±8CountsGAINVGA1Variable gain amplifier accuracy (gain = 1) ¹³ Counts ¹⁵ INL, 16.5 MHz ADC-44	OFFNC	Offset Error without Calibration	0	140	LSB
GAINNCFull Scale Gain Error without Calibration-1500LSBGAINWCFull Scale Gain Error with Calibration88LSBI _{INJ} Disruptive Input Injection Current ^{5, 6, 7, 9} 33mAE _{INJ} Incremental Error due to injection current ^{9, 10} +4CountsTUETUE value ^{11, 12} (with calibration)±8CountsGAINVGA1Variable gain amplifier accuracy (gain = 1) ¹³ Counts ¹⁵ INL, 16.5 MHz ADC-44INL, 33 MHz ADC88DNL, 33 MHz ADC3143 ¹⁴ ONL, 33 MHz ADC3143 ¹⁴ INL, 16.5 MHz ADC55INL, 16.5 MHz ADC313INL, 33 MHz ADC55INL, 33 MHz ADC88DNL, 33 MHz ADC33INL, 33 MHz ADC33INL, 33 MHz ADC33INL, 16.5 MHz ADC-77-CountsINL, 16.5 MHz ADC-88INL, 16.5 MHz ADC-77INL, 33 MHz ADC-88INL, 33 MHz ADC-44INL, 33 MHz ADC-44INL, 33 MHz ADC-44<	OFFWC	Offset Error with Calibration	-8	8	LSB
GAINWC Full Scale Gain Error with Calibration 8 8 LSB I _{INJ} Disruptive Input Injection Current ^{5, 6, 7, 8} 3 3 mA E _{INJ} Incremental Error due to injection current ^{9, 10} +44 Counts TUE TUE value ^{11, 12} (with calibration) ±8 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC -44 4 Incremental Error due to injection current ^{9, 10} 4 4 INL, 16.5 MHz ADC 4 4 4 Counts ¹⁵ Incremental Error due to counts ¹⁵ Incremental Error due to injection current ^{9, 10} 4 4 4 INL, 16.5 MHz ADC 4 4 314	GAINNC	Full Scale Gain Error without Calibration	-150	0	LSB
$\begin{tabular}{ l NJ l l l l l l l l l l l l l l l l l $	GAINWC	Full Scale Gain Error with Calibration	-8	8	LSB
$\begin{array}{ c c c c c }\hline E_{INJ} & Incremental Error due to injection current9, 10 & & +4 & Counts \\ \hline TUE & TUE value11, 12 (with calibration) & & \pm8 & Counts \\ \hline GAINVGA1 & Variable gain amplifier accuracy (gain = 1)13 & - & - & Counts15 \\ INL, 16.5 MHz ADC & -4 & 4 & \\ INL, 33 MHz ADC & -8 & 8 & \\ DNL, 16.5 MHz ADC & -314 & 314 & \\ DNL, 33 MHz ADC & -314 & 314 & \\ \hline GAINVGA2 & Variable gain amplifier accuracy (gain = 2)13 & - & - & Counts \\ INL, 16.5 MHz ADC & -314 & 314 & \\ \hline GAINVGA2 & Variable gain amplifier accuracy (gain = 2)13 & - & - & Counts \\ INL, 16.5 MHz ADC & -3 & 5 & \\ INL, 33 MHz ADC & -8 & 8 & \\ DNL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 33 MHz ADC & -3 & 3 & \\ \hline GAINVGA4 & Variable gain amplifier accuracy (gain = 4)13 & - & - & Counts \\ INL, 16.5 MHz ADC & -7 & 7 & \\ INL, 33 MHz ADC & -8 & 8 & \\ \hline DNL, 16.5 MHz ADC & -7 & 7 & \\ INL, 33 MHz ADC & -8 & 8 & \\ \hline DNL, 16.5 MHz ADC & -4 & 4 & \\ \hline IADC & Current consumption per ADC (two ADCs per EQADC) & - & 10 & mA \\ \hline I_{ADR} & Reference voltage current consumption per EQADC & - & 200 & \muA \\ \hline \end{array}$	I _{INJ}	Disruptive Input Injection Current ^{5, 6, 7, 8}	-3	3	mA
TUE TUE value ^{11, 12} (with calibration) ±8 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC -4 4 4 1000000000000000000000000000000000000	E _{INJ}	Incremental Error due to injection current ^{9, 10}	—	+4	Counts
GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC -4 4 4 4 INL, 33 MHz ADC -8 8 7-3 ¹⁴ 3 ¹⁴ DNL, 16.5 MHz ADC -3 ¹⁴ 3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -3 ¹⁴ 3 ¹⁴ 3 ¹⁴ 3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -5 5 5 5 5 INL, 33 MHz ADC -8 8 8 - 4 DNL, 16.5 MHz ADC -3 3 - Counts GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC -77 7 7 - - INL, 33 MHz ADC -8 8 - - 4 DNL, 16.5 MHz ADC <t< td=""><td>TUE</td><td>TUE value^{11, 12} (with calibration)</td><td>—</td><td>±8</td><td>Counts</td></t<>	TUE	TUE value ^{11, 12} (with calibration)	—	±8	Counts
INL, 16.5 MHz ADC 4 4 INL, 33 MHz ADC 8 8 DNL, 16.5 MHz ADC 3 ¹⁴ 3 ¹⁴ DNL, 33 MHz ADC 3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - INL, 16.5 MHz ADC -5 5 INL, 33 MHz ADC INL, 16.5 MHz ADC -5 5 INL, 33 MHz ADC INL, 33 MHz ADC -8 8 INL DNL, 16.5 MHz ADC -3 3 INL DNL, 16.5 MHz ADC -3 3 INL DNL, 33 MHz ADC -3 3 INL GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC -77 7 INL, 33 MHz ADC - 8 DNL, 16.5 MHz ADC -4 4 INL, 33 MHz ADC - 4 INL, 33 MHz ADC - 10 MA IADR	GAINVGA1	Variable gain amplifier accuracy (gain = 1) ¹³	-	-	Counts ¹⁵
INL, 33 MHz ADC 8 8 DNL, 16.5 MHz ADC 3 ¹⁴ 3 ¹⁴ DNL, 33 MHz ADC 3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - INL, 16.5 MHz ADC 5 5 5 INL, 33 MHz ADC 5 5 5 INL, 33 MHz ADC 8 8 8 DNL, 16.5 MHz ADC 3 3 - DNL, 33 MHz ADC 3 3 - GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC 7 7 7 - INL, 33 MHz ADC 8 8 8 - DNL, 16.5 MHz ADC 4 4 - - DNL, 33 MHz ADC 4 4 - - IADC Current consumption per ADC (two ADCs per EQADC) 10 mA <tr< td=""><td></td><td>INL, 16.5 MHz ADC</td><td>-4</td><td>4</td><td></td></tr<>		INL, 16.5 MHz ADC	-4	4	
DNL, 16.5 MHz ADC 3 ¹⁴ 3 ¹⁴ DNL, 33 MHz ADC -3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -5 5 5 14 14 DNL, 33 MHz ADC -5 5 5 14 14 DNL, 16.5 MHz ADC -5 5 5 14 14 DNL, 33 MHz ADC -8 8 6 14 14 DNL, 33 MHz ADC -3 3 14 14 14 GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC -7 7 7 14 14 DNL, 33 MHz ADC -4 4 4 14 14 14 IADC Current consumption per ADC (two ADCs per EQADC) - 10 mA IADR Reference voltage current consumption pe		INL, 33 MHz ADC	-8	8	
DNL, 33 MHz ADC 3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -5 5 5 1000000000000000000000000000000000000		DNL, 16.5 MHz ADC	-3 ¹⁴	3 ¹⁴	
GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -5 5 5 5 INL, 33 MHz ADC -8 8 - - 8 DNL, 16.5 MHz ADC -3 3 - - - - DNL, 33 MHz ADC -3 3 - - Counts GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC -7 7 7 - INL, 16.5 MHz ADC -8 8 - - INL, 16.5 MHz ADC -7 7 - - INL, 33 MHz ADC -8 8 - <td></td> <td>DNL, 33 MHz ADC</td> <td>-3¹⁴</td> <td>3¹⁴</td> <td></td>		DNL, 33 MHz ADC	-3 ¹⁴	3 ¹⁴	
INL, 16.5 MHz ADC 5 5 INL, 33 MHz ADC 8 8 DNL, 16.5 MHz ADC 3 3 DNL, 33 MHz ADC 3 3 GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - INL, 33 MHz ADC -7 7 Counts INL, 33 MHz ADC 8 8 INL, 16.5 MHz ADC -7 7 INL, 33 MHz ADC 8 8 DNL, 16.5 MHz ADC 8 8 DNL, 33 MHz ADC -4 4 INL, 33 MHz ADC -4 4 IADC Current consumption per ADC (two ADCs per EQADC) 10 mA IADR Reference voltage current consumption per EQADC 200 µA	GAINVGA2	Variable gain amplifier accuracy (gain = 2) ¹³	-	-	Counts
INL, 33 MHz ADC 8 8 DNL, 16.5 MHz ADC 3 3 DNL, 33 MHz ADC 3 3 GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC -77 7 7 1 INL, 33 MHz ADC -8 8 8 - INL, 16.5 MHz ADC -8 8 1 - DNL, 16.5 MHz ADC -4 4 4 - <td></td> <td>INL, 16.5 MHz ADC</td> <td>-5</td> <td>5</td> <td></td>		INL, 16.5 MHz ADC	-5	5	
DNL, 16.5 MHz ADC33DNL, 33 MHz ADC33GAINVGA4Variable gain amplifier accuracy (gain = 4) ¹³ INL, 16.5 MHz ADC-777INL, 33 MHz ADC88DNL, 16.5 MHz ADC44DNL, 33 MHz ADC44INL, 33 MHz ADC44INL, 33 MHz ADC44INL, 36 MHz ADC44INL, 37 MHz ADC44INL, 38 MHz ADC44INL, 38 MHz ADC44IADCCurrent consumption per ADC (two ADCs per EQADC)10IADRReference voltage current consumption per EQADC200µA		INL, 33 MHz ADC	-8	8	
DNL, 33 MHz ADC33GAINVGA4Variable gain amplifier accuracy (gain = 4)13CountsINL, 16.5 MHz ADC-777INL, 33 MHz ADC88-DNL, 16.5 MHz ADC44-DNL, 33 MHz ADC44-INL, 33 MHz ADC44-DNL, 16.5 MHz ADC44-INL, 33 MHz ADC44-IADCCurrent consumption per ADC (two ADCs per EQADC)10IADRReference voltage current consumption per EQADC200µA		DNL, 16.5 MHz ADC	-3	3	
GAINVGA4Variable gain amplifier accuracy (gain = 4)^{13}CountsINL, 16.5 MHz ADC -77 77INL, 33 MHz ADC -8 8-DNL, 16.5 MHz ADC -4 4DNL, 33 MHz ADC -4 4INL, 33 MHz ADC -4 4IADCCurrent consumption per ADC (two ADCs per EQADC) -10 mAIADRReference voltage current consumption per EQADC -200 μ A		DNL, 33 MHz ADC	-3	3	
INL, 16.5 MHz ADC77INL, 33 MHz ADC88DNL, 16.5 MHz ADC44DNL, 33 MHz ADC44IADC44IADCCurrent consumption per ADC (two ADCs per EQADC)10IADRReference voltage current consumption per EQADC200µA	GAINVGA4	Variable gain amplifier accuracy (gain = 4) ¹³	-	-	Counts
INL, 33 MHz ADC88DNL, 16.5 MHz ADC44DNL, 33 MHz ADC44IADCCurrent consumption per ADC (two ADCs per EQADC)10IADRReference voltage current consumption per EQADC200μA		INL, 16.5 MHz ADC	-7	7	
DNL, 16.5 MHz ADC 4 4 DNL, 33 MHz ADC 4 4 I _{ADC} Current consumption per ADC (two ADCs per EQADC) 10 mA I _{ADR} Reference voltage current consumption per EQADC 200 µA		INL, 33 MHz ADC	-8	8	
DNL, 33 MHz ADC 4 4 I _{ADC} Current consumption per ADC (two ADCs per EQADC) 10 mA I _{ADR} Reference voltage current consumption per EQADC 200 µA		DNL, 16.5 MHz ADC	-4	4	
I _{ADC} Current consumption per ADC (two ADCs per EQADC) — 10 mA I _{ADR} Reference voltage current consumption per EQADC — 200 μA		DNL, 33 MHz ADC	-4	4	
I _{ADR} Reference voltage current consumption per EQADC – 200 μA	I _{ADC}	Current consumption per ADC (two ADCs per EQADC)	_	10	mA
	I _{ADR}	Reference voltage current consumption per EQADC	_	200	μA

1. Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that the ADC is ready to perform conversions. Delay from power up to full accuracy = 8 ms.

At V_{RH_EQ} – V_{RL_EQ} = 5.12 V, one count = 1.25 mV without using pregain. Based on 12-bit conversion result; does not account for AC and DC errors

- 3. INL and DNL are tested from V_{RL} + 50 LSB to V_{RH} 50 LSB.
- 4. At $V_{RH_{EQ}} V_{RL_{EQ}} = 5.12 \text{ V}$, one LSB = 1.25 mV.

Symbol	Parameter	Conditions		Unit		
Symbol			Min	Тур	Мах	Onic
SNR _{DIFF150}	Signal to noise ratio in	$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	80	_	—	dB
	differential mode, 150 Ksps output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 1				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	77			
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 2				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	74	_		
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 4				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	71	_	_	
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 8				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	68	—	—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				
SNR _{DIFF333}	Signal to noise ratio in	$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	71	—	_	dB
	Ksps output rate	$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 1				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	70	—	—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 2				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	68		—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 4				
		$4.5 \text{ V} < \text{V}_{\text{DDA}_{\text{SD}}} < 5.5 \text{ V}^{8, 9}$	65	—	—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 8				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	62			
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				

Table 18. SDADC electrical specifications (continued)

Table continues on the next page ...

Some further latency may be added by the target module (core, DMA, interrupt) controller to process the data received from the SDADC module.

16. This capacitance does not include pin capacitance, that can be considered together with external capacitance, before sampling switch.

3.9 Temperature Sensor

The following table describes the Temperature Sensor electrical characteristics.

Table 19. Temperature Sensor electrical characteristics

Symbol	Parameter	Conditions		Unit		
		Conditions	Min	Тур	Мах	Onit
—	Temperature monitoring range	—	-40	—	150	°C
T _{SENS}	Sensitivity	—	—	5.18	—	mV/°C
T _{ACC}	Accuracy	–40°C < T _J < 150°C	-5	—	5	°C
I _{TEMP_SENS}	V _{DDA_EQA} power supply current, per Temp Sensor	_	_		700	μA

3.10 LVDS Fast Asynchronous Serial Transmission (LFAST) pad electrical characteristics

The LFAST pad electrical characteristics apply to the SIPI interface on the chip. The same LVDS pad is used for the Microsecond Channel (MSC) and DSPI LVDS interfaces, with different characteristics given in the following tables.

The following table describes the supply stability capacitances required on the device for proper operation.

Symbol	Parameter	Conditiono		Unit		
Symbol	Farameter	Conditions	Min	Тур	Max	
C _{LV}	Minimum V _{DD} external bulk capacitance ^{2, 3}	LDO mode	4.7	—	_	μF
		SMPS mode	22		_	μF
C _{SMPSPWR}	Minimum SMPS driver supply capacitance	—	22		_	μF
C _{HV_PMC}	Minimum V _{DDPMC} external bulk capacitance ^{4, 5}	LDO mode	22	_	_	μF
		SMPS mode	22		_	μF
C _{HV_IO}	Minimum V _{DDEx} /V _{DDEHx} external capacitance ²	—	—	4.7 ⁶	_	μF
C _{HV_FLA}	Minimum V _{DD_FLA} external capacitance ⁷	_	1.0	2.0	_	μF
C _{HV_ADC_EQA/B}	Minimum V _{DDA_EQA/B} external capacitance ⁸	—	0.01		_	μF
C _{REFEQ}	Minimum REF _{BYPCA/B} external capacitance ⁹	—	0.01	_	_	μF
C _{HV_ADC_SD}	Minimum V _{DDA_SD} external capacitance ¹⁰	—	1.0	2.2		μF

Table 28. Device power supply integration

1. See Figure 14 for capacitor integration.

- 2. Recommended X7R or X5R ceramic low ESR capacitors, ±15% variation over process, voltage, temperature, and aging.
- 3. Each V_{DD} pin requires both a 47 nF and a 0.01 µF capacitor for high-frequency bypass and EMC requirements.
- 4. Recommended X7R or X5R ceramic low ESR capacitors, ±15% variation over process, voltage, temperature, and aging.
- 5. Each V_{DDPMC} pin requires both a 47 nF and a 0.01 µF capacitor for high-frequency bypass and EMC requirements.
- 6. The actual capacitance should be selected based on the I/O usage in order to keep the supply voltage within its operating range.
- 7. The recommended flash regulator composition capacitor is 2.0 μ F typical X7R or X5R, with -50% and +35% as min and max. This puts the min cap at 0.75 μ F.
- For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 μF between V_{DDA_EQA/B} and V_{SSA_EQ}.
- 9. For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 µF between REF_{BYPCA/B} and V_{SS}.
- 10. For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 μF between V_{DDA_SD} and V_{SSA_SD}.

3.11.3 Device voltage monitoring

The LVD/HVDs for the device and their levels are given in the following table. Voltage monitoring threshold definition is provided in the following figure.

Table 29. Voltage monitor electrical characteristics^{1, 2} (continued)

				Configuration			Value			
Symbol	Parameter	Conditions	Trim bits	Mask Opt.	Pow. Up	Min	Тур	Max	Unit	
POR_HV	HV V _{DDPMC} supply power	Rising voltage (powerup)	N/A	No	Enab.	2444	2600	2756	mV	
	on reset threshold	Falling voltage (power down)				2424	2580	2736		
LVD_HV	HV internal V _{DDPMC} supply	Rising voltage (untrimmed)	4bit	No	Enab.	2935	3023	3112	mV	
	low voltage monitoring	Falling voltage (untrimmed)				2922	3010	3099		
		Rising voltage (trimmed)				2946	3010	3066		
		Falling voltage (trimmed)				2934	2998	3044		
HVD_HV	HV internal V _{DDPMC} supply I high voltage monitoring	Rising voltage	4bit	Yes	Disab.	5696	5860	5968	mV	
		Falling voltage				5666	5830	5938		
LVD_FLASH	SH FLASH supply low voltage I monitoring ⁶	Rising voltage (untrimmed)	4bit	No	Enab.	2935	3023	3112	mV	
		Falling voltage (untrimmed)				2922	3010	3099		
		Rising voltage (trimmed)				2956	3010	3053		
		Falling voltage (trimmed)				2944	2998	3041		
HVD_FLASH	FLASH supply high	Rising voltage	4bit	Yes	Disab.	3456	3530	3584	mV	
	voltage monitoring ⁶	Falling voltage				3426	3500	3554		
LVD_IO	Main I/O V _{DDEH1} supply	Rising voltage (untrimmed)	4bit	No	Enab.	3250	3350	3488	mV	
	low voltage monitoring	Falling voltage (untrimmed)				3220	3320	3458		
		Rising voltage (trimmed)				3347	3420	3468		
		Falling voltage (trimmed)				3317	3390	3438		
t _{VDASSERT}	Voltage detector threshold crossing assertion	—	_	—	-	0.1	—	2.0	μs	
t _{VDRELEASE}	Voltage detector threshold crossing de-assertion	_	_	_	-	5	_	20	μs	

- 1. LVD is released after t_{VDRELEASE} temporization when upper threshold is crossed; LVD is asserted t_{VDASSERT} after detection when lower threshold is crossed.
- 2. HVD is released after t_{VDRELEASE} temporization when lower threshold is crossed; HVD is asserted t_{VDASSERT} after detection when upper threshold is crossed.
- 3. POR098_c threshold is an untrimmed value, before the completion of the power-up sequence. All other LVD/HVD thresholds are provided after trimming.
- 4. LV internal supply levels are measured on device internal supply grid after internal voltage drop.
- 5. LV external supply levels are measured on the die side of the package bond wire after package voltage drop.
- 6. V_{DDFLA} range is guaranteed when internal flash memory regulator is used.

3.11.4 Power sequencing requirements

Requirements for power sequencing include the following.

3.12 Flash memory specifications

3.12.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

Symbol	Characteristic ¹	Typ ²	Factory Field Programming ^{3, 4}		ield Upda	te	Unit	
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifetime Max ⁶		
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{dwpgm}	Doubleword (64 bits) program time	43	100	150	55	500		μs
t _{ppgm}	Page (256 bits) program time	73	200	300	108	500		μs
t _{qppgm}	Quad-page (1024 bits) program time	268	800	1,200	396	2,000		μs
t _{16kers}	16 KB Block erase time	168	290	320	250	1,000		ms
t _{16kpgm}	16 KB Block program time	34	45	50	40	1,000		ms
t _{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t _{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		ms
t _{256kers}	256 KB Block erase time	884	1,520	2,030	1,080	4,000	_	ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000	_	ms

 Table 30.
 Flash memory program and erase specifications

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

- 3. Conditions: \leq 150 cycles, nominal voltage.
- 4. Plant Programing times provide guidance for timeout limits used in the factory.
- 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.
- 6. Conditions: $-40^{\circ}C \le T_J \le 150^{\circ}C$, full spec voltage.

Figure 26. Synchronous output timing

Electrical characteristics

Figure 30. eTPU timing

3.13.8 eMIOS timing Table 41. eMIOS timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	eMIOS Input Pulse Width	t _{MIPW}	4	—	t _{CYC_PER} ²
2	eMIOS Output Pulse Width	t _{MOPW}	1 ³	—	t _{CYC_PER} ²

- 1. eMIOS timing specified at V_{DD} = 1.08 V to 1.32 V, V_{DDEH} = 3.0 V to 5.5 V, T_A = T_L to T_H , and C_L = 50 pF with SRC = 0b00.
- 2. For further information on t_{CYC_PER} , see Table 3.
- 3. This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).

Figure 31. eMIOS timing

SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).

- t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min t_{SYS} = 10 ns).
- 7. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 8. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 9. PCSx and PCSS using same pad configuration.
- 10. Input timing assumes an input slew rate of 1 ns (10% 90%) and uses TTL / Automotive voltage thresholds.
- 11. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Figure 32. DSPI CMOS master mode – classic timing, CPHA = 0

3.13.9.1.4 DSPI Master Mode – Output Only

Table 46. DSPI LVDS master timing — output only — timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock^{1, 2}

щ	Symbol	Characteristic	Condit	ion ³	Va	lue ⁴	Unit	
#	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Max	Onit	
1	t _{SCK}	SCK cycle time	LVDS	15 pF to 50 pF differential	25		ns	
2	t _{CSV}	PCS valid after SCK ⁶	PCR[SRC]=11b	25 pF	_	8	ns	
	(SCK with 50 pF differential load cap.)	PCR[SRC]=10b	50 pF	_	12	ns		
3	t _{CSH}	PCS hold after SCK ⁶	PCR[SRC]=11b	0 pF	-4.0	_	ns	
	(SCK with 50 pF differential load cap.)	PCR[SRC]=10b	0 pF	-4.0	_	ns		
4	t _{SDC}	SCK duty cycle (SCK with 50 pF differential load cap.)	LVDS	15 pF to 50 pF differential	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns	
			SOUT data valid time	(after SCK edge)				
5	t _{SUO}	SOUT data valid time from SCK ⁷	LVDS	15 pF to 50 pF differential		6	ns	
	SOUT data hold time (after SCK edge)							
6	t _{HO}	SOUT data hold time after SCK ⁷	LVDS	15 pF to 50 pF differential	-7.0		ns	

- 1. All DSPI timing specifications apply to pins when using LVDS pads for SCK and SOUT and CMOS pad for PCS with pad driver strength as defined. Timing may degrade for weaker output drivers.
- 2. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.
- 3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.
- 4. All timing values for output signals in this table are measured to 50% of the output voltage.
- 5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.
- 7. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Table 47. DSPI CMOS master timing – output only – timed serial bus modeTSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock $^{1, 2}$

#	Symbol	Characteristic	Condition	Condition ³		Value ⁴		
"	Symbol		Pad drive ⁵	Load (C _L)	Min	Max		
1	t _{SCK}	SCK cycle time	PCR[SRC]=11b	25 pF	33.0	—	ns	
			PCR[SRC]=10b	50 pF	80.0	_	ns	
			PCR[SRC]=01b	50 pF	200.0	—	ns	
2	t _{CSV}	PCS valid after SCK ⁶	PCR[SRC]=11b	25 pF	7	_	ns	
			PCR[SRC]=10b	50 pF	8	_	ns	
			PCR[SRC]=01b	50 pF	18		ns	
			PCS: PCR[SRC]=01b	50 pF	45	—	ns	
			SCK: PCR[SRC]=10b					

Table continues on the next page ...

Table 47. DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock 1, 2 (continued)

#	Symbol	Characteristic	Condition	3	Va	ue ⁴	Unit
#	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Max	
3	t _{CSH}	PCS hold after SCK ⁶	PCR[SRC]=11b	PCS: 0 pF	-14	—	ns
				SCK: 50 pF			
			PCR[SRC]=10b	PCS: 0 pF	-14	_	ns
				SCK: 50 pF			
			PCR[SRC]=01b	PCS: 0 pF	-33	_	ns
				SCK: 50 pF			
			PCS: PCR[SRC]=01b	PCS: 0 pF	-35	_	ns
			SCK: PCR[SRC]=10b	SCK: 50 pF			
4	t _{SDC}	SCK duty cycle ⁷	PCR[SRC]=11b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=10b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=01b	0 pF	1/2t _{SCK} – 5	1/2t _{SCK} + 5	ns
			SOUT data valid time (aft	ter SCK edge)			
9	t _{SUO}	SOUT data valid time	PCR[SRC]=11b	25 pF		7.0	ns
		from SCK	PCR[SRC]=10b	50 pF		8.0	ns
		CPHA = 1 ⁸	PCR[SRC]=01b	50 pF		18.0	ns
			SOUT data hold time (aft	er SCK edge)			
10	t _{HO}	SOUT data hold time	PCR[SRC]=11b	25 pF	-9.0		ns
		after SCK	PCR[SRC]=10b	50 pF	-10.0		ns
		CPHA = 1 ^o	PCR[SRC]=01b	50 pF	-21.0		ns

1. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.

2. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.

- 4. All timing values for output signals in this table are measured to 50% of the output voltage.
- 5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.

6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.

- 7. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 8. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Figure 41. MII receive signal timing diagram

3.13.10.2 MII transmit signal timing (TXD[3:0], TX_EN, and TX_CLK)

The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency.

The transmit outputs (TXD[3:0], TX_EN) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of noncompliant MII PHYs.

Refer to the *MPC5777C Microcontroller Reference Manual's* Fast Ethernet Controller (FEC) chapter for details of this option and how to enable it.

Symbol	Characteristic	Va	lue ²	Unit	
Symbol	Characteristic	Min	Max	Onit	
M5	TX_CLK to TXD[3:0], TX_EN invalid	4.5	_	ns	
M6	TX_CLK to TXD[3:0], TX_EN valid		25	ns	
M7	TX_CLK pulse width high	35%	65%	TX_CLK period	
M8	TX_CLK pulse width low	35%	65%	TX_CLK period	

 Table 49. MII transmit signal timing¹

1. All timing specifications valid to the pad input levels defined in I/O pad specifications.

2. Output parameters are valid for $C_L = 25 \text{ pF}$, where C_L is the external load to the device. The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value.

Figure 42. MII transmit signal timing diagram

3.13.10.3 MII async inputs signal timing (CRS) Table 50. MII async inputs signal timing

Symbol	Characteristic	Va	lue	Unit	
Symbol		Min	Max	onn	
M9	CRS minimum pulse width	1.5	_	TX_CLK period	

Figure 43. MII async inputs timing diagram

3.13.10.4 MII and RMII serial management channel timing (MDIO and MDC)

The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

 Table 51. MII serial management channel timing¹

Symbol	Characteristic	Va	lue ²	Unit	
Symbol			Max	Onit	
M10	MDC falling edge to MDIO output invalid (minimum propagation delay)	0	_	ns	
M11	MDC falling edge to MDIO output valid (max prop delay)	—	25	ns	
M12	MDIO (input) to MDC rising edge setup	10	_	ns	
M13	MDIO (input) to MDC rising edge hold	0	_	ns	
M14	MDC pulse width high	40%	60%	MDC period	
M15	MDC pulse width low	40%	60%	MDC period	

1. All timing specifications valid to the pad input levels defined in I/O pad specifications.

2. Output parameters are valid for $C_L = 25 \text{ pF}$, where C_L is the external load to the device. The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value

Figure 46. RMII transmit signal timing diagram

4 Package information

To find the package drawing for each package, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
416-ball MAPBGA	98ASA00562D
516-ball MAPBGA	98ASA00623D

4.1 Thermal characteristics

Table 54. Thermal characteristics, 416-ball MAPBGA package

Characteristic	Symbol	Value	Unit
Junction to Ambient ^{1, 2} Natural Convection (Single layer board)	$R_{\Theta JA}$	28.8	°C/W
Junction to Ambient ^{1, 3} Natural Convection (Four layer board 2s2p)	R _{OJA}	19.6	°C/W
Junction to Ambient (@200 ft./min., Single layer board)	R _{ØJMA}	21.3	°C/W
Junction to Ambient (@200 ft./min., Four layer board 2s2p)	R _{ØJMA}	15.1	°C/W
Junction to Board ⁴	$R_{\Theta JB}$	9.5	°C/W
Junction to Case ⁵	R _{ØJC}	4.8	°C/W
Junction to Package Top ⁶ Natural Convection	Ψ_{JT}	0.2	°C/W

- 1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.

- Quality of the thermal and electrical connections to the planes
- Power dissipated by adjacent components

Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.

As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:

- One oz. (35 micron nominal thickness) internal planes
- Components are well separated
- Overall power dissipation on the board is less than 0.02 W/cm^2

The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + \left(R_{\theta JB} * P_D \right)$$

where:

 T_B = board temperature for the package perimeter (°C)

 $R_{\Theta JB}$ = junction-to-board thermal resistance (°C/W) per JESD51-8

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air does not factor into the calculation, the junction temperature is predictable if the application board is similar to the thermal test condition, with the component soldered to a board with internal planes.

The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance: