

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z7
Core Size	32-Bit Tri-Core
Speed	264MHz
Connectivity	CANbus, EBI/EMI, Ethernet, FlexCANbus, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	8MB (8M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16b Sigma-Delta, eQADC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	516-BGA
Supplier Device Package	516-MAPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5777ck3mmo3r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4. I/O input DC electrical characteristics definition

Symbol	Parameter	Conditions		Unit		
Symbol	Farameter	Conditions	Min	Тур	Max	Unit
V _{IHCMOS_H}	Input high level CMOS (with	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	0.65 * V _{DDEx}	_	V _{DDEx} + 0.3	V
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V				
V _{IHCMOS}	Input high level CMOS (without	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	0.55 * V _{DDEx}	_	V _{DDEx} + 0.3	V
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V				
V _{ILCMOS_H}	Input low level CMOS (with	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	-0.3	_	0.35 * V _{DDEx}	V
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V				
VILCMOS	Input low level CMOS (without	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	-0.3	_	0.4 * V _{DDEx}	V
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V				
V _{HYSCMOS}	Input hysteresis CMOS	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	0.1 * V _{DDEx}		—	V
		4.5 V < V _{DDEx} < 5.5 V				
		Input Characteristics ¹				
I _{LKG}	Digital input leakage	$V_{SS} < V_{IN} < V_{DDEx}/V_{DDEHx}$	—		2.5	μA
I _{LKG_FAST}	Digital input leakage for EBI address/control signal pads	$V_{SS} < V_{IN} < V_{DDEx}/V_{DDEHx}$	—	—	2.5	μA
I _{LKGA}	Analog pin input leakage (5 V range)	$V_{SSA_SD} < V_{IN} < V_{DDA_SD}, \\ V_{SSA_EQ} < V_{IN} < V_{DDA_EQA/B}$	—	_	220	nA
C _{IN}	Digital input capacitance	GPIO and EBI input pins	_		7	pF

Table 6. I/O input DC electrical characteris	stics
--	-------

1. For LFAST, microsecond bus, and LVDS input characteristics, see dedicated communication module sections.

Table 7 provides current specifications for weak pullup and pulldown.

Figure 5. I/O output DC electrical characteristics definition

The following tables specify output DC electrical characteristics.

Table 9.	GPIO and EBI data pad output buffer electrical characteristics (SR
	pads) ¹

Symbol	Parameter	Conditions ²			Value ³		Unit
Symbol		Conditions		Min	Тур	Мах	
I _{ОН}	GPIO pad output high	$V_{OH} = 0.8 * V_{DDEx}$	PCR[SRC] = 11b or 01b	25	—	_	mA
	current	4.5 V < V _{DDEx} < 5.5 V	PCR[SRC] = 10b or 00b	15	—	_	
		V _{OH} = 0.8 * V _{DDEx}	PCR[SRC] = 11b or 01b	13	_	_	
		$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$	PCR[SRC] = 10b or 00b	8	—	_	
I _{OL}	GPIO pad output low	$V_{OL} = 0.2 * V_{DDEx}$	PCR[SRC] = 11b or 01b	48	—	_	mA
cu	current	$4.5 \text{ V} < \text{V}_{\text{DDEx}} < 5.5 \text{ V}$	PCR[SRC] = 10b or 00b	22	—		
		V _{OL} = 0.2 * V _{DDEx}	PCR[SRC] = 11b or 01b	17	—	_	
		$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$	PCR[SRC] = 10b or 00b	10.5			

- 2. PCR[SRC] values refer to the setting of that register field in the SIU.
- 3. All values to be confirmed during device validation.

The following table shows the EBI CLKOUT, address, and control signal pad electrical characteristics. These pads can also be used for GPIO.

Table 10. GPIO and EBI CLKOUT, address, and control signal pad output buffer electrical characteristics (FC pads)

					Value		
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
	EBI Mod	e Output Specificatio	ns: valid for 3.0 V < V_1	ر DDEx < 3.6 \	/		
C _{DRV}	External bus load	PCR[DSC] = 01b		_		10	pF
	capacitance	PCR[DSC] = 10b		—	_	20	
		PCR[DSC] = 11b		—	—	30	
f _{MAX_EBI}	External bus maximum operating frequency	C _{DRV} = 10/20/30 pF		—		66	MHz
	1	GPIO and EBI Mode	Output Specification	S	<u></u>		1
I _{OH_EBI}	GPIO and external bus	V _{OH} = 0.8 * V _{DDEx}	PCR[DSC] = 11b	30	_	_	mA
	pad output high current	4.5 V < V _{DDEx} < 5.5 V	PCR[DSC] = 10b	22			-
			PCR[DSC] = 01b	13		—	
			PCR[DSC] = 00b	2	_	_	
		V _{OH} = 0.8 * V _{DDEx}	PCR[DSC] = 11b	16		_	
		3.0 V < V _{DDEx} < 3.6 V	PCR[DSC] = 10b	12		_	
			PCR[DSC] = 01b	7	_	_	
			PCR[DSC] = 00b	1			-
I _{OL_EBI}	GPIO and external bus	$V_{OL} = 0.2 * V_{DDEx}$	PCR[DSC] = 11b	54	_	_	mA
	pad output low current	4.5 V < V _{DDEx} < 5.5 V	PCR[DSC] = 10b	25	_	_	
			PCR[DSC] = 01b	16		_	-
			PCR[DSC] = 00b	2	_	_	
		$V_{OL} = 0.2 * V_{DDEx}$	PCR[DSC] = 11b	17		_	
		3.0 V < V _{DDEx} < 3.6 V	PCR[DSC] = 10b	14			
			PCR[DSC] = 01b	8			
			PCR[DSC] = 00b	1			
t _{R_F_EBI}	GPIO and external bus	PCR[DSC] = 11b	C _L = 30 pF	—	_	1.5	ns
	pad output transition		C _L = 50 pF	_		2.4	
		PCR[DSC] = 10b	C _L = 20 pF	_		1.5	
		PCR[DSC] = 01b	C _L = 10 pF	—		1.85	
		PCR[DSC] = 00b	C _L = 50 pF	_		45	
t _{PD_EBI}	GPIO and external bus	PCR[DSC] = 11b	C _L = 30 pF	—		4.2	ns
	pad output propagation		C _L = 50 pF	—		5.5	
		PCR[DSC] = 10b	C _L = 20 pF	_		4.2	1
		PCR[DSC] = 01b	C _L = 10 pF	_	_	4.4	1
		PCR[DSC] = 00b	C _L = 50 pF	—		59	1

1. PCR[DSC] values refer to the setting of that register field in the SIU.

3.6.3 I/O pad current specifications

The I/O pads are distributed across the I/O supply segments. Each I/O supply segment is associated with a V_{DDEx} supply segment.

Table 11 provides I/O consumption figures.

To ensure device reliability, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 1.

To ensure device functionality, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 3.

NOTE

The MPC5777C I/O Signal Description and Input Multiplexing Tables are contained in a Microsoft Excel® file attached to the Reference Manual. In the spreadsheet, select the I/O Signal Table tab.

Symbol	Parameter	Conditions	Value			Unit
		Conditions	Min	Тур	Max	
I _{AVG_GPIO}	Average I/O current for GPIO pads	C _L = 25 pF, 2 MHz	—	—	0.42	mA
	(per pad)	$V_{DDEx} = 5.0 V \pm 10\%$				
		C _L = 50 pF, 1 MHz	—	—	0.35	
		$V_{DDEx} = 5.0 V \pm 10\%$				
I _{AVG_EBI}	Average I/O current for external	$C_{DRV} = 10 \text{ pF}, f_{EBI} = 66 \text{ MHz}$	—		9	mA
	bus output pins (per pad)	$V_{DDEx} = 3.3 V \pm 10\%$				
		$C_{DRV} = 20 \text{ pF}, \text{ f}_{EBI} = 66 \text{ MHz}$	—		18	
		$V_{DDEx} = 3.3 V \pm 10\%$				
		$C_{DRV} = 30 \text{ pF}, f_{EBI} = 66 \text{ MHz}$	—	—	30	
		$V_{DDEx} = 3.3 V \pm 10\%$				

Table 11. I/O consumption

3.7 Oscillator and PLL electrical specifications

The on-chip dual PLL—consisting of the peripheral clock and reference PLL (PLL0) and the frequency-modulated system PLL (PLL1)—generates the system and auxiliary clocks from the main oscillator driver.

- 5. Below disruptive current conditions, the channel being stressed has conversion values of \$3FF for analog inputs greater than V_{BH} and \$000 for values less than V_{BL}. Other channels are not affected by non-disruptive conditions.
- 6. Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage.
- Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using V_{POSCLAMP} = V_{DDA} + 0.5 V and V_{NEGCLAMP} = -0.3 V, then use the larger of the calculated values.
- 8. Condition applies to two adjacent pins at injection limits.
- 9. Performance expected with production silicon.
- 10. All channels have same 10 k Ω < Rs < 100 k Ω Channel under test has Rs = 10 k Ω , $I_{INJ}=I_{INJMAX}$, I_{INJMIN} .
- 11. The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to cancelling errors.
- 12. TUE does not apply to differential conversions.
- Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of ×1, ×2, or ×4. Settings are for differential input only. Tested at ×1 gain. Values for other settings are guaranteed as indicated.
- 14. Guaranteed 10-bit monotonicity.
- 15. At $V_{RH_EQ} V_{RL_EQ}$ = 5.12 V, one LSB = 1.25 mV.

3.8.2 Sigma-Delta ADC (SDADC)

The SDADC is a 16-bit Sigma-Delta analog-to-digital converter with a 333 Ksps maximum output conversion rate.

NOTE

The voltage range is 4.5 V to 5.5 V for SDADC specifications, except where noted otherwise.

Symbol	Baramotor	Conditions		Unit		
Symbol Parameter	Farameter	Conditions	Min	Тур	Мах	Unit
V _{IN}	ADC input signal	—	0	_	V _{DDA_SD}	V
V _{IN_PK2PK} ¹	Input range peak to peak	Single ended	V _{RH_SD} /GAIN			V
		$V_{\rm INM} = V_{\rm RL}_{\rm SD}$				
	$V_{IN_{PK2PK}} = V_{INP}^{2} - V_{INM}^{3}$	Single ended		±0.5*V _{RF}	I_SD	
		$V_{INM} = 0.5^* V_{RH_{SD}}$				
		GAIN = 1				
		Single ended		GAIN		
		$V_{INM} = 0.5^* V_{RH_SD}$				
		GAIN = 2,4,8,16				
		Differential	±V _{RH_SD} /GAIN		GAIN	
		0 < V _{IN} < V _{DDEx}				
f _{ADCD_M}	SD clock frequency ⁴	—	4	14.4	16	MHz
f _{ADCD_S}	Conversion rate	_	—		333	Ksps
	Oversampling ratio	Internal modulator	24		256	—
RESOLUTION	SD register resolution ⁵	2's complement notation		16		bit

Table 18. SDADC electrical specifications

Table continues on the next page...

O make at	Demonstern			Limit		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
GAIN	ADC gain	Defined through SDADC_MCR[PGAN]. Only integer powers of 2 are valid gain values.	1	_	16	
δ _{GAIN} Ι	Absolute value of the ADC gain error ^{6, 7}	Before calibration (applies to gain setting = 1)		_	1.5	%
		After calibration	-	—	5	mV
		$\Delta V_{RH_SD} < 5\%$, $\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 50 \ ^{\circ}{\rm C}$				
		After calibration	_	—	7.5	
		$\Delta V_{RH_SD} < 5\%$, $\Delta V_{DDA_SD} < 10\%$				
		ΔT _J < 100 °C				
		After calibration		—	10	
		$\Delta V_{RH_SD} < 5\%, \Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 150 \ ^{\circ}{\rm C}$				
V _{OFFSET}	Conversion offset ^{6, 7}	Before calibration (applies to all gain settings: 1, 2, 4, 8, 16)	_	10*(1+1/ gain)	20	mV
		After calibration		—	5	
		$\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 50 \ ^{\circ}{\rm C}$				
		After calibration	_	—	7.5	
		$\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 100 \ ^{\circ}{\rm C}$				
		After calibration	_	—	10	
		$\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 150 \ ^{\circ}{\rm C}$				

Table 18.	SDADC electrical	specifications	(continued)
Table 10.	SDADC electrical	specifications	(continueu)

Symbol	Paramotor	Conditions		Unit		
	Farameter	Conditions	Min	Тур	Мах	Onit
SNR _{DIFF150}	Signal to noise ratio in	$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	80	_	—	dB
	differential mode, 150 Ksps output rate	$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 1				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	77			
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 2				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	74	_		
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 4				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	71	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 8				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	68	—	—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				
SNR _{DIFF333}	Signal to noise ratio in	$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	71	—	_	dB
	Ksps output rate	$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 1				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	70	—	—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 2				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	68		—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 4				
		$4.5 \text{ V} < \text{V}_{\text{DDA}_{\text{SD}}} < 5.5 \text{ V}^{8, 9}$	65	—	—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 8				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	62			
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				

Table 18. SDADC electrical specifications (continued)

Symbol	Paramotor	Conditions		Unit		
	Farameter		Min	Тур	Max	
SINAD _{DIFF333}	Signal to noise and	Gain = 1	66	—	—	dBFS
	distortion ratio in differential mode, 333	4.5 V < V _{DDA_SD} < 5.5 V				
	Ksps output rate	$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 2	66	—	—	
		$4.5 \text{ V} < \text{V}_{\text{DDA}_{\text{SD}}} < 5.5 \text{ V}$				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 4	63		—	
		$4.5 \text{ V} < \text{V}_{\text{DDA}_{\text{SD}}} < 5.5 \text{ V}$				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 8	62	—	—	
		$4.5 \text{ V} < \text{V}_{\text{DDA}_{\text{SD}}} < 5.5 \text{ V}$				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 16	59	—		
		$4.5 \text{ V} < \text{V}_{\text{DDA}_{\text{SD}}} < 5.5 \text{ V}$				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
SINAD _{SE150}	Signal to noise and	Gain = 1	66	—	—	dBFS
	distortion ratio in single-ended mode.	$4.5 \text{ V} < \text{V}_{\text{DDA}_{\text{SD}}} < 5.5 \text{ V}$				
	150 Ksps output rate	$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 2	66		—	
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}$				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 4	63	—	—	
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}$				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 8	62		—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 16	54	—	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				

Table 18. SDADC electrical specifications (continued)

Symbol	Baramatar	Conditions	Value	Ð	Unit	
Symbol	Parameter	Conditions	Min	Тур	Max	
THD _{DIFF150}	Total harmonic	Gain = 1	65	—	—	dBFS
	distortion in differential mode, 150 Ksps	4.5 V < V _{DDA_SD} < 5.5 V				
	output rate	$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 2	68	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 4	74	_	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 8	80		—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 16	80			
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
THD _{DIFF333}	Total harmonic	Gain = 1	65	_	—	dBFS
	distortion in differential	4.5 V < V _{DDA_SD} < 5.5 V				
	output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 2	68	_	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 4	74		—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 8	80		_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 16	80	_		
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				

Table 18. SDADC electrical specifications (continued)

Table 20. LVDS pad startup and receiver electrical characteristics¹ (continued)

Symbol	Devemeter	Conditions		Value		Unit
Symbol	Parameter	Conditions	Min	Тур	Max	
t _{PD2NM_TX}	Transmitter startup time (power down to Normal mode) ⁵	—	-	0.4	2.75	μs
t _{SM2NM_TX}	Transmitter startup time (Sleep mode to Normal mode) ⁶	Not applicable to the MSC/DSPI LVDS pad	—	0.2	0.5	μs
t _{PD2NM_RX}	Receiver startup time (power down to Normal mode) ⁷	—	—	20	40	ns
t _{PD2SM_RX}	Receiver startup time (power down to Sleep mode) ⁸	Not applicable to the MSC/DSPI LVDS pad	—	20	50	ns
I _{LVDS_BIAS}	LVDS bias current consumption	Tx or Rx enabled		—	0.95	mA
	TRANSMISSION LINE	CHARACTERISTICS (PCB Track)				
Z ₀	Transmission line characteristic impedance	—	47.5	50	52.5	Ω
Z _{DIFF}	Transmission line differential impedance	—	95	100	105	Ω
		RECEIVER				
V _{ICOM}	Common mode voltage	—	0.15 ⁹	—	1.6 ¹⁰	V
ΔVII	Differential input voltage	—	100		—	mV
V _{HYS}	Input hysteresis	—	25		—	mV
R _{IN}	Terminating resistance	V _{DDEH} = 3.0 V to 5.5 V	80	125	150	Ω
C _{IN}	Differential input capacitance ¹¹	—	_	3.5	6.0	pF
I _{LVDS_RX}	Receiver DC current consumption	Enabled	_	_	0.5	mA

1. The LVDS pad startup and receiver electrical characteristics in this table apply to both the LFAST and the MSC/DSPI LVDS pad except where noted in the conditions.

- 2. All startup times are defined after a 2 peripheral bridge clock delay from writing to the corresponding enable bit in the LVDS control registers (LCR) of the LFAST and High-Speed Debug modules.
- 3. Startup times are valid for the maximum external loads CL defined in both the LFAST/HSD and MSC/DSPI transmitter electrical characteristic tables.
- 4. Bias startup time is defined as the time taken by the current reference block to reach the settling bias current after being enabled.
- 5. Total transmitter startup time from power down to normal mode is t_{STRT_BIAS} + t_{PD2NM_TX} + 2 peripheral bridge clock periods.
- Total transmitter startup time from sleep mode to normal mode is t_{SM2NM_TX} + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode.
- Total receiver startup time from power down to normal mode is t_{STRT_BIAS} + t_{PD2NM_RX} + 2 peripheral bridge clock periods.
 Total receiver startup time from power down to sleep mode is t_{PD2SM_RX} + 2 peripheral bridge clock periods. Bias block
- remains enabled in sleep mode.
- 9. Absolute min = 0.15 V (285 mV/2) = 0 V
- 10. Absolute max = 1.6 V + (285 mV/2) = 1.743 V
- 11. Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions. For bare die devices, subtract the package value given in Figure 11.

Table 21. LFAST transmitter electrical characteristics¹

Symbol	Parameter	Conditions		Unit		
Symbol	Falance	Conditions	Min	Тур	Мах	Unit
f _{DATA}	Data rate	—	_	—	240	Mbps

Table continues on the next page...

The SMPS regulator characteristics appear in the following table.

Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min	Тур	Max	
SMPS _{CLOCK}	SMPS oscillator frequency	Trimmed	825	1000	1220	kHz
SMPS _{SLOPE}	SMPS soft-start ramp slope	_	0.01	0.025	0.05	V/µs
SMPS _{EFF}	SMPS typical efficiency	_	_	70	—	%

Table 27. SMPS electrical characteristics

3.11.2 Power management integration

To ensure correct functionality of the device, use the following recommended integration scheme for LDO mode.

Figure 14. Recommended supply pin circuits

Table 29. Voltage monitor electrical characteristics^{1, 2} (continued)

			Co	nfigura	tion		Value			
Symbol	Parameter	Conditions	Trim bits	Mask Opt.	Pow. Up	Min	Тур	Max	Unit	
POR_HV	HV V _{DDPMC} supply power	Rising voltage (powerup)	N/A	No	Enab.	2444	2600	2756	mV	
	on reset threshold	Falling voltage (power down)				2424	2580	2736		
LVD_HV	HV internal V _{DDPMC} supply	Rising voltage (untrimmed)	4bit	No	Enab.	2935	3023	3112	mV	
	low voltage monitoring	Falling voltage (untrimmed)				2922	3010	3099		
		Rising voltage (trimmed)				2946	3010	3066		
		Falling voltage (trimmed)				2934	2998	3044		
HVD_HV	HV internal V _{DDPMC} supply	Rising voltage	4bit	bit Yes Disat	Yes	Disab.	5696	5860	5968	mV
	high voltage monitoring	Falling voltage				5666	5830	5938		
LVD_FLASH	FLASH supply low voltage F monitoring ⁶ F	Rising voltage (untrimmed)	4bit	No	Enab.	2935	3023	3112	mV	
		Falling voltage (untrimmed)				2922	3010	3099		
		Rising voltage (trimmed)				2956	3010	3053		
		Falling voltage (trimmed)				2944	2998	3041		
HVD_FLASH	FLASH supply high	Rising voltage	4bit	Yes	Disab.	3456	3530	3584	mV	
	voltage monitoring ^o	Falling voltage				3426	3500	3554		
LVD_IO	Main I/O V _{DDEH1} supply	Rising voltage (untrimmed)	4bit	No	Enab.	3250	3350	3488	mV	
	low voltage monitoring	Falling voltage (untrimmed)				3220	3320	3458		
		Rising voltage (trimmed)				3347	3420	3468		
		Falling voltage (trimmed)				3317	3390	3438		
t _{VDASSERT}	Voltage detector threshold crossing assertion	—	_	—	-	0.1	—	2.0	μs	
t _{VDRELEASE}	Voltage detector threshold crossing de-assertion	_			_	5		20	μs	

- 1. LVD is released after t_{VDRELEASE} temporization when upper threshold is crossed; LVD is asserted t_{VDASSERT} after detection when lower threshold is crossed.
- 2. HVD is released after t_{VDRELEASE} temporization when lower threshold is crossed; HVD is asserted t_{VDASSERT} after detection when upper threshold is crossed.
- 3. POR098_c threshold is an untrimmed value, before the completion of the power-up sequence. All other LVD/HVD thresholds are provided after trimming.
- 4. LV internal supply levels are measured on device internal supply grid after internal voltage drop.
- 5. LV external supply levels are measured on the die side of the package bond wire after package voltage drop.
- 6. V_{DDFLA} range is guaranteed when internal flash memory regulator is used.

3.11.4 Power sequencing requirements

Requirements for power sequencing include the following.

NOTE

In these descriptions, *star route layout* means a track split as close as possible to the power supply source. Each of the split tracks is routed individually to the intended end connection.

- 1. For both LDO mode and SMPS mode, V_{DDPMC} and V_{DDPWR} must be connected together (shorted) to ensure aligned voltage ramping up/down. In addition:
 - For SMPS mode, a star route layout of the power track is required to minimize mutual noise. If SMPS mode is not used, the star route layout is not required. V_{DDPWR} is the supply pin for the SMPS circuitry.
 - For 3.3 V operation, V_{DDFLA} must also be star routed and shorted to V_{DDPWR} and V_{DDPMC} . This triple connection is required because 3.3 V does not guarantee correct functionality of the internal V_{DDFLA} regulator. Consequently, V_{DDFLA} is supplied externally.
- 2. V_{DDA MISC}: IRC operation is required to provide the clock for chip startup.
 - The V_{DDPMC}, V_{DD}, and V_{DDEH1} (reset pin pad segment) supplies are monitored. They hold IRC until all of them reach operational voltage. In other words, V_{DDA_MISC} must reach its specified minimum operating voltage before or at the same time that all of these monitored voltages reach their respective specified minimum voltages.
 - An alternative is to connect the same supply voltage to both V_{DDEH1} and V_{DDA_MISC} . This alternative approach requires a star route layout to minimize mutual noise.
- 3. Multiple V_{DDEx} supplies can be powered up in any order.

During any time when V_{DD} is powered up but V_{DDEx} is not yet powered up: pad outputs are unpowered.

During any time when V_{DDEx} is powered up before all other supplies: all pad output buffers are tristated.

- 4. Ramp up $V_{DDA EQ}$ before V_{DD} . Otherwise, a reset might occur.
- 5. When the device is powering down while using the internal SMPS regulator, V_{DDPMC} and V_{DDPWR} supplies must ramp down through the voltage range from 2.5 V to 1.5 V in less than 1 second. Slower ramp-down times might result in reduced lifetime reliability of the device.

Table 34.	Flash mem	ory read	wait-state	and a	ddress-p	ipeline	control	combina	tions
	(continued)								

Flash memory frequency	RWSC	APC	Flash memory read latency on mini-cache miss (# of f _{PLATF} clock periods)	Flash memory read latency on mini-cache hit (# of f _{PLATF} clock periods)
100 MHz < f _{PLATF} ≤ 133 MHz	3	1	6	1

3.13 AC timing

3.13.1 Generic timing diagrams

The generic timing diagrams in Figure 16 and Figure 17 apply to all I/O pins with pad types SR and FC. See the associated MPC5777C Microsoft Excel® file in the Reference Manual for the pad type for each pin.

Figure 16. Generic output delay/hold timing

Figure 19. JTAG test clock input timing

Figure 20. JTAG test access port timing

Figure 26. Synchronous output timing

Electrical characteristics

Figure 28. ALE signal timing

3.13.6 External interrupt timing (IRQ/NMI pin) Table 39. External Interrupt timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	IRQ/NMI Pulse Width Low	t _{IPWL}	3	—	t _{cyc} ²
2	IRQ/NMI Pulse Width High	t _{IPWH}	3	—	t _{cyc} ²
3	IRQ/NMI Edge to Edge Time ³	t _{ICYC}	6	—	t _{cyc} ²

- 1. IRQ/NMI timing specified at V_{DD} = 1.08 V to 1.32 V, V_{DDEH} = 3.0 V to 5.5 V, T_A = T_L to T_H .
- 2. For further information on t_{cyc} , see Table 3.
- 3. Applies when IRQ/NMI pins are configured for rising edge or falling edge events, but not both.

Figure 29. External interrupt timing

3.13.7 eTPU timing Table 40. eTPU timing¹

Spec	Characteristic	Symbol	Min	Мах	Unit
1	eTPU Input Channel Pulse Width	t _{ICPW}	4	—	t _{CYC_ETPU} ²
2	eTPU Output Channel Pulse Width	t _{OCPW}	1 ³	—	t _{CYC_ETPU} ²

1. eTPU timing specified at V_{DD} = 1.08 V to 1.32 V, V_{DDEH} = 3.0 V to 5.5 V, T_A = T_L to T_H , and C_L = 200 pF with SRC = 0b00.

2. For further information on tCYC ETPU, see Table 3.

3. This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).

3.13.9.1.4 DSPI Master Mode – Output Only

Table 46. DSPI LVDS master timing — output only — timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock^{1, 2}

щ	Symbol	Characteristic	Condit	ion ³	Va	lue ⁴	Unit		
#	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Max	Onit		
1	t _{SCK}	SCK cycle time	LVDS	15 pF to 50 pF differential	25		ns		
2	t _{CSV}	PCS valid after SCK ⁶	PCR[SRC]=11b	25 pF	_	8	ns		
		(SCK with 50 pF differential load cap.)	PCR[SRC]=10b	50 pF	_	12	ns		
3	t _{CSH}	PCS hold after SCK ⁶	PCR[SRC]=11b	0 pF	-4.0	_	ns		
		(SCK with 50 pF differential load cap.)	PCR[SRC]=10b	0 pF	-4.0	_	ns		
4	t _{SDC}	SCK duty cycle (SCK with 50 pF differential load cap.)	LVDS	15 pF to 50 pF differential	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns		
			SOUT data valid time	(after SCK edge)					
5	t _{SUO}	SOUT data valid time from SCK ⁷	LVDS	15 pF to 50 pF differential		6	ns		
	SOUT data hold time (after SCK edge)								
6	t _{HO}	SOUT data hold time after SCK ⁷	LVDS	15 pF to 50 pF differential	-7.0		ns		

- 1. All DSPI timing specifications apply to pins when using LVDS pads for SCK and SOUT and CMOS pad for PCS with pad driver strength as defined. Timing may degrade for weaker output drivers.
- 2. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.
- 3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.
- 4. All timing values for output signals in this table are measured to 50% of the output voltage.
- 5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.
- 7. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Table 47. DSPI CMOS master timing – output only – timed serial bus modeTSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock $^{1, 2}$

#	Symbol	Characteristic	Condition	3	Value ⁴		
"	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Max	
1	t _{SCK}	SCK cycle time	PCR[SRC]=11b	25 pF	33.0		ns
			PCR[SRC]=10b	50 pF	80.0		ns
			PCR[SRC]=01b	50 pF	200.0		ns
2	t _{CSV}	PCS valid after SCK ⁶	PCR[SRC]=11b	25 pF	7		ns
			PCR[SRC]=10b	50 pF	8		ns
			PCR[SRC]=01b	50 pF	18		ns
			PCS: PCR[SRC]=01b	50 pF	45		ns
			SCK: PCR[SRC]=10b				

Table continues on the next page ...

Figure 40. DSPI LVDS and CMOS master timing – output only – modified transfer format MTFE = 1, CHPA = 1

3.13.10 FEC timing

3.13.10.1 MII receive signal timing (RXD[3:0], RX_DV, and RX_CLK)

The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency.

Symbol	Characteristic	Va	lue	Unit	
Symbol		Min	Мах	Onit	
M1	RXD[3:0], RX_DV to RX_CLK setup	5	—	ns	
M2	RX_CLK to RXD[3:0], RX_DV hold	5	—	ns	
M3	RX_CLK pulse width high	35%	65%	RX_CLK period	
M4	RX_CLK pulse width low	35%	65%	RX_CLK period	

Table 48. MII receive signal timing¹

1. All timing specifications valid to the pad input levels defined in I/O pad current specifications.